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Abstract

This paper presents a supervised approach
for identifying generic noun phrases in
context. Generic statements express rule-
like knowledge about kinds or events.
Therefore, their identification is important
for the automatic construction of know-
ledge bases. In particular, the distinction
between generic and non-generic state-
ments is crucial for the correct encoding
of generic and instance-level information.
Generic expressions have been studied ex-
tensively in formal semantics. Building
on this work, we explore a corpus-based
learning approach for identifying generic
NPs, using selections of linguistically mo-
tivated features. Our results perform well
above the baseline and existing prior work.

1 Introduction

Generic expressions come in two basic forms:
generic noun phrases and generic sentences. Both
express rule-like knowledge, but in different ways.

A generic noun phrase is a noun phrase that
does not refer to a specific (set of) individual(s),
but rather to a kind or class of individuals. Thus,
the NP The lion in (1.a)1 is understood as a ref-
erence to the class “lion” instead of a specific in-
dividual. Generic NPs are not restricted to occur
with kind-related predicates as in (1.a). As seen
in (1.b), they may equally well be combined with
predicates that denote specific actions. In contrast
to (1.a), the property defined by the verb phrase in
(1.b) may hold of individual lions.

(1) a. The lion was the most widespread mam-
mal.

b. Lions eat up to 30 kg in one sitting.

1All examples are taken from Wikipedia unless stated oth-
erwise.

Generic sentences are characterising sentences
that quantify over situations or events, expressing
rule-like knowledge about habitual actions or situ-
ations (2.a). This is in contrast with sentences that
refer to specific events and individuals, as in (2.b).

(2) a. After 1971 [Paul Erdős] also took am-
phetamines.

b. Paul Erdős was born [...] on March 26,
1913.

The genericity of an expression may arise from
the generic (kind-referring, class-denoting) inter-
pretation of the NP or the characterising interpre-
tation of the sentence predicate. Both sources may
concur in a single sentence, as illustrated in Ta-
ble 1, where we have cross-classified the exam-
ples above according to the genericity of the NP
and the sentence.

This classification is extremely difficult, be-
cause (i) the criteria for generic interpretation are
far from being clear-cut and (ii) both sources of
genericity may freely interact.

S[gen+] S[gen-]
NP[gen+] (1.b) (1.a)
NP[gen-] (2.a) (2.b)

Table 1: Generic NPs and generic sentences

The above classification of generic expressions
is well established in traditional formal semantics
(cf. Krifka et al. (1995))2. As we argue in this
paper, these distinctions are relevant for semantic
processing in computational linguistics, especially
for information extraction and ontology learning
and population tasks. With appropriate semantic
analysis of generic statements, we can not only
formally capture and exploit generic knowledge,

2The literature draws some finer distinctions including as-
pects like specificity, which we will ignore in this work.

40



but also distinguish between information pertain-
ing to individuals vs. classes. We will argue that
the automatic identification of generic expressions
should be cast as a machine learning problem in-
stead of a rule-based approach, as there is (i) no
transparent marking of genericity in English (as in
most other European languages) and (ii) the phe-
nomenon is highly context dependent.

In this paper, we build on insights from for-
mal semantics to establish a corpus-based ma-
chine learning approach for the automatic classi-
fication of generic expressions. In principle our
approach is applicable to the detection of both
generic NPs and generic sentences, and in fact it
would be highly desirable and possibly advanta-
geous to cover both types of genericity simulta-
neously. Our current work is confined to generic
NPs, as there are no corpora available at present
that contain annotations for genericity at the sen-
tence level.

The paper is organised as follows. Section 2 in-
troduces generic expressions and motivates their
relevance for knowledge acquisition and semantic
processing tasks in computational linguistics. Sec-
tion 3 reviews prior and related work. In section 4
we motivate the choice of feature sets for the au-
tomatic identification of generic NPs in context.
Sections 5 and 6 present our experiments and re-
sults obtained for this task on the ACE-2 data set.
Section 7 concludes.

