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Abstract

This paper describes the application of
so-called topic models to selectional pref-
erence induction. Three models related
to Latent Dirichlet Allocation, a proven
method for modelling document-word co-
occurrences, are presented and evaluated
on datasets of human plausibility judge-
ments. Compared to previously proposed
techniques, these models perform very
competitively, especially for infrequent
predicate-argument combinations where
they exceed the quality of Web-scale pre-
dictions while using relatively little data.

1 Introduction

Language researchers have long been aware that
many words place semantic restrictions on the
words with which they can co-occur in a syntactic
relationship. Violations of these restrictions make
the sense of a sentence odd or implausible:

(1) Colourless green ideas sleep furiously.

(2) The deer shot the hunter.

Recognising whether or not a selectional restriction
is satisfied can be an important trigger for metaphor-
ical interpretations (Wilks, 1978) and also plays a
role in the time course of human sentence process-
ing (Rayner et al., 2004). A more relaxed notion of
selectional preference captures the idea that certain
classes of entities are more likely than others to
fill a given argument slot of a predicate. In Natu-
ral Language Processing, knowledge about proba-
ble, less probable and wholly infelicitous predicate-
argument pairs is of value for numerous applica-
tions, for example semantic role labelling (Gildea
and Jurafsky, 2002; Zapirain et al., 2009). The
notion of selectional preference is not restricted

to surface-level predicates such as verbs and mod-
ifiers, but also extends to semantic frames (Erk,
2007) and inference rules (Pantel et al., 2007).

The fundamental problem that selectional prefer-
ence models must address is data sparsity: in many
cases insufficient corpus data is available to reliably
measure the plausibility of a predicate-argument
pair by counting its observed frequency. A rarely
seen pair may be fundamentally implausible (a
carrot laughed) or plausible but rarely expressed
(a manservant laughed).1 In general, it is benefi-
cial to smooth plausibility estimates by integrating
knowledge about the frequency of other, similar
predicate-argument pairs. The task thus share some
of the nature of language modelling; however, it is
a task less amenable to approaches that require very
large training corpora and one where the semantic
quality of a model is of greater importance.

This paper takes up tools (“topic models”)
that have been proven successful in modelling
document-word co-occurrences and adapts them
to the task of selectional preference learning. Ad-
vantages of these models include a well-defined
generative model that handles sparse data well,
the ability to jointly induce semantic classes and
predicate-specific distributions over those classes,
and the enhanced statistical strength achieved by
sharing knowledge across predicates. Section 2
surveys prior work on selectional preference mod-
elling and on semantic applications of topic models.
Section 3 describes the models used in our exper-
iments. Section 4 provides details of the experi-
mental design. Section 5 presents results for our
models on the task of predicting human plausibility
judgements for predicate-argument combinations;
we show that performance is generally competi-

1At time of writing, Google estimates 855 hits
for “a|the carrot|carrots laugh|laughs|laughed” and 0
hits for “a|the manservant|manservants|menservants
laugh|laughs|laughed”; many of the carrot hits are false
positives but a significant number are true subject-verb
observations.
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tive with or superior to a number of other models,
including models using Web-scale resources, espe-
cially for low-frequency examples. In Section 6 we
wrap up by summarising the paper’s conclusions
and sketching directions for future research.

2 Related work

2.1 Selectional preference learning

The representation (and latterly, learning) of selec-
tional preferences for verbs and other predicates
has long been considered a fundamental problem
in computational semantics (Resnik, 1993). Many
approaches to the problem use lexical taxonomies
such as WordNet to identify the semantic classes
that typically fill a particular argument slot for a
predicate (Resnik, 1993; Clark and Weir, 2002;
Schulte im Walde et al., 2008). In this paper, how-
ever, we focus on methods that do not assume
the availability of a comprehensive taxonomy but
rather induce semantic classes automatically from
a corpus of text. Such methods are more generally
applicable, for example in domains or languages
where handbuilt semantic lexicons have insufficient
coverage or are non-existent.

