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Abstract

We address two problems in the field of au-
tomatic optimization of dialogue strategies:
learning effective dialogue strategies when no
initial data or system exists, and evaluating the
result with real users. We use Reinforcement
Learning (RL) to learn multimodal dialogue
strategies by interaction with a simulated envi-
ronment which is “bootstrapped” from small
amounts of Wizard-of-Oz (WOZ) data. This
use of WOZ data allows development of op-
timal strategies for domains where no work-
ing prototype is available. We compare the
RL-based strategy against a supervised strat-
egy which mimics the wizards’ policies. This
comparison allows us to measure relative im-
provement over the training data. Our results
show that RL significantly outperforms Super-
vised Learning when interacting in simulation
as well as for interactions with real users. The
RL-based policy gains on average 50-times
more reward when tested in simulation, and
almost 18-times more reward when interacting
with real users. Users also subjectively rate
the RL-based policy on average 10% higher.

1 Introduction

Designing a spoken dialogue system is a time-
consuming and challenging task. A developer may
spend a lot of time and effort anticipating the po-
tential needs of a specific application environment
and then deciding on the most appropriate system
action (e.g. confirm, present items,. . . ). One of the
key advantages of statistical optimisation methods,
such as Reinforcement Learning (RL), for dialogue

strategy design is that the problem can be formu-
lated as a principled mathematical model which can
be automatically trained on real data (Lemon and
Pietquin, 2007; Frampton and Lemon, to appear). In
cases where a system is designed from scratch, how-
ever, there is often no suitable in-domain data. Col-
lecting dialogue data without a working prototype
is problematic, leaving the developer with a classic
chicken-and-egg problem.

We propose to learn dialogue strategies by
simulation-based RL (Sutton and Barto, 1998),
where the simulated environment is learned from
small amounts of Wizard-of-Oz (WOZ) data. Us-
ing WOZ data rather than data from real Human-
Computer Interaction (HCI) allows us to learn op-
timal strategies for domains where no working di-
alogue system already exists. To date, automatic
strategy learning has been applied to dialogue sys-
tems which have already been deployed using hand-
crafted strategies. In such work, strategy learning
was performed based on already present extensive
online operation experience, e.g. (Singh et al., 2002;
Henderson et al., 2005). In contrast to this preced-
ing work, our approach enables strategy learning in
domains where no prior system is available. Opti-
mised learned strategies are then available from the
first moment of online-operation, and tedious hand-
crafting of dialogue strategies is omitted. This inde-
pendence from large amounts of in-domain dialogue
data allows researchers to apply RL to new appli-
cation areas beyond the scope of existing dialogue
systems. We call this method ‘bootstrapping’.

In a WOZ experiment, a hidden human operator,
the so called “wizard”, simulates (partly or com-
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pletely) the behaviour of the application, while sub-
jects are left in the belief that they are interacting
with a real system (Fraser and Gilbert, 1991). That
is, WOZ experiments only simulate HCI. We there-
fore need to show that a strategy bootstrapped from
WOZ data indeed transfers to real HCI. Further-
more, we also need to introduce methods to learn
useful user simulations (for training RL) from such
limited data.

The use of WOZ data has earlier been proposed
in the context of RL. (Williams and Young, 2004)
utilise WOZ data to discover the state and action
space for MDP design. (Prommer et al., 2006)
use WOZ data to build a simulated user and noise
model for simulation-based RL. While both stud-
ies show promising first results, their simulated en-
vironment still contains many hand-crafted aspects,
which makes it hard to evaluate whether the suc-
cess of the learned strategy indeed originates from
the WOZ data. (Schatzmann et al., 2007) propose to
‘bootstrap’ with a simulated user which is entirely
hand-crafted. In the following we propose an en-
tirely data-driven approach, where all components
of the simulated learning environment are learned
from WOZ data. We also show that the resulting
policy performs well for real users.

2 Wizard-of-Oz data collection

Our domains of interest are information-seeking di-
alogues, for example a multimodal in-car interface
to a large database of music (MP3) files. The corpus
we use for learning was collected in a multimodal
study of German task-oriented dialogues for an in-
car music player application by (Rieser et al., 2005).
This study provides insights into natural methods
of information presentation as performed by human
wizards. 6 people played the role of an intelligent
interface (the “wizards”). The wizards were able
to speak freely and display search results on the
screen by clicking on pre-computed templates. Wiz-
ards’ outputs were not restricted, in order to explore
the different ways they intuitively chose to present
search results. Wizard’s utterances were immedi-
ately transcribed and played back to the user with
Text-To-Speech. 21 subjects (11 female, 10 male)
were given a set of predefined tasks to perform, as
well as a primary driving task, using a driving simu-

lator. The users were able to speak, as well as make
selections on the screen. We also introduced artifi-
cial noise in the setup, in order to closer resemble
the conditions of real HCI. Please see (Rieser et al.,
2005) for further detail.