2 Generic Expressions & their Relevance
for Computational Linguistics

2.1 Interpretation of generic expressions

Generic NPs There are two contrasting views
on how to formally interpret generic NPs. Ac-
cording to the first one, a generic NP involves a
special form of quantification. Quine (1960), for
example, proposes a universally quantified read-
ing for generic NPs. This view is confronted with
the most important problem of all quantification-
based approaches, namely that the exact determi-
nation of the quantifier restriction (QR) is highly
dependent on the context, as illustrated in (3)3.

(3) a. Lions are mammals. QR: all lions

b. Mammals give birth to live young. QR:
less than half of all mammals

3Some of these examples are taken from Carlson (1977).

c. Rats are bothersome to people. QR: few
rats4

In view of this difficulty, several approaches
restrict the quantification to only “relevant” (De-
clerck, 1991) or “normal” (Dahl, 1975) individu-
als.

According to the second view, generic noun
phrases denote kinds. Following Carlson (1977),
a kind can be considered as an individual that has
properties on its own. On this view, the generic NP
cannot be analysed as a quantifier over individuals
pertaining to the kind. For some predicates, this
is clearly marked. (1.a), for instance, attributes a
property to the kind lion that cannot be attributed
to individual lions.

Generic sentences are usually analysed using a
special dyadic operator, as first proposed by Heim
(1982). The dyadic operator relates two semantic
constituents, the restrictor and the matrix:

Q[x1, ..., xi]([x1, ..., xi]︸ ︷︷ ︸
Restrictor

; ∃y1, ..., yi[x1, .., xi, y1, ..., yi]︸ ︷︷ ︸
Matrix

)

By choosing GEN as a generic dyadic operator,
it is possible to represent the two readings (a) and
(b) of the characterising sentence (4) by variation
in the specification of restrictor and matrix (Krifka
et al., 1995).

(4) Typhoons arise in this part of the pacific.

(a) Typhoons in general have a common ori-
gin in this part of the pacific.

(b) There arise typhoons in this part of the pa-
cific.

(a’) GEN[x; y](Typhoon(x);this-part-of-the-
pacific(y)∧arise-in(x, y))

(b’) GEN[x; y](this-part-of-the-
pacific(x);Typhoon(y)∧arise-in(y, x))

In order to cope with characterising sentences
as in (2.a), we must allow the generic operator
to quantify over situations or events, in this case,
“normal” situations which were such that Erdős
took amphetamines.

2.2 Relevance for computational linguistics
Knowledge acquisition The automatic acquisi-
tion of formal knowledge for computational appli-
cations is a major endeavour in current research

4Most rats are not even noticed by people.
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and could lead to big improvements of semantics-
based processing. Bos (2009), e.g., describes sys-
tems using automated deduction for language un-
derstanding tasks using formal knowledge.

There are manually built formal ontologies
such as SUMO (Niles and Pease, 2001) or Cyc
(Lenat, 1995) and linguistic ontologies like Word-
Net (Fellbaum, 1998) that capture linguistic and
world knowledge to a certain extent. However,
these resources either lack coverage or depth. Au-
tomatically constructed ontologies or taxonomies,
on the other hand, are still of poor quality (Cimi-
ano, 2006; Ponzetto and Strube, 2007).

Attempts to automatically induce knowledge
bases from text or encyclopaedic sources are cur-
rently not concerned with the distinction between
generic and non-generic expressions, concentrat-
ing mainly on factual knowledge. However, rule-
like knowledge can be found in textual sources in
the form of generic expressions5.

In view of the properties of generic expressions
discussed above, this lack of attention bears two
types of risks. The first concerns the distinction
between classes and instances, regarding the attri-
bution of properties. The second concerns mod-
elling exceptions in both representation and infer-
encing.

The distinction between classes and instances
is a serious challenge even for the simplest
methods in automatic ontology construction, e.g.,
Hearst (1992) patterns. The so-called IS-A pat-
terns do not only identify subclasses, but also in-
stances. Shakespeare, e.g., would be recognised
as a hyponym of author in the same way as temple
is recognised as a hyponym of civic building.