Rooth et al. (1999) introduced a model of se-
lectional preference induction that casts the prob-
lem in a probabilistic latent-variable framework.
In Rooth et al.’s model each observed predicate-
argument pair is probabilistically generated from a
latent variable, which is itself generated from an un-
derlying distribution on variables. The use of latent
variables, which correspond to coherent clusters
of predicate-argument interactions, allow proba-
bilities to be assigned to predicate-argument pairs
which have not previously been observed by the
model. The discovery of these predicate-argument
clusters and the estimation of distributions on latent
and observed variables are performed simultane-
ously via an Expectation Maximisation procedure.
The work presented in this paper is inspired by
Rooth et al.’s latent variable approach, most di-
rectly in the model described in Section 3.3. Erk
(2007) and Padó et al. (2007) describe a corpus-
driven smoothing model which is not probabilistic
in nature but relies on similarity estimates from
a “semantic space” model that identifies semantic
similarity with closeness in a vector space of co-
occurrences. Bergsma et al. (2008) suggest learn-
ing selectional preferences in a discriminative way,
by training a collection of SVM classifiers to recog-
nise likely and unlikely arguments for predicates

of interest.
Keller and Lapata (2003) suggest a simple al-

ternative to smoothing-based approaches. They
demonstrate that noisy counts from a Web search
engine can yield estimates of plausibility for
predicate-argument pairs that are superior to mod-
els learned from a smaller parsed corpus. The as-
sumption inherent in this approach is that given suf-
ficient text, all plausible predicate-argument pairs
will be observed with frequency roughly correlated
with their degree of plausibility. While the model is
undeniably straightforward and powerful, it has a
number of drawbacks: it presupposes an extremely
large corpus, the like of which will only be avail-
able for a small number of domains and languages,
and it is only suitable for relations that are iden-
tifiable by searching raw text for specific lexical
patterns.

2.2 Topic modelling

The task of inducing coherent semantic clusters is
common to many research areas. In the field of
document modelling, a class of methods known
as “topic models” have become a de facto stan-
dard for identifying semantic structure in docu-
ments. These include the Latent Dirichlet Al-
location (LDA) model of Blei et al. (2003) and
the Hierarchical Dirichlet Process model of Teh
et al. (2006). Formally seen, these are hierarchi-
cal Bayesian models which induce a set of latent
variables or topics that are shared across docu-
ments. The combination of a well-defined prob-
abilistic model and Gibbs sampling procedure for
estimation guarantee (eventual) convergence and
the avoidance of degenerate solutions. As a result
of intensive research in recent years, the behaviour
of topic models is well-understood and computa-
tionally efficient implementations have been de-
veloped. The tools provided by this research are
used in this paper as the building blocks of our
selectional preference models.

Hierarchical Bayesian modelling has recently
gained notable popularity in many core areas of
natural language processing, from morphological
segmentation (Goldwater et al., 2009) to opinion
modelling (Lin et al., 2006). Yet so far there have
been relatively few applications to traditional lex-
ical semantic tasks. Boyd-Graber et al. (2007) in-
tegrate a model of random walks on the WordNet
graph into an LDA topic model to build an unsuper-
vised word sense disambiguation system. Brody
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and Lapata (2009) adapt the basic LDA model for
application to unsupervised word sense induction;
in this context, the topics learned by the model are
assumed to correspond to distinct senses of a partic-
ular lemma. Zhang et al. (2009) are also concerned
with inducing multiple senses for a particular term;
here the goal is to identify distinct entity types in
the output of a pattern-based entity set discovery
system. Reisinger and Paşca (2009) use LDA-like
models to map automatically acquired attribute
sets onto the WordNet hierarchy. Griffiths et al.
(2007) demonstrate that topic models learned from
document-word co-occurrences are good predictors
of semantic association judgements by humans.

