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Abstract

Adaptor grammars (Johnson et al., 2007b) are
a non-parametric Bayesian extension of Prob-
abilistic Context-Free Grammars (PCFGs)
which in effect learn the probabilities of en-
tire subtrees. In practice, this means that an
adaptor grammar learns the structures useful
for generating the training data as well as
their probabilities. We present several differ-
ent adaptor grammars that learn to segment
phonemic input into words by modeling dif-
ferent linguistic properties of the input. One
of the advantages of a grammar-based frame-
work is that it is easy to combine grammars,
and we use this ability to compare models that
capture different kinds of linguistic structure.
We show that incorporating both unsupervised
syllabification and collocation-finding into the
adaptor grammar significantly improves un-
supervised word-segmentation accuracy over
that achieved by adaptor grammars that model
only one of these linguistic phenomena.

1 Introduction

How humans acquire language is arguably the cen-
tral issue in the scientific study of language. Hu-
man language is richly structured, but it is still hotly
debated as to whether this structure can be learnt,
or whether it must be innately specified. Compu-
tational linguistics can contribute to this debate by
identifying which aspects of language can poten-
tially be learnt from the input available to a child.
Here we try to identify linguistic properties that
convey information useful for learning to segment

streams of phonemes into words. We show that si-
multaneously learning syllable structure and collo-
cations improves word segmentation accuracy com-
pared to models that learn these independently. This
suggests that there might be a synergistic interaction
in learning several aspects of linguistic structure si-
multaneously, as compared to learning each kind of
linguistic structure independently.

Because learning collocations and word-initial
syllable onset clusters requires the learner to be able
to identify word boundaries, it might seem that we
face a chicken-and-egg problem here. One of the im-
portant properties of the adaptor grammar inference
procedure is that it gives us a way of learning these
interacting linguistic structures simultaneously.

Adaptor grammars are also interesting because
they can be viewed as directly inferring linguistic
structure. Most well-known machine-learning and
statistical inference procedures are parameter esti-
mation procedures, i.e., the procedure is designed to
find the values of a finite vector of parameters. Stan-
dard methods for learning linguistic structure typi-
cally try to reduce structure learning to parameter
estimation, say, by using an iterative generate-and-
prune procedure in which each iteration consists of
a rule generation step that proposes new rules ac-
cording to some scheme, a parameter estimation step
that estimates the utility of these rules, and pruning
step that removes low utility rules. For example, the
Bayesian unsupervised PCFG estimation procedure
devised by Stolcke (1994) uses a model-merging
procedure to propose new sets of PCFG rules and
a Bayesian version of the EM procedure to estimate
their weights.
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Recently, methods have been developed in the
statistical community for Bayesian inference of
increasingly sophisticated non-parametric models.
(“Non-parametric” here means that the models are
not characterized by a finite vector of parameters,
so the complexity of the model can vary depending
on the data it describes). Adaptor grammars are a
framework for specifying a wide range of such mod-
els for grammatical inference. They can be viewed
as a nonparametric extension of PCFGs.

Informally, there seem to be at least two natu-
ral ways to construct non-parametric extensions of a
PCFG. First, we can construct an infinite number of
more specialized PCFGs by splitting or refining the
PCFG’s nonterminals into increasingly finer states;
this leads to the iPCFG or “infinite PCFG” (Liang et
al., 2007). Second, we can generalize over arbitrary
subtrees rather than local trees in much the way done
in DOP or tree substitution grammar (Bod, 1998;
Joshi, 2003), which leads to adaptor grammars.

Informally, the units of generalization of adap-
tor grammars are entire subtrees, rather than just
local trees, as in PCFGs. Just as in tree substitu-
tion grammars, each of these subtrees behaves as
a new context-free rule that expands the subtree’s
root node to its leaves, but unlike a tree substitu-
tion grammar, in which the subtrees are specified
in advance, in an adaptor grammar the subtrees, as
well as their probabilities, are learnt from the train-
ing data. In order to make parsing and inference
tractable we require the leaves of these subtrees to
be terminals, as explained in section 2. Thus adaptor
grammars are simple models of structure learning,
where the subtrees that constitute the units of gen-
eralization are in effect new context-free rules learnt
during the inference process. (In fact, the inference
procedure for adaptor grammars described in John-
son et al. (2007b) relies on a PCFG approximation
that contains a rule for each subtree generalization
in the adaptor grammar).

This paper applies adaptor grammars to word seg-
mentation and morphological acquisition. Linguis-
tically, these exhibit considerable cross-linguistic
variation, and so are likely to be learned by human
learners. It’s also plausible that semantics and con-
textual information is less important for their acqui-
sition than, say, syntax.

2 From PCFGs to Adaptor Grammars

This section introduces adaptor grammars as an ex-
tension of PCFGs; for a more detailed exposition see
Johnson et al. (2007b). Formally, an adaptor gram-
mar is a PCFG in which a subsetM of the nonter-
minals areadapted. An adaptor grammar generates
the same set of trees as the CFG with the same rules,
but instead of defining a fixed probability distribu-
tion over these trees as a PCFG does, it defines a
distribution over distributions over trees. An adaptor
grammar can be viewed as a kind of PCFG in which
each subtree of each adapted nonterminalA ∈M is
a potential rule, with its own probability, so an adap-
tor grammar is nonparametric if there are infinitely
many possible adapted subtrees. (An adaptor gram-
mar can thus be viewed as a tree substitution gram-
mar with infinitely many initial trees). But any finite
set of sample parses for any finite corpus can only in-
volve a finite number of such subtrees, so the corre-
sponding PCFG approximation only involves a finite
number of rules, which permits us to build MCMC
samplers for adaptor grammars.