Such a missing distinction between classes and
instances is problematic. First, there are predicates
that can only attribute properties to a kind (1.a).
Second, even for properties that in principle can be
attributed to individuals of the class, this is highly
dependent on the selection of the quantifier’s re-
striction in context (3). In both cases, it holds that
properties attributed to a class are not necessarily

5In the field of cognitive science, research on the ac-
quisition of generic knowledge in humans has shown that
adult speakers tend to use generic expressions very often
when talking to children (Pappas and Gelman, 1998). We
are not aware of any detailed assessment of the proportion
of generic noun phrases in educational text genres or ency-
clopaedic resources like Wikipedia. Concerning generic sen-
tences, Mathew and Katz (2009) report that 19.9% of the sen-
tences in their annotated portion of the Penn Treebank are
habitual (generic) and 80.1% episodic (non-generic).

inherited by any or all instances pertaining to the
class.

Zirn et al. (2008) are the first to present fully au-
tomatic, heuristic methods to distinguish between
classes and instances in the Wikipedia taxonomy
derived by Ponzetto and Strube (2007). They re-
port an accuracy of 81.6% and 84.5% for differ-
ent classification schemes. However, apart from a
plural feature, all heuristics are tailored to specific
properties of the Wikipedia resource.

Modelling exceptions is a cumbersome but
necessary problem to be handled in ontology
building, be it manually or by automatic means,
and whether or not the genericity of knowledge
is formalised explicitly. In artificial intelligence
research, this area has been tackled for many
years. Default reasoning (Reiter, 1980) is con-
fronted with severe efficiency problems and there-
fore has not extended beyond experimental sys-
tems. However, the emerging paradigm of Answer
Set Programming (ASP, Lifschitz (2008)) seems
to be able to model exceptions efficiently. In ASP
a given problem is cast as a logic program, and
an answer set solver calculates all possible answer
sets, where an answer set corresponds to a solution
of the problem. Efficient answer set solvers have
been proposed (Gelfond, 2007). Although ASP
may provide us with very efficient reasoning sys-
tems, it is still necessary to distinguish and mark
default rules explicitly (Lifschitz, 2002). Hence,
the recognition of generic expressions is an impor-
tant precondition for the adequate representation
and processing of generic knowledge.

3 Prior Work

Suh (2006) applied a rule-based approach to auto-
matically identify generic noun phrases. Suh used
patterns based on part of speech tags that iden-
tify bare plural noun phrases, reporting a precision
of 28.9% for generic entities, measured against
an annotated corpus, the ACE 2005 (Ferro et al.,
2005). Neither recall nor f-measure are reported.
To our knowledge, this is the single prior work on
the task of identifying generic NPs.

Next to the ACE corpus (described in more de-
tail below), Herbelot and Copestake (2008) offer a
study on annotating genericity in a corpus. Two
annotators annotated 48 noun phrases from the
British National Corpus for their genericity (and
specificity) properties, obtaining a kappa value of
0.744. Herbelot and Copestake (2008) leave su-
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pervised learning for the identification of generic
expressions as future work.

Recent work by Mathew and Katz (2009)
presents automatic classification of generic and
non-generic sentences, yet restricted to habitual
interpretations of generic sentences. They use a
manually annotated part of the Penn TreeBank
as training and evaluation set6. Using a selec-
tion of syntactic and semantic features operating
mainly on the sentence level, they achieved preci-
sion between 81.2% and 84.3% and recall between
60.6% and 62.7% for the identification of habitual
generic sentences.

4 Characterising Generic Expressions
for Automatic Classification

4.1 Properties of generic expressions

Generic NPs come in various syntactic forms.
These include definite and indefinite singular
count nouns, bare plural count and singular and
plural mass nouns as in (5.a-f). (5.f) shows a
construction that makes the kind reading unam-
biguous. As Carlson (1977) observed, the generic
reading of “well-established” kinds seems to be
more prominent (g vs. h).

(5) a. The lion was the most widespread mam-
mal.

b. A lioness is weaker [...] than a male.

c. Lions died out in northern Eurasia.

d. Metals are good conductors.

e. Metal is also used for heat sinks.

f. The zoo has one kind of tiger.

g. The Coke bottle has a narrow neck.

h. The green bottle has a narrow neck.

Apart from being all NPs, there is no obvious
syntactic property that is shared by all examples.
Similarly, generic sentences come in a range of
syntactic forms (6).

(6) a. John walks to work.

b. John walked to work
(when he lived in California).

c. John will walk to work
(when he moves to California).