Simultaneously to this work, Ritter et al. (2010)
have also investigated the use of topic models
for selectional preference learning. Their goal is
slightly different to ours in that they wish to model
the probability of a binary predicate taking two
specified arguments, i.e., P (n1, n2|v), whereas we
model the joint and conditional probabilities of a
predicate taking a single specified argument. The
model architecture they propose, LinkLDA, falls
somewhere between our LDA and DUAL-LDA
models. Hence LinkLDA could be adapted to esti-
mate P (n, v|r) as DUAL-LDA does, but a prelimi-
nary investigation indicates that it does not perform
well in this context. The most likely explanation
is that LinkLDA generates its two arguments in-
dependently, which may be suitable for distinct
argument positions of a given predicate but is un-
suitable when one of those “arguments” is in fact
the predicate.

The models developed in this paper, though in-
tended for semantic modelling, also bear some sim-
ilarity to the internals of generative syntax models
such as the “infinite tree” (Finkel et al., 2007). In
some ways, our models are less ambitious than
comparable syntactic models as they focus on spe-
cific fragments of grammatical structure rather than
learning a more general representation of sentence
syntax. It would be interesting to evaluate whether
this restricted focus improves the quality of the
learned model or whether general syntax models
can also capture fine-grained knowledge about com-
binatorial semantics.

3 Three selectional preference models

3.1 Notation

In the model descriptions below we assume a predi-
cate vocabulary of V types, an argument vocab-

ulary of N types and a relation vocabulary of
R types. Each predicate type is associated with
a singe relation; for example the predicate type
eat:V:dobj (the direct object of the verb eat) is
treated as distinct from eat:V:subj (the subject of
the verb eat). The training corpus consists of W
observations of argument-predicate pairs. Each
model has at least one vocabulary of Z arbitrar-
ily labelled latent variables. fzn is the number of
observations where the latent variable z has been
associated with the argument type n, fzv is the
number of observations where z has been associ-
ated with the predicate type v and fzr is the number
of observations where z has been associated with
the relation r. Finally, fz· is the total number of
observations associated with z and f·v is the total
number of observations containing the predicate v.

3.2 Latent Dirichlet Allocation

As noted above, LDA was originally introduced to
model sets of documents in terms of topics, or clus-
ters of terms, that they share in varying proportions.
For example, a research paper on bioinformatics
may use some vocabulary that is shared with gen-
eral computer science papers and some vocabulary
that is shared with biomedical papers. The analogi-
cal move from modelling document-term cooccur-
rences to modelling predicate-argument cooccur-
rences is intuitive: we assume that each predicate is
associated with a distribution over semantic classes
(“topics”) and that these classes are shared across
predicates. The high-level “generative story” for
the LDA selectional preference model is as follows:

(1) For each predicate v, draw a multinomial dis-
tribution Θv over argument classes from a
Dirichlet distribution with parameters α.

(2) For each argument class z, draw a multinomial
distribution Φz over argument types from a
Dirichlet with parameters β.

(3) To generate an argument for v, draw an ar-
gument class z from Θv and then draw an
argument type n from Φz

The resulting model can be written as:

P (n|v, r) =
∑

z

P (n|z)P (z|v, r) (1)

∝
∑

z

fzn + β

fz· + Nβ

fzv + αz

f·v +
∑

z′ αz′
(2)
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Due to multinomial-Dirichlet conjugacy, the dis-
tributions Θv and Φz can be integrated out and do
not appear explicitly in the above formula. The
first term in (2) can be seen as a smoothed esti-
mate of the probability that class z produces the
argument n; the second is a smoothed estimate of
the probability that predicate v takes an argument
belonging to class z. One important point is that
the smoothing effects of the Dirichlet priors on Θv

and Φz are greatest for predicates and arguments
that are rarely seen, reflecting an intuitive lack of
certainty. We assume an asymmetric Dirichlet prior
on Θv (the α parameters can differ for each class)
and a symmetric prior on Φz (all β parameters are
equal); this follows the recommendations of Wal-
lach et al. (2009) for LDA. This model estimates
predicate-argument probabilities conditional on a
given predicate v; it cannot by itself provide joint
probabilities P (n, v|r), which are needed for our
plausibility evaluation.