The corpus gathered with this setup comprises 21
sessions and over 1600 turns. Example 1 shows a
typical multimodal presentation sub-dialogue from
the corpus (translated from German). Note that the
wizard displays quite a long list of possible candi-
dates on an (average sized) computer screen, while
the user is driving. This example illustrates that even
for humans it is difficult to find an “optimal” solu-
tion to the problem we are trying to solve.

(1) User: Please search for music by Madonna .
Wizard: I found seventeen hundred and eleven

items. The items are displayed on the screen.
[displays list]

User: Please select ‘Secret’.

For each session information was logged, e.g. the
transcriptions of the spoken utterances, the wizard’s
database query and the number of results, the screen
option chosen by the wizard, and a rich set of con-
textual dialogue features was also annotated, see
(Rieser et al., 2005).

Of the 793 wizard turns 22.3% were annotated
as presentation strategies, resulting in 177 instances
for learning, where the six wizards contributed about
equal proportions.

Information about user preferences was obtained,
using a questionnaire containing similar questions to
the PARADISE study (Walker et al., 2000). In gen-
eral, users report that they get distracted from driv-
ing if too much information is presented. On the
other hand, users prefer shorter dialogues (most of
the user ratings are negatively correlated with dia-
logue length). These results indicate that we need
to find a strategy given the competing trade-offs be-
tween the number of results (large lists are difficult
for users to process), the length of the dialogue (long
dialogues are tiring, but collecting more information
can result in more precise results), and the noise in
the speech recognition environment (in high noise
conditions accurate information is difficult to ob-
tain). In the following we utilise the ratings from the
user questionnaires to optimise a presentation strat-
egy using simulation-based RL.
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acquisition action:


askASlot

implConfAskASlot

explConf

presentInfo

state:


filledSlot 1 |2 |3 |4 |:

{
0,1

}
confirmedSlot 1 |2 |3 |4 |:

{
0,1

}
DB:

{
1--438

}


presentation action:

[
presentInfoVerbal

presentInfoMM

]
state:


DB low:

{
0,1

}
DB med:

{
0,1

}
DB high

{
0,1

}



Figure 1: State-Action space for hierarchical Reinforcement Learning

3 Simulated Learning Environment

Simulation-based RL (also know as “model-free”
RL) learns by interaction with a simulated environ-
ment. We obtain the simulated components from the
WOZ corpus using data-driven methods. The em-
ployed database contains 438 items and is similar in
retrieval ambiguity and structure to the one used in
the WOZ experiment. The dialogue system used for
learning comprises some obvious constraints reflect-
ing the system logic (e.g. that only filled slots can be
confirmed), implemented as Information State Up-
date (ISU) rules. All other actions are left for opti-
misation.

3.1 MDP and problem representation
The structure of an information seeking dialogue
system consists of an information acquisition phase,
and an information presentation phase. For informa-
tion acquisition the task of the dialogue manager is
to gather ‘enough’ search constraints from the user,
and then, ‘at the right time’, to start the information
presentation phase, where the presentation task is to
present ‘the right amount’ of information in the right
way– either on the screen or listing the items ver-
bally. What ‘the right amount’ actually means de-
pends on the application, the dialogue context, and
the preferences of users. For optimising dialogue
strategies information acquisition and presentation
are two closely interrelated problems and need to
be optimised simultaneously: when to present in-
formation depends on the available options for how
to present them, and vice versa. We therefore for-
mulate the problem as a Markov Decision Process
(MDP), relating states to actions in a hierarchical
manner (see Figure 1): 4 actions are available for

the information acquisition phase; once the action
presentInfo is chosen, the information presen-
tation phase is entered, where 2 different actions
for output realisation are available. The state-space
comprises 8 binary features representing the task for
a 4 slot problem: filledSlot indicates whether a
slots is filled, confirmedSlot indicates whether
a slot is confirmed. We also add features that hu-
man wizards pay attention to, using the feature se-
lection techniques of (Rieser and Lemon, 2006b).
Our results indicate that wizards only pay attention
to the number of retrieved items (DB). We there-
fore add the feature DB to the state space, which
takes integer values between 1 and 438, resulting in
28 × 438 = 112, 128 distinct dialogue states. In to-
tal there are 4112,128 theoretically possible policies
for information acquisition. 1 For the presentation
phase the DB feature is discretised, as we will further
discuss in Section 3.6. For the information presenta-
tion phase there are 223

= 256 theoretically possible
policies.