6The corpus has not been released.

Although generic NPs and generic sentences
can be combined freely (cf. Section 1; Table 1),
both phenomena highly interact and quite often
appear in the same sentence (Krifka et al., 1995).
Also, genericity is highly dependent on contex-
tual factors. Present tense, e.g., may be indica-
tive for genericity, but with appropriate temporal
modification, generic sentences may occur in past
or future tense (6). Presence of a copular con-
struction as in (5.a,b,d) may indicate a generic NP
reading, but again we find generic NPs with event
verbs, as in (5.e) or (1.b). Lexical semantic fac-
tors, such as the semantic type of the clause predi-
cate (5.c,e), or “well-established” kinds (5.g) may
favour a generic reading, but such lexical factors
are difficult to capture in a rule-based setting.

In our view, these observations call for a corpus-
based machine learning approach that is able to
capture a variety of factors indicating genericity in
combination and in context.

4.2 Feature set and feature classes

In Table 2 we give basic information about the
individual features we investigate for identifying
generic NPs. In the following, we will structure
this feature space along two dimensions, distin-
guishing NP- and sentence-level factors as well as
syntactic and semantic (including lexical seman-
tic) factors. Table 3 displays the grouping into cor-
responding feature classes.

NP-level features are extracted from the local
NP without consideration of the sentence context.

Sentence-level features are extracted from the
clause (in which the NP appears), as well as sen-
tential and non-sentential adjuncts of the clause.
We also included the (dependency) relations be-
tween the target NP and its governing clause.

Syntactic features are extracted from a parse
tree or shallow surface-level features. The feature
set includes NP-local and global features.

Semantic features include semantic features
abstracted from syntax, such as tense and aspect
or type of modification, but also lexical semantic
features such as word sense classes, sense granu-
larity or verbal predicates.

Our aim is to determine indicators for genericity
from combinations of these feature classes.
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Feature Description
Number sg, pl
Person 1, 2, 3
Countability ambig, no noun, count, uncount
Noun Type common, proper, pronoun
Determiner Type def, indef, demon
Granularity The number of edges in the WordNet hypernymy graph between the synset of the entity and

a top node
Part of Speech POS-tag (Penn TreeBank tagset; Marcus et al. (1993)) of the head of the phrase
Bare Plural false, true
Sense[0-3] WordNet sense. Sense[0] represents the sense of the head of the entity, Sense[1] its direct

hypernym sense and so forth.
Sense[Top] The top sense in the hypernym hierarchy (often referred to as “super sense”)
Dependency Relation [0-4] Dependency Relations. Relation[0] represents the relation between entity and its governor,

Relation[1] the relation between the governor and its governor and so forth.
Embedded Predicate.Pred Lemma of the head of the directly governing predicate of the entity
C.Tense past, pres, fut
C.Progressive false, true
C.Perfective false, true
C.Mood indicative, imperative, subjunctive
C.Passive false, true
C.Temporal Modifier? false, true
C.Number of Modifiers numeric
C.Part of Speech POS-tag (Penn TreeBank tagset; Marcus et al. (1993)) of the head of the phrase
C.Pred Lemma of the head of the clause
C.Adjunct.Time true, false
C.Adjunct.VType main, copular
C.Adjunct.Adverbial Type vpadv, sadv
C.Adjunct.Degree positive, comparative, superlative
C.Adjunct.Pred Lemma of the head of the adjunct of the clause
XLE.Quality How complete is the parse by the XLE parser? fragmented, complete, no parse

Table 2: The features used in our system. C stands for the clause in which the noun phrase appears,
“Embedding Predicate” its direct predicate. In most cases, we just give the value range, if necessary, we
give descriptions. All features may have a NULL value.