Given a dataset of predicate-argument combina-
tions and values for the hyperparameters α and β,
the probability model is determined by the class
assignment counts fzn and fzv. Following Grif-
fiths and Steyvers (2004), we estimate the model
by Gibbs sampling. This involves resampling the
topic assignment for each observation in turn using
probabilities estimated from all other observations.
One efficiency bottleneck in the basic sampler de-
scribed by Griffiths and Steyvers is that the entire
set of topics must be iterated over for each observa-
tion. Yao et al. (2009) propose a reformulation that
removes this bottleneck by separating the probabil-
ity mass p(z|n, v) into a number of buckets, some
of which only require iterating over the topics cur-
rently assigned to instances of type n, typically far
fewer than the total number of topics. It is possible
to apply similar reformulations to the models pre-
sented in Sections 3.3 and 3.4 below; depending on
the model and parameterisation this can reduce the
running time dramatically.

Unlike some topic models such as HDP (Teh et
al., 2006), LDA is parametric: the number of top-
ics Z must be set by the user in advance. However,
Wallach et al. (2009) demonstrate that LDA is rela-
tively insensitive to larger-than-necessary choices
of Z when the Dirichlet parameters α are optimised
as part of model estimation. In our implementation
we use the optimisation routines provided as part
of the Mallet library, which use an iterative proce-
dure to compute a maximum likelihood estimate of

these hyperparameters.2

3.3 A Rooth et al.-inspired model
In Rooth et al.’s (1999) selectional preference
model, a latent variable is responsible for generat-
ing both the predicate and argument types of an ob-
servation. The basic LDA model can be extended to
capture this kind of predicate-argument interaction;
the generative story for the resulting ROOTH-LDA
model is as follows:

(1) For each relation r, draw a multinomial dis-
tribution Θr over interaction classes from a
Dirichlet distribution with parameters α.

(2) For each class z, draw a multinomial Φz over
argument types from a Dirichlet distribution
with parameters β and a multinomial Ψz over
predicate types from a Dirichlet distribution
with parameters γ.

(3) To generate an observation for r, draw a class
z from Θr, then draw an argument type n
from Φz and a predicate type v from Ψz .

The resulting model can be written as:

P (n, v|r) =
∑

z

P (n|z)P (v|z)P (z|r) (3)

∝
∑

z

fzn + β

fz· + Nβ

fzv + γ

fz· + V γ

fzr + αz

f·r +
∑

z′ αz′

(4)

As suggested by the similarity between (4) and (2),
the ROOTH-LDA model can be estimated by an
LDA-like Gibbs sampling procedure.

Unlike LDA, ROOTH-LDA does model the joint
probability P (n, v|r) of a predicate and argument
co-occurring. Further differences are that infor-
mation about predicate-argument co-occurrence is
only shared within a given interaction class rather
than across the whole dataset and that the distribu-
tion Φz is not specific to the predicate v but rather
to the relation r. This could potentially lead to a
loss of model quality, but in practice the ability to
induce “tighter” clusters seems to counteract any
deterioration this causes.

3.4 A “dual-topic” model
In our third model, we attempt to combine the ad-
vantages of LDA and ROOTH-LDA by cluster-
ing arguments and predicates according to separate

2http://mallet.cs.umass.edu/
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class vocabularies. Each observation is generated
by two latent variables rather than one, which po-
tentially allows the model to learn more flexible
interactions between arguments and predicates.:

(1) For each relation r, draw a multinomial distri-
bution Ξr over predicate classes from a Dirich-
let with parameters κ.

(2) For each predicate class c, draw a multinomial
Ψc over predicate types and a multinomial Θc

over argument classes from Dirichlets with
parameters γ and α respectively.

(3) For each argument class z, draw a multinomial
distribution Φz over argument types from a
Dirichlet with parameters β.

(4) To generate an observation for r, draw a predi-
cate class c from Ξr, a predicate type from Ψc,
an argument class z from Θc and an argument
type from Φz .