3.2 Supervised Baseline
We create a baseline by applying Supervised Learn-
ing (SL). This baseline mimics the average wizard
behaviour and allows us to measure the relative im-
provements over the training data (cf. (Henderson et
al., 2005)). For these experiments we use the WEKA

toolkit (Witten and Frank, 2005). We learn with the
decision tree J4.8 classifier, WEKA’s implementation
of the C4.5 system (Quinlan, 1993), and rule induc-

1In practise, the policy space is smaller, as some of combi-
nations are not possible, e.g. a slot cannot be confirmed before
being filled. Furthermore, some incoherent action choices are
excluded by the basic system logic.
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baseline JRip J48
timing 52.0(± 2.2) 50.2(± 9.7) 53.5(±11.7)
modality 51.0(± 7.0) 93.5(±11.5)* 94.6(± 10.0)*

Table 1: Predicted accuracy for presentation timing and
modality (with standard deviation ±), * denotes statisti-
cally significant improvement at p < .05

tion JRIP, the WEKA implementation of RIPPER (Co-
hen, 1995). In particular, we learn models which
predict the following wizard actions:

• Presentation timing: when the ‘average’ wizard
starts the presentation phase

• Presentation modality: in which modality the
list is presented.

As input features we use annotated dialogue con-
text features, see (Rieser and Lemon, 2006b). Both
models are trained using 10-fold cross validation.
Table 1 presents the results for comparing the ac-
curacy of the learned classifiers against the major-
ity baseline. For presentation timing, none of the
classifiers produces significantly improved results.
Hence, we conclude that there is no distinctive pat-
tern the wizards follow for when to present informa-
tion. For strategy implementation we therefore use a
frequency-based approach following the distribution
in the WOZ data: in 0.48 of cases the baseline policy
decides to present the retrieved items; for the rest of
the time the system follows a hand-coded strategy.
For learning presentation modality, both classifiers
significantly outperform the baseline. The learned
models can be rewritten as in Algorithm 1. Note that
this rather simple algorithm is meant to represent the
average strategy as present in the initial data (which
then allows us to measure the relative improvements
of the RL-based strategy).

Algorithm 1 SupervisedStrategy
1: if DB ≤ 3 then
2: return presentInfoVerbal
3: else
4: return presentInfoMM
5: end if

3.3 Noise simulation
One of the fundamental characteristics of HCI is an
error prone communication channel. Therefore, the
simulation of channel noise is an important aspect of
the learning environment. Previous work uses data-
intensive simulations of ASR errors, e.g. (Pietquin
and Dutoit, 2006). We use a simple model simulat-
ing the effects of non- and misunderstanding on the
interaction, rather than the noise itself. This method
is especially suited to learning from small data sets.
From our data we estimate a 30% chance of user
utterances to be misunderstood, and 4% to be com-
plete non-understandings. We simulate the effects
noise has on the user behaviour, as well as for the
task accuracy. For the user side, the noise model de-
fines the likelihood of the user accepting or rejecting
the system’s hypothesis (for example when the sys-
tem utters a confirmation), i.e. in 30% of the cases
the user rejects, in 70% the user agrees. These prob-
abilities are combined with the probabilities for user
actions from the user simulation, as described in the
next section. For non-understandings we have the
user simulation generating Out-of-Vocabulary utter-
ances with a chance of 4%. Furthermore, the noise
model determines the likelihood of task accuracy as
calculated in the reward function for learning. A
filled slot which is not confirmed by the user has a
30% chance of having been mis-recognised.