Syntactic Semantic
NP-level Number, Person, Part of Speech, Determiner Type, Bare Plural Countability, Granularity, Sense[0-3, Top]
S-level Clause.{Part of Speech, Passive, Number of Modifiers}, De-

pendency Relation[0-4], Clause.Adjunct.{Verbal Type, Adver-
bial Type}, XLE.Quality

Clause.{Tense, Progressive, Perfective,
Mood, Pred, Has temporal Modifier},
Clause.Adjunct.{Time, Pred}, Embedded
Predicate.Pred

Table 3: Feature classes
Name Descriptions and Features
Set 1 Five best single features: Bare Plural, Person, Sense [0], Clause.Pred, Embedding Predicate.Pred

Set 2 Five best feature tuples:
a. Number, Part of Speech
b. Countability, Part of Speech
c. Sense [0], Part of Speech
d. Number, Countability
e. Noun Type, Part of Speech

Set 3 Five best feature triples:
a. Number, Clause.Tense, Part of Speech
b. Number, Clause.Tense, Noun Type
c. Number, Clause.Part of Speech, Part of Speech
d. Number, Part of Speech, Noun Type
e. Number, Clause.Part of Speech, Noun Type

Set 4 Features, that appear most often among the single, tuple and triple tests: Number, Noun Type,
Part of Speech, Clause.Tense, Clause.Part of Speech, Clause.Pred, Embedding Predicate.Pred, Person, Sense
[0], Sense [1], Sense[2]

Set 5 Features performing best in the ablation test: Number, Person, Clause.Part of Speech, Clause.Pred,
Embedding Predicate.Pred, Clause.Tense, Determiner Type, Part of Speech, Bare Plural, Dependency Relation
[2], Sense [0]

Table 4: Derived feature sets
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5 Experiments

5.1 Dataset

As data set we are using the ACE-2 (Mitchell et
al., 2003) corpus, a collection of newspaper texts
annotated with entities marked for their genericity.
In this version of the corpus, the classification of
entities is a binary one.

Annotation guidelines The ACE-2 annotation
guidelines describe generic NPs as referring to an
arbitrary member of the set in question, rather than
to a particular individual. Thus, a property at-
tributed to a generic NP is in principle applicable
to arbitrary members of the set (although not to
all of them). The guidelines list several tests that
are either local syntactic tests involving determin-
ers or tests that cannot be operationalised as they
involve world knowledge and context information.

The guidelines give a number of criteria to iden-
tify generic NPs referring to specific properties.
These are (i) types of entities (lions in 3.a), (ii)
suggested attributes of entities (mammals in 3.a),
(iii) hypothetical entities (7) and (iv) generalisa-
tions across sets of entities (5.d).

(7) If a person steps over the line, they must be
punished.

The general description of generic NPs as de-
noting arbitrary members of sets obviously does
not capture kind-referring readings. However, the
properties characterised (i) can be understood to
admit kinds. Also, some illustrations in the guide-
lines explicitly characterise kind-referring NPs as
generic. Thus, while at first sight the guidelines
do not fully correspond to the characterisation of
generics we find in the formal semantics literature,
we argue that both characterisations have similar
extensions, i.e., include largely overlapping sets
of noun phrases. In fact, all of the examples
for generic noun phrases presented in this paper
would also be classified as generic according to
the ACE-2 guidelines.

We also find annotated examples of generic NPs
that are not discussed in the formal semantics liter-
ature (8.a), but that are well captured by the ACE-2
guidelines. However, there are also cases that are
questionable (8.b).

(8) a. “It’s probably not the perfect world, but
you kind of have to deal with what you
have to work with,” he said.

b. Even more remarkable is the Internet,
where information of all kinds is available
about the government and the economy.

This shows that the annotation of generics is dif-
ficult, but also highlights the potential benefit of a
corpus-driven approach that allows us to gather a
wider range of realisations. This in turn can con-
tribute to novel insights and discussion.

Data analysis A first investigation of the corpus
shows that generic NPs are much less common
than non-generic ones, at least in the newspaper
genre at hand. Of the 40,106 annotated entities,
only 5,303 (13.2%) are marked as generic. In or-
der to control for bias effects in our classifier, we
will experiment with two different training sets, a
balanced and an unbalanced one.

5.2 Preprocessing

The texts have been (pre-)processed to add sev-
eral layers of linguistic annotation (Table 5). We
use MorphAdorner for sentence splitting and Tree-
Tagger with the standard parameter files for part
of speech tagging and lemmatisation. As we
do not have a word sense disambiguation system
available that outperforms the most frequent sense
baseline, we simply used the most frequent sense
(MFS). The countability information is taken from
Celex. Parsing was done using the English LFG
grammar (cf. Butt et al. (2002)) in the XLE pars-
ing platform and the Stanford Parser.