The resulting model can be written as:

P (n, v|r) =
∑

c

∑
z

P (n|z)P (z|c)P (v|c)P (c|r)

(5)

∝
∑

c

∑
z

fzn + β

fz· + Nβ

fzc + αz

f·c +
∑

z′ αz′
×

fcv + γ

fc· + V γ

fcr + κc

f·r +
∑

c′ κc′
(6)

To estimate this model, we first resample the class
assignments for all arguments in the data and
then resample class assignments for all predicates.
Other approaches are possible – resampling argu-
ment and then predicate class assignments for each
observation in turn, or sampling argument and pred-
icate assignments together by blocked sampling –
though from our experiments it does not seem that
the choice of scheme makes a significant differ-
ence.

4 Experimental setup

In the document modelling literature, probabilistic
topic models are often evaluated on the likelihood
they assign to unseen documents; however, it has
been shown that higher log likelihood scores do
not necessarily correlate with more semantically
coherent induced topics (Chang et al., 2009). One
popular method for evaluating selectional prefer-
ence models is by testing the correlation between

their predictions and human judgements of plausi-
bility on a dataset of predicate-argument pairs. This
can be viewed as a more semantically relevant mea-
surement of model quality than likelihood-based
methods, and also permits comparison with non-
probabilistic models. In Section 5, we use two
plausibility datasets to evaluate our models and
compare to other previously published results.

We trained our models on the 90-million word
written component of the British National Corpus
(Burnard, 1995), parsed with the RASP toolkit
(Briscoe et al., 2006). Predicates occurring with
just one argument type were removed, as were all
tokens containing non-alphabetic characters; no
other filtering was done. The resulting datasets con-
sisted of 3,587,172 verb-object observations with
7,954 predicate types and 80,107 argument types,
3,732,470 noun-noun observations with 68,303
predicate types and 105,425 argument types, and
3,843,346 adjective-noun observations with 29,975
predicate types and 62,595 argument types.

During development we used the verb-noun plau-
sibility dataset from Padó et al. (2007) to direct
the design of the system. Unless stated other-
wise, all results are based on runs of 1,000 iter-
ations with 100 classes, with a 200-iteration burnin
period after which hyperparameters were reesti-
mated every 50 iterations.3 The probabilities es-
timated by the models (P (n|v, r) for LDA and
P (n, v|r) for ROOTH- and DUAL-LDA) were
sampled every 50 iterations post-burnin and av-
eraged over three runs to smooth out variance.
To compare plausibility scores for different pred-
icates, we require the joint probability P (n, v|r);
as LDA does not provide this, we approximate
PLDA(n, v|r) = PBNC(v|r)PLDA(n|v, r), where
PBNC(v|r) is proportional to the frequency with
which predicate v is observed as an instance of
relation r in the BNC.

For comparison, we reimplemented the methods
of Rooth et al. (1999) and Padó et al. (2007). As
mentioned above, Rooth et al. use a latent-variable
model similar to (4) but without priors, trained
via EM. Our implementation (henceforth ROOTH-
EM) chooses the number of classes from the range
(20, 25, . . . , 50) through 5-fold cross-validation on
a held-out log-likelihood measure. Settings outside
this range did not give good results. Again, we run
for 1,000 iterations and average predictions over

3These settings were based on the MALLET defaults; we
have not yet investigated whether modifying the simulation
length or burnin period is beneficial.
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LDA 0 Nouns: agreement, contract, permission, treaty, deal, . . .
1 Nouns information, datum, detail, evidence, material, . . .
2 Nouns skill, knowledge, country, technique, understanding, . . .

ROOTH-LDA 0 Nouns force, team, army, group, troops, . . .
0 Verbs join, arm, lead, beat, send, . . .
1 Nouns door, eye, mouth, window, gate, . . .
1 Verbs open, close, shut, lock, slam, . . .

DUAL-LDA 0N Nouns house, building, site, home, station, . . .
1N Nouns stone, foot, bit, breath, line, . . .
0V Verbs involve, join, lead, represent, concern, . . .
1V Verbs see, break, have, turn, round, . . .