3.4 User simulation
A user simulation is a predictive model of real user
behaviour used for automatic dialogue strategy de-
velopment and testing. For our domain, the user
can either add information (add), repeat or para-
phrase information which was already provided at
an earlier stage (repeat), give a simple yes-no an-
swer (y/n), or change to a different topic by pro-
viding a different slot value than the one asked for
(change). These actions are annotated manually
(κ = .7). We build two different types of user
simulations, one is used for strategy training, and
one for testing. Both are simple bi-gram models
which predict the next user action based on the pre-
vious system action (P (auser|asystem)). We face
the problem of learning such models when train-
ing data is sparse. For training, we therefore use
a cluster-based user simulation method, see (Rieser

641



and Lemon, 2006a). For testing, we apply smooth-
ing to the bi-gram model. The simulations are evalu-
ated using the SUPER metric proposed earlier (Rieser
and Lemon, 2006a), which measures variance and
consistency of the simulated behaviour with respect
to the observed behaviour in the original data set.
This technique is used because for training we need
more variance to facilitate the exploration of large
state-action spaces, whereas for testing we need sim-
ulations which are more realistic. Both user simula-
tions significantly outperform random and majority
class baselines. See (Rieser, 2008) for further de-
tails.

3.5 Reward modelling
The reward function defines the goal of the over-
all dialogue. For example, if it is most important
for the dialogue to be efficient, the reward penalises
dialogue length, while rewarding task success. In
most previous work the reward function is manu-
ally set, which makes it “the most hand-crafted as-
pect” of RL (Paek, 2006). In contrast, we learn the
reward model from data, using a modified version
of the PARADISE framework (Walker et al., 2000),
following pioneering work by (Walker et al., 1998).
In PARADISE multiple linear regression is used to
build a predictive model of subjective user ratings
(from questionnaires) from objective dialogue per-
formance measures (such as dialogue length). We
use PARADISE to predict Task Ease (a variable ob-
tained by taking the average of two questions in the
questionnaire) 2 from various input variables, via
stepwise regression. The chosen model comprises
dialogue length in turns, task completion (as manu-
ally annotated in the WOZ data), and the multimodal
user score from the user questionnaire, as shown in
Equation 2.

TaskEase = − 20.2 ∗ dialogueLength+
11.8 ∗ taskCompletion+ 8.7 ∗multimodalScore; (2)

This equation is used to calculate the overall re-
ward for the information acquisition phase. Dur-
ing learning, Task Completion is calculated online
according to the noise model, penalising all slots
which are filled but not confirmed.

2“The task was easy to solve.”, “I had no problems finding
the information I wanted.”

For the information presentation phase, we com-
pute a local reward. We relate the multimodal score
(a variable obtained by taking the average of 4 ques-
tions) 3 to the number of items presented (DB) for
each modality, using curve fitting. In contrast to
linear regression, curve fitting does not assume a
linear inductive bias, but it selects the most likely
model (given the data points) by function interpo-
lation. The resulting models are shown in Figure
3.5. The reward for multimodal presentation is a
quadratic function that assigns a maximal score to
a strategy displaying 14.8 items (curve inflection
point). The reward for verbal presentation is a linear
function assigning negative scores to all presented
items ≤ 4. The reward functions for information
presentation intersect at no. items=3. A comprehen-
sive evaluation of this reward function can be found
in (Rieser and Lemon, 2008a).
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Figure 2: Evaluation functions relating number of items
presented in different modalities to multimodal score

3.6 State space discretisation
We use linear function approximation in order to
learn with large state-action spaces. Linear func-
tion approximation learns linear estimates for ex-
pected reward values of actions in states represented
as feature vectors. This is inconsistent with the idea

3“I liked the combination of information being displayed on
the screen and presented verbally.”, “Switching between modes
did not distract me.”, “The displayed lists and tables contained
on average the right amount of information.”, “The information
presented verbally was easy to remember.”
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of non-linear reward functions (as introduced in the
previous section). We therefore quantise the state
space for information presentation. We partition
the database feature into 3 bins, taking the first in-
tersection point between verbal and multimodal re-
ward and the turning point of the multimodal func-
tion as discretisation boundaries. Previous work
on learning with large databases commonly quan-
tises the database feature in order to learn with large
state spaces using manual heuristics, e.g. (Levin et
al., 2000; Heeman, 2007). Our quantisation tech-
nique is more principled as it reflects user prefer-
ences for multi-modal output. Furthermore, in pre-
vious work database items were not only quantised
in the state-space, but also in the reward function,
resulting in a direct mapping between quantised re-
trieved items and discrete reward values, whereas
our reward function still operates on the continuous
values. In addition, the decision when to present a
list (information acquisition phase) is still based on
continuous DB values. In future work we plan to en-
gineer new state features in order to learn with non-
linear rewards while the state space is still continu-
ous. A continuous representation of the state space
allows learning of more fine-grained local trade-offs
between the parameters, as demonstrated by (Rieser
and Lemon, 2008b).