Task Tool
Sentence splitting MorphAdorner 7

POS, lemmatisation TreeTagger (Schmid, 1994)
WSD MFS (according to WordNet 3.0)

Countability Celex (Baayen et al., 1996)
Parsing XLE (Crouch et al., 2010)

Stanford (Klein and Manning, 2003)

Table 5: Preprocessing pipeline

As the LFG-grammar produced full parses only
for the sentences of 56% of the entities (partial
parses: 37% of the entities), we chose to integrate
the Stanford parser as a fallback. If we are unable
to extract feature values from the f-structure pro-
duced by the XLE parser, we extract them from
the Stanford Parser, if possible. Experimentation
showed using the two parsers in tandem yields best
results, compared to individual use.

7http://morphadorner.northwestern.edu
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Feature Set Generic Non generic Overall
P R F P R F P R F

Baseline Majority 0 0 0 86.8 100 92.9 75.3 86.8 80.6
Baseline Person 60.5 10.2 17.5 87.9 99.0 93.1 84.3 87.2 85.7
Baseline Suh 28.9

Fe
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e

C
la

ss
es

U
nb

al
an

ce
d

NP 31.7 56.6 40.7 92.5 81.4 86.6 84.5 78.2 81.2
S 32.2 50.7 39.4 91.8 83.7 87.6 83.9 79.4 81.6
NP/Syntactic 39.2 58.4 46.9 93.2 86.2 89.5 86.0 82.5 84.2
S/Syntactic 31.9 22.1 26.1 88.7 92.8 90.7 81.2 83.5 82.3
NP/Semantic 28.2 53.5 36.9 91.8 79.2 85 83.4 75.8 79.4
S/Semantic 32.1 36.6 34.2 90.1 88.2 89.2 82.5 81.4 81.9
Syntactic 40.1 66.6 50.1 94.3 84.8 89.3 87.2 82.4 84.7
Semantic 34.5 56.0 42.7 92.6 83.8 88.0 84.9 80.1 82.4
All 37.0 72.1 49.0 81.3 87.6 87.4 80.1 80.1 83.6

B
al

an
ce

d

NP 30.1 71.0 42.2 94.4 74.8 83.5 85.9 74.3 79.7
S 26.9 73.1 39.3 94.4 69.8 80.3 85.5 70.2 77.1
NP/Syntactic 35.4 76.3 48.4 95.6 78.8 86.4 87.7 78.5 82.8
S/Syntactic 23.1 77.1 35.6 94.6 61.0 74.2 85.1 63.1 72.5
NP/Semantic 24.7 60.0 35.0 92.2 72.1 80.9 83.3 70.5 76.4
S/Semantic 26.4 66.3 37.7 93.3 71.8 81.2 84.5 71.1 77.2
Syntactic 30.8 85.3 45.3 96.9 70.8 81.9 88.2 72.8 79.7
Semantic 30.1 67.5 41.6 93.9 76.1 84.1 85.5 75.0 79.9
All 33.7 81.0 47.6 96.3 75.8 84.8 88.0 76.5 81.8

Fe
at

ur
e

Se
le

ct
io

n

U
nb

al
an

ce
d Set 1 49.5 37.4 42.6 90.8 94.2 92.5 85.3 86.7 86.0

Set 2a 37.3 42.7 39.8 91.1 89.1 90.1 84.0 82.9 83.5
Set 3a 42.6 54.1 47.7 92.7 88.9 90.8 86.1 84.3 85.2
Set 4 42.7 69.6 52.9 94.9 85.8 90.1 88.0 83.6 85.7
Set 5 45.7 64.8 53.6 94.3 88.3 91.2 87.9 85.2 86.5

B
al

an
ce

d

Set 1 29.7 71.1 41.9 94.4 74.4 83.2 85.9 73.9 79.5
Set 2a 36.5 70.5 48.1 94.8 81.3 87.5 87.1 79.8 83.3
Set 3a 36.2 70.8 47.9 94.8 81.0 87.4 87.1 79.7 83.2
Set 4 35.9 83.1 50.1 96.8 77.4 86.0 88.7 78.2 83.1
Set 5 37.0 81.9 51.0 96.6 78.7 86.8 88.8 79.2 83.7