ROOTH-EM 0 Nouns system, method, technique, skill, model, . . .
0 Verbs use, develop, apply, design, introduce, . . .
1 Nouns eye, door, page, face, chapter,. . .
1 Verbs see, open, close, watch, keep,. . .

Table 1: Most probable words for sample semantic classes induced from verb-object observations

three runs. Padó et al. (2007), a refinement of Erk
(2007), is a non-probabilistic method that smooths
predicate-argument counts with counts for other ob-
served arguments of the same predicate, weighted
by the similarity between arguments. Following
their description, we use a 2,000-dimensional space
of syntactic co-occurrence features appropriate to
the relation being predicted, weight features with
the G2 transformation and compute similarity with
the cosine measure.

5 Results

5.1 Induced semantic classes

Table 1 shows sample semantic classes induced by
models trained on the corpus of BNC verb-object
co-occurrences. LDA clusters nouns only, while
ROOTH-LDA and ROOTH-EM learn classes that
generate both nouns and verbs and DUAL-LDA
clusters nouns and verbs separately. The LDA clus-
ters are generally sensible: class 0 is exemplified
by agreement and contract and class 1 by informa-
tion and datum. There are some unintuitive blips,
for example country appears between knowledge
and understanding in class 2. The ROOTH-LDA
classes also feel right: class 0 deals with nouns
such as force, team and army which one might join,
arm or lead and class 1 corresponds to “things that
can be opened or closed” such as a door, an eye or a
mouth (though the model also makes the question-
able prediction that all these items can plausibly
be locked or slammed). The DUAL-LDA classes
are notably less coherent, especially when it comes

to clustering verbs: DUAL-LDA’s class 0V, like
ROOTH-LDA’s class 0, has verbs that take groups
as objects but its class 1V mixes sensible confla-
tions (turn, round) with very common verbs such as
see and have and the unrelated break. The general
impression given by inspection of the DUAL-LDA
model is that it has problems with mixing and does
not manage to learn a good model; we have tried
a number of solutions (e.g., blocked sampling of
argument and predicate classes), without overcom-
ing this brittleness. Unsurprisingly, ROOTH-EM’s
classes have a similar feel to ROOTH-LDA; our
general impression is that some of ROOTH-EM’s
classes look even more coherent than the LDA-
based models, presumably because it does not use
priors to smooth its per-class distributions.

5.2 Comparison with Keller and Lapata
(2003)

Keller and Lapata (2003) collected a dataset of
human plausibility judgements for three classes
of grammatical relation: verb-object, noun-noun
modification and adjective-noun modification. The
items in this dataset were not chosen to balance
plausibility and implausibility (as in prior psy-
cholinguistic experiments) but according to their
corpus frequency, leading to a more realistic task.
30 predicates were selected for each relation;
each predicate was matched with three arguments
from different co-occurrence bands in the BNC,
e.g., naughty-girl (high frequency), naughty-dog
(medium) and naughty-lunch (low). Each predicate
was also matched with three random arguments
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Verb-object Noun-noun Adjective-noun
Seen Unseen Seen Unseen Seen Unseen

r ρ r ρ r ρ r ρ r ρ r ρ

AltaVista (KL) .641 – .551 – .700 – .578 – .650 – .480 –
Google (KL) .624 – .520 – .692 – .595 – .641 – .473 –
BNC (RASP) .620 .614 .196 .222 .544 .604 .114 .125 .543 .622 .135 .102
ROOTH-EM .455 .487 .479 .520 .503 .491 .586 .625 .514 .463 .395 .355
Padó et al. .484 .490 .398 .430 .431 .503 .558 .533 .479 .570 .120 .138
LDA .504 .541 .558 .603 .615 .641 .636 .666 .594 .558 .468 .459
ROOTH-LDA .520 .548 .564 .605 .607 .622 .691 .722 .575 .599 .501 .469
DUAL-LDA .453 .494 .446 .516 .496 .494 .553 .573 .460 .400 .334 .278

Table 2: Results (Pearson r and Spearman ρ correlations) on Keller and Lapata’s (2003) plausibility data

with which it does not co-occur in the BNC (e.g.,
naughty-regime, naughty-rival, naughty-protocol).
In this way two datasets (Seen and Unseen) of 90
items each were assembled for each predicate.