3.7 Testing the Learned Policies in Simulation
We now train and test the multimodal presentation
strategies by interacting with the simulated learn-
ing environment. For the following RL experiments
we used the REALL-DUDE toolkit of (Lemon et al.,
2006b). The SHARSHA algorithm is employed for
training, which adds hierarchical structure to the
well known SARSA algorithm (Shapiro and Langley,
2002). The policy is trained with the cluster-based
user simulation over 180k system cycles, which re-
sults in about 20k simulated dialogues. In total, the
learned strategy has 371 distinct state-action pairs
(see (Rieser, 2008) for details).

We test the RL-based and supervised baseline
policies by running 500 test dialogues with a
smoothed user simulation (so that we are not train-
ing and testing on the same simulation). We then
compare quantitative dialogue measures performing
a paired t-test. In particular, we compare mean val-
ues of the final rewards, number of filled and con-

firmed slots, dialog length, and items presented mul-
timodally (MM items) and items presented ver-
bally (verbal items). RL performs signifi-
cantly better (p < .001) than the baseline strategy.
The only non-significant difference is the number
of items presented verbally, where both RL and SL
strategy settled on a threshold of less than 4 items.
The mean performance measures for simulation-
based testing are shown in Table 2 and Figure 3.

The major strength of the learned policy is that
it learns to keep the dialogues reasonably short (on
average 5.9 system turns for RL versus 8.4 turns
for SL) by presenting lists as soon as the number
of retrieved items is within tolerance range for the
respective modality (as reflected in the reward func-
tion). The SL strategy in contrast has not learned the
right timing nor an upper bound for displaying items
on the screen. The results show that simulation-
based RL with an environment bootstrapped from
WOZ data allows learning of robust strategies which
significantly outperform the strategies contained in
the initial data set.

One major advantage of RL is that it allows us
to provide additional information about user pref-
erences in the reward function, whereas SL simply
mimics the data. In addition, RL is based on de-
layed rewards, i.e. the optimisation of a final goal.
For dialogue systems we often have measures indi-
cating how successful and/or satisfying the overall
performance of a strategy was, but it is hard to tell
how things should have been exactly done in a spe-
cific situation. This is what makes RL specifically
attractive for dialogue strategy learning. In the next
section we test the learned strategy with real users.

4 User Tests

4.1 Experimental design
For the user tests the RL policy is ported to a work-
ing ISU-based dialogue system via table look-up,
which indicates the action with the highest expected
reward for each state (cf. (Singh et al., 2002)). The
supervised baseline is implemented using standard
threshold-based update rules. The experimental con-
ditions are similar to the WOZ study, i.e. we ask the
users to solve similar tasks, and use similar ques-
tionnaires. Furthermore, we decided to use typed
user input rather than ASR. The use of text input
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Measure SL baseline RL Strategy
SIM REAL SIM REAL

av. turns 8.42(±3.04) 5.86(±3.2) 5.9(±2.4)*** 5.07(±2.9)***
av. speech items 1.04(±.2) 1.29(±.4) 1.1(±.3) 1.2(±.4)
av. MM items 61.37(±82.5) 52.2(±68.5) 11.2(±2.4)*** 8.73(±4.4)***
av. reward -1741.3(±566.2) -628.2(±178.6) 44.06(±51.5)*** 37.62(±60.7)***

Table 2: Comparison of results obtained in simulation (SIM) and with real users (REAL) for SL and RL-based strate-
gies; *** denotes significant difference between SL and RL at p < .001

Figure 3: Graph comparison of objective measures: SLs
= SL policy in simulation; SLr = SL policy with real
users; RLs = RL policy in simulation; RLr = RL policy
with real users.

allows us to target the experiments to the dialogue
management decisions, and block ASR quality from
interfering with the experimental results (Hajdinjak
and Mihelic, 2006). 17 subjects (8 female, 9 male)
are given a set of 6×2 predefined tasks, which they
solve by interaction with the RL-based and the SL-
based system in controlled order. As a secondary
task users are asked to count certain objects in a driv-
ing simulation. In total, 204 dialogues with 1,115
turns are gathered in this setup.