Table 6: Results of the classification, using different feature and training sets

5.3 Experimental setup

Given the unclear dependencies of features, we
chose to use a Bayesian network. A Bayesian net-
work represents the dependencies of random vari-
ables in a directed acyclic graph, where each node
represents a random variable and each edge a de-
pendency between variables. In fact, a number
of feature selection tests uncovered feature depen-
dencies (see below). We used the Weka (Witten
and Frank, 2002) implementation BayesNet in all
our experiments.

To control for bias effects, we created balanced
data sets by oversampling the number of generic
entities and simultaneously undersampling non-

generic entities. This results in a dataset of 20,053
entities with approx. 10,000 entities for each
class. All experiments are performed on balanced
and unbalanced data sets using 10-fold cross-
validation, where balancing has been performed
for each training fold separately (if any).

Feature classes We performed evaluation runs
for different combinations of feature sets: NP- vs.
S-level features (with further distinction between
syntactic and semantic NP-/S-level features), as
well as overall syntactic vs. semantic features.
This was done in order to determine the effect of
different types of linguistic factors for the detec-
tion of genericity (cf. Table 3).
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Feature selection We experimented with two
methods for feature selection. Table 4 shows the
resulting feature sets.

In ablation testing, a single feature in turn is
temporarily omitted from the feature set. The fea-
ture whose omission causes the biggest drop in f-
measure is set aside as a strong feature. This pro-
cess is repeated until we are left with an empty
feature set. From the ranked list of features f1 to
fn we evaluate increasingly extended feature sets
f1..fi for i = 2..n. We select the feature set that
yields the best balanced performance, at 45.7%
precision and 53.6% f-measure. The features are
given as Set 5 in Table 4.

As ablation testing does not uncover feature de-
pendencies, we also experimented with single, tu-
ple and triple feature combinations to determine
features that perform well in combination. We
ran evaluations using features in isolation and each
possible pair and triple of features. We select the
resulting five best features, tuples and triples of
features. The respective feature sets are given as
Set 1 to Set 3 in Table 4. The features that appear
most often in Set 1 to Set 3 are grouped in Set 4.

Baseline Our results are evaluated against three
baselines. Since the class distribution is unequal,
a majority baseline consists in classifying each en-
tity as non-generic. As a second baseline we chose
the performance of the feature Person, as this fea-
ture gave the best performance in precision among
those that are similarly easy to extract. Finally, we
compare our results to (Suh, 2006).

6 Results and Discussion

The results of classification are summarised in Ta-
ble 6. The columns Generic and Non-generic give
the results for the respective class. Overall shows
the weighted average of the classes.

Comparison to baselines Given the bias for
non-generic NPs in the unbalanced data, the ma-
jority baseline achieves high performance overall
(F: 80.6). Of course, it does not detect any generic
NPs. The Person-based baseline also suffers from
very low recall (R: 10.2%), but achieves the high-
est precision (P: 60.5 %). (Suh, 2006) reported
only precision of the generic class, so we can only
compare against this value (28.9 %). Most of
the features and feature sets yield precision values
above the results of Suh.

Feature classes, unbalanced data For the
identification of generic NPs, syntactic features
achieve the highest precision and recall (P: 40.1%,
R: 66.6 %). Using syntactic features on the NP-
or sentence-level only, however, leads to a drop in
precision as well as recall. The recall achieved by
syntactic features can be improved at the cost of
precision by adding semantic features (R: 66.6 →
72.1, P: 40.1 → 37). Semantic features in sep-
aration perform lower than the syntactic ones, in
terms of recall and precision.

Even though our results achieve a lower pre-
cision than the Person baseline, in terms of f-
measure, we achieve a result of over 50%, which
is almost three times the baseline.

Feature classes, balanced data Balancing the
training data leads to a moderate drop in perfor-
mance. All feature classes perform lower than on
the unbalanced data set, yielding an increase in re-
call and a drop in precision. The overall perfor-
mance differences between the balanced and un-
balanced data for the best achieved values for the
generic class are -4.7 (P), +13.2 (R) and -1.7 (F).
This indicates that (i) the features prove to perform
rather effectively, and (ii) the distributional bias in
the data can be exploited in practical experiments,
as long as the data distribution remains constant.