Table 2 presents results for a variety of predictive
models – the Web frequencies reported by Keller
and Lapata (2003) for two search engines, frequen-
cies from the RASP-parsed BNC,4 the reimple-
mented methods of Rooth et al. (1999) and Padó et
al. (2007), and the LDA, ROOTH-LDA and DUAL-
LDA topic models. Following Keller and Lapata,
we report Pearson correlation coefficients between
log-transformed predicted frequencies and the gold-
standard plausibility scores (which are already log-
transformed). We also report Spearman rank cor-
relations except where we do not have the origi-
nal predictions (the Web count models), for com-
pleteness and because the predictions of preference
models are may not be log-normally distributed as
corpus counts are. Zero values (found only in the
BNC frequency predictions) were smoothed by 0.1
to facilitate the log transformation; it seems natural
to take a zero prediction as a non-specific predic-
tion of very low plausibility rather than a “missing
value” as is done in other work (e.g., Padó et al.,
2007).

Despite their structural differences, LDA and
ROOTH-LDA perform similarly - indeed, their
predictions are highly correlated. ROOTH-LDA
scores best overall, outperforming Padó et al.’s
(2007) method and ROOTH-EM on every dataset
and evaluation measure, and outperforming Keller
and Lapata’s (2003) Web predictions on every Un-

4The correlations presented here for BNC counts are no-
tably better than those reported by Keller and Lapata (2003),
presumably reflecting our use of full parsing rather than shal-
low parsing.

seen dataset. LDA also performs consistently well,
surpassing ROOTH-EM and Padó et al. on all but
one occasion. For frequent predicate-argument
pairs (Seen datasets), Web counts are clearly better;
however, the BNC counts are unambiguously supe-
rior to LDA and ROOTH-LDA (whose predictions
are based entirely on the generative model even for
observed items) for the Seen verb-object data only.
As might be suspected from the mixing problems
observed with DUAL-LDA, this model does not
perform as well as LDA and ROOTH-LDA, though
it does hold its own against the other selectional
preference methods.

To identify significant differences between mod-
els, we use the statistical test for correlated corre-
lation coefficients proposed by Meng et al. (1992),
which is appropriate for correlations that share
the same gold standard.5 For the seen data there
are few significant differences: ROOTH-LDA and
LDA are significantly better (p < 0.01) than Padó
et al.’s model for Pearson’s r on seen noun-noun
data, and ROOTH-LDA is also significantly better
(p < 0.01) using Spearman’s ρ. For the unseen
datasets, the BNC frequency predictions are unsur-
prisingly significantly worse at the p < 0.01 level
than all smoothing models. LDA and ROOTH-
LDA are significantly better (p < 0.01) than Padó
et al. on every unseen dataset; ROOTH-EM is sig-
nificantly better (p < 0.01) than Padó et al. on
Unseen adjectives for both correlations. Meng et
al.’s test does not find significant differences be-
tween ROOTH-EM and the LDA models despite
the latter’s clear advantages (a number of condi-
tions do come close). This is because their pre-
dictions are highly correlated, which is perhaps

5We cannot compare our data to Keller and Lapata’s Web
counts as we do not possess their per-item scores.

441



50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of classes

ρ

(a) Verb-object

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of classes

ρ

(b) Noun-noun

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of classes

ρ

(c) Adjective-noun

Figure 1: Effect of number of argument classes on Spearman rank correlation with LDA: the solid and
dotted lines show the Seen and Unseen datasets respectively; bars show locations of individual samples

unsurprising given that they are structurally similar
models trained on the same data. We hypothesise
that the main reason for the superior numerical per-
formance of the LDA models over EM is the prin-
cipled smoothing provided by the use of Dirichlet
priors, which has a small but discriminative effect
on model predictions. Collating the significance
scores, we find that ROOTH-LDA achieves the
most positive outcomes, followed by LDA and then
by ROOTH-EM. DUAL-LDA is found significantly
better than Padó et al.’s model on unseen adjective-
noun combinations, and significantly worse than
the same model on seen adjective-noun data.