4.2 Results
In general, the users rate the RL-based significantly
higher (p < .001) than the SL-based policy. The re-
sults from a paired t-test on the user questionnaire

data show significantly improved Task Ease, better
presentation timing, more agreeable verbal and mul-
timodal presentation, and that more users would use
the RL-based system in the future (Future Use). All
the observed differences have a medium effects size
(r ≥ |.3|).

We also observe that female participants clearly
favour the RL-based strategy, whereas the ratings by
male participants are more indifferent. Similar gen-
der effects are also reported by other studies on mul-
timodal output presentation, e.g. (Foster and Ober-
lander, 2006).

Furthermore, we compare objective dialogue per-
formance measures. The dialogues of the RL strat-
egy are significantly shorter (p < .005), while fewer
items are displayed (p < .001), and the help func-
tion is used significantly less (p < .003). The mean
performance measures for testing with real users are
shown in Table 2 and Figure 3. However, there is
no significant difference for the performance of the
secondary driving task.

5 Comparison of Results

We finally test whether the results obtained in sim-
ulation transfer to tests with real users, following
(Lemon et al., 2006a). We evaluate the quality of
the simulated learning environment by directly com-
paring the dialogue performance measures between
simulated and real interaction. This comparison en-
ables us to make claims regarding whether a policy
which is ‘bootstrapped’ from WOZ data is transfer-
able to real HCI. We first evaluate whether objective
dialogue measures are transferable, using a paired
t-test. For the RL policy there is no statistical dif-
ference in overall performance (reward), dialogue
length (turns), and the number of presented items
(verbal and multimodal items) between simulated
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Measure WOZ SL RL
av. Task Ease .53±.14 .63±.26 .79±.21***
av. Future Use .56±.16 .55±.21 .67±.20***

Table 3: Improved user ratings over the WOZ study
where *** denotes p < .001

and real interaction (see Table 2, Figure 3). This in-
dicates that the learned strategy transfers well to real
settings. For the SL policy the dialogue length for
real users is significantly shorter than in simulation.
From an error analysis we conclude that real users
intelligently adapt to poor policies, e.g. by changing
topic, whereas the simulated users do not react in
this way.

Furthermore, we want to know whether the sub-
jective user ratings for the RL strategy improved
over the WOZ study. We therefore compare the user
ratings from the WOZ questionnaire to the user rat-
ings of the final user tests using a independent t-test
and a Wilcoxon Signed Ranks Test. Users rate the
RL-policy on average 10% higher. We are especially
interested in the ratings for Task Ease (as this was
the ultimate measure optimised with PARADISE) and
Future Use, as we believe this measure to be an im-
portant indicator of acceptance of the technology.
The results show that only the RL strategy leads to
significantly improved user ratings (increasing av-
erage Task Ease by 49% and Future Use by 19%),
whereas the ratings for the SL policy are not signifi-
cantly better than those for the WOZ data, see Table
3. 4 This indicates that the observed difference is in-
deed due to the improved strategy (and not to other
factors like the different user population or the em-
bedded dialogue system).

6 Conclusion

We addressed two problems in the field of automatic
optimization of dialogue strategies: learning effec-
tive dialogue strategies when no initial data or sys-
tem exists, and evaluating the result with real users.
We learned optimal strategies by interaction with a
simulated environment which is bootstrapped from

4The ratings are normalised as some of the questions were
on different scales.

a small amount of Wizard-of-Oz data, and we evalu-
ated the result with real users. The use of WOZ data
allows us to develop optimal strategies for domains
where no working prototype is available. The de-
veloped simulations are entirely data driven and the
reward function reflects real user preferences. We
compare the Reinforcement Learning-based strategy
against a supervised strategy which mimics the (hu-
man) wizards’ policies from the original data. This
comparison allows us to measure relative improve-
ment over the training data. Our results show that
RL significantly outperforms SL in simulation as
well as in interactions with real users. The RL-based
policy gains on average 50-times more reward when
tested in simulation, and almost 18-times more re-
ward when interacting with real users. The human
users also subjectively rate the RL-based policy on
average 10% higher, and 49% higher for Task Ease.
We also show that results obtained in simulation are
comparable to results for real users. We conclude
that a strategy trained from WOZ data via boot-
strapping is transferable to real Human-Computer-
Interaction.

In future work will apply similar techniques to
statistical planning for Natural Language Generation
in spoken dialogue (Lemon, 2008; Janarthanam and
Lemon, 2008), (see the EC FP7 CLASSiC project:
www.classic-project.org).
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