We observe that generally, the recall for the
generic class improves for the balanced data. This
is most noticeable for the S-level features with
an increase of 55 (syntactic) and 29.7 (semantic).
This could indicate that S-level features are useful
for detecting genericity, but are too sparse in the
non-oversampled data to become prominent. This
holds especially for the lexical semantic features.

As a general conclusion, syntactic features
prove most important in both setups. We also ob-
serve that the margin between syntactic and se-
mantic features reduces in the balanced dataset,
and that both NP- and S-level features contribute
to classification performance, with NP-features
generally outperforming the S-level features. This
confirms our hypothesis that all feature classes
contribute important information.

Feature selection While the above figures were
obtained for the entire feature space, we now dis-
cuss the effects of feature selection both on per-
formance and the distribution over feature classes.
The results for each feature set are given in Ta-
ble 6. In general, we find a behaviour similar to
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Syntactic Semantic
NP Number, Person, Part of

Speech, Determiner Type, Bare
Plural

Sense[0]

S Clause.Part of Speech, Depen-
dency Relation[2]

Clause.{Tense,
Pred}

Table 7: Best performing features by feature class

the homogeneous classes, in that balanced train-
ing data increases recall at the cost of precision.

With respect to overall f-measure, the best sin-
gle features are strong on the unbalanced data.
They even yield a relatively high precision for the
generic NPs (49.5%), the highest value among the
selected feature sets. This, however, comes at the
price of one of the lowest recalls. The best per-
forming feature in terms of f-measure on both bal-
anced and unbalanced data is Set 5 with Set 4 as a
close follow-up. Set 5 achieves an f-score of 53.6
(unbalanced) and 51.0 (balanced). The highest re-
call is achieved using Set 4 (69.6% on the unbal-
anced and 83.1% on the balanced dataset). The
results for Set 5 represent an improvement of 3.5
respectively 2.6 (unbalanced and balanced) over
the best achieved results on homogeneous feature
classes. In fact, Table 7 shows that these features,
selected by ablation testing, distribute over all ho-
mogeneous classes.

We trained a decision tree to gain insights into
the dependencies among these features. Figure 1
shows an excerpt of the obtained tree. The clas-
sifier learned to classify singular proper names
as non-generic, while the genericity of singular
nouns depends on their predicate. At this point,
the classifier can correctly classify some of the
NPs in (5) as kind-referring (given the training
data contains predicates like “widespread”, “die
out”, ...).

7 Conclusions and Future Work

This paper addresses a linguistic phenomenon that
has been thoroughly studied in the formal se-
mantics literature but only recently is starting to
be addressed as a task in computational linguis-
tics. We presented a data-driven machine learn-
ing approach for identifying generic NPs in con-
text that in turn can be used to improve tasks such
as knowledge acquisition and organisation. The
classification of generic NPs has proven difficult
even for humans. Therefore, a machine learning
approach seemed promising, both for the identifi-
cation of relevant features as for capturing contex-

Figure 1: A decision tree trained on feature Set 5

tual factors. We explored a range of features using
homogeneous and mixed classes gained by alter-
native methods of feature selection. In terms of
f-measure on the generic class, all feature sets per-
formed above the baseline(s). In the overall clas-
sification, the selected sets perform above the ma-
jority and close to or above the Person baseline.

The final feature set that we established charac-
terises generic NPs as a phenomenon that exhibits
both syntactic and semantic as well as sentence-
and NP-level properties. Although our results are
satisfying, in future work we will extend the range
of features for further improvements. In particular,
we will address lexical semantic features, as they
tend to be effected by sparsity. As a next step,
we will apply our approach to the classification
of generic sentences. Treating both cases simul-
taneously could reveal insights into dependencies
between them.

The classification of generic expressions is only
a first step towards a full treatment of the chal-
lenges involved in their semantic processing. As
discussed, this requires a contextually appropriate
selection of the quantifier restriction8, as well as
determining inheritance of properties from classes
to individuals and the formalisation of defaults.
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