Latent variable models that use EM for infer-
ence can be very sensitive to the number of latent
variables chosen. For example, the performance
of ROOTH-EM worsens quickly if the number of
clusters is overestimated; for the Keller and Lap-
ata datasets, settings above 50 classes lead to clear
overfitting and a precipitous drop in Pearson cor-
relation scores. On the other hand, Wallach et al.
(2009) demonstrate that LDA is relatively insensi-
tive to the choice of topic vocabulary size Z when
the α and β hyperparameters are optimised appro-
priately during estimation. Figure 1 plots the effect
of Z on Spearman correlation for the LDA model.
In general, Wallach et al.’s finding for document
modelling transfers to selectional preference mod-
els; within the range Z = 50–200 performance
remains at a roughly similar level. In fact, we do
not find that performance becomes significantly
less robust when hyperparameter reestimation is
deactiviated; correlation scores simply drop by a
small amount (1–2 points), irrespective of the Z
chosen. ROOTH-LDA (not graphed) seems slightly
more sensitive to Z; this may be because the α pa-
rameters in this model operate on the relation level
rather than the document level and thus fewer “ob-

servations” of class distributions are available when
reestimating them.

5.3 Comparison with Bergsma et al. (2008)
As mentioned in Section 2.1, Bergsma et al. (2008)
propose a discriminative approach to preference
learning. As part of their evaluation, they compare
their approach to a number of others, including
that of Erk (2007), on a plausibility dataset col-
lected by Holmes et al. (1989). This dataset con-
sists of 16 verbs, each paired with one plausible
object (e.g., write-letter) and one implausible ob-
ject (write-market). Bergsma et al.’s model, trained
on the 3GB AQUAINT corpus, is the only model
reported to achieve perfect accuracy on distinguish-
ing plausible from implausible arguments. It would
be interesting to do a full comparison that controls
for size and type of corpus data; in the meantime,
we can report that the LDA and ROOTH-LDA
models trained on verb-object observations in the
BNC (about 4 times smaller than AQUAINT) also
achieve a perfect score on the Holmes et al. data.6

6 Conclusions and future work

This paper has demonstrated how Bayesian tech-
niques originally developed for modelling the top-
ical structure of documents can be adapted to
learn probabilistic models of selectional preference.
These models are especially effective for estimat-
ing plausibility of low-frequency items, thus distin-
guishing rarity from clear implausibility.

The models presented here derive their predic-
tions by modelling predicate-argument plausibility
through the intermediary of latent variables. As
observed in Section 5.2 this may be a suboptimal

6Bergsma et al. report that all plausible pairs were seen in
their corpus; three were unseen in ours, as well as 12 of the
implausible pairs.
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strategy for frequent combinations, where corpus
counts are probably reliable and plausibility judge-
ments may be affected by lexical collocation ef-
fects. One principled method for folding corpus
counts into LDA-like models would be to use hi-
erarchical priors, as in the n-gram topic model of
Wallach (2006). Another potential direction for
system improvement would be an integration of
our generative model with Bergsma et al.’s (2008)
discriminative model – this could be done in a num-
ber of ways, including using the induced classes
of a topic model as features for a discriminative
classifier or using the discriminative classifier to
produce additional high-quality training data from
noisy unparsed text.

Comparison to plausibility judgements gives an
intrinsic measure of model quality. As mentioned
in the Introduction, selectional preferences have
many uses in NLP applications, and it will be inter-
esting to evaluate the utility of Bayesian preference
models in contexts such as semantic role labelling
or human sentence processing modelling. The prob-
abilistic nature of topic models, coupled with an
appropriate probabilistic task model, may facilitate
the integration of class induction and task learning
in a tight and principled way. We also anticipate
that latent variable models will prove effective for
learning selectional preferences of semantic predi-
cates (e.g., FrameNet roles) where direct estimation
from a large corpus is not a viable option.
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