A PCFG can be viewed as a set of recursively-
defined mixture distributionsGA over trees, one for
each nonterminal and terminal in the grammar. IfA

is a terminal thenGA is the distribution that puts all
of its mass on the unit tree (i.e., tree consisting of a
single node) labeledA. If A is a nonterminal then
GA is the distribution over trees with root labeledA

that satisfies:

GA =
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(GB1

, . . . , GBn
)

where RA is the set of rules expandingA,
θA→B1,...,Bn

is the PCFG “probability” parame-
ter associated with the ruleA → B1 . . . Bn and
TDA(GB1

, . . . , GBn
) is the distribution over trees

with root labelA satisfying:

TDA(G1, . . . , Gn)

(

�
�

X
X

A

t1 tn. . .

)

=

n
∏

i=1

Gi(ti).

That is, TDA(G1, . . . , Gn) is the distribution over
trees whose root node is labeledA and each subtree
ti is generatedindependently from the distribution
Gi. This independence assumption is what makes
a PCFG “context-free” (i.e., each subtree is inde-
pendent given its label). Adaptor grammars relax
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this independence assumption by in effect learning
the probability of the subtrees rooted in a specified
subsetM of the nonterminals known as theadapted
nonterminals.

Adaptor grammars achieve this by associating
each adapted nonterminalA ∈ M with a Dirichlet
Process (DP). A DP is a function of abase distri-
bution H and aconcentration parameter α, and it
returns a distribution over distributions DP(α,H).
There are several different ways to define DPs; one
of the most useful is the characterization of the con-
ditional or sampling distribution of a draw from
DP(α,H) in terms of the Polya urn or Chinese
Restaurant Process (Teh et al., 2006). The Polya urn
initially containsαH(x) balls of colorx. We sample
a distribution from DP(α,H) by repeatedly drawing
a ball at random from the urn and then returning it
plus an additional ball of the same color to the urn.

In an adaptor grammar there is one DP for each
adapted nonterminalA ∈ M , whose base distribu-
tion HA is the distribution over trees defined using
A’s PCFG rules. This DP “adapts”A’s PCFG distri-
bution by moving mass from the infrequently to the
frequently occuring subtrees. An adaptor grammar
associates a distributionGA that satisfies the follow-
ing constraints with each nonterminalA:

GA ∼ DP(αA,HA) if A ∈M

GA = HA if A 6∈M

HA =
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(GB1

, . . . , GBn
)

Unlike a PCFG, an adaptor grammar does not define
a single distribution over trees; rather, each set of
draws from the DPs defines a different distribution.
In the adaptor grammars used in this paper there is
no recursion amongst adapted nonterminals (i.e., an
adapted nonterminal never expands to itself); it is
currently unknown whether there are tree distribu-
tions that satisfy the adaptor grammar constraints for
recursive adaptor grammars.

Inference for an adaptor grammar involves finding
the rule probabilitiesθ and the adapted distributions
over treesG. We put Dirichlet priors over the rule
probabilities, i.e.:

θA ∼ DIR(βA)

whereθA is the vector of probabilities for the rules

expanding the nonterminalA andβA are the corre-
sponding Dirichlet parameters.

The applications described below require unsu-
pervised estimation, i.e., the training data consists
of terminal strings alone. Johnson et al. (2007b)
describe an MCMC procedure for inferring the
adapted tree distributionsGA, and Johnson et al.
(2007a) describe a Bayesian inference procedure for
the PCFG rule parametersθ using a Metropolis-
Hastings MCMC procedure; implementations are
available from the author’s web site.

Informally, the inference procedure proceeds as
follows. We initialize the sampler by randomly as-
signing each string in the training corpus a random
tree generated by the grammar. Then we randomly
select a string to resample, and sample a parse of that
string with a PCFG approximation to the adaptor
grammar. This PCFG contains a production for each
adapted subtree in the parses of the other strings in
the training corpus. A final accept-reject step cor-
rects for the difference in the probability of the sam-
pled tree under the adaptor grammar and the PCFG
approximation.

3 Word segmentation with adaptor
grammars

We now turn to linguistic applications of adap-
tor grammars, specifically, to models of unsu-
pervised word segmentation. We follow previ-
ous work in using the Brent corpus consists of
9790 transcribed utterances (33,399 words) of child-
directed speech from the Bernstein-Ratner corpus
(Bernstein-Ratner, 1987) in the CHILDES database
(MacWhinney and Snow, 1985). The utterances
have been converted to a phonemic representation
using a phonemic dictionary, so that each occur-
rence of a word has the same phonemic transcrip-
tion. Utterance boundaries are given in the input to
the system; other word boundaries are not. We eval-
uated the f-score of the recovered word constituents
(Goldwater et al., 2006b). Using the adaptor gram-
mar software available on the author’s web site, sam-
plers were run for 10,000 epochs (passes through
the training data). We scored the parses assigned
to the training data at the end of sampling, and for
the last two epochs we annealed at temperature 0.5
(i.e., squared the probability) during sampling in or-
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1 10 100 1000

U word 0.55 0.55 0.55 0.53
U morph 0.46 0.46 0.42 0.36
U syll 0.52 0.51 0.49 0.46
C word 0.53 0.64 0.74 0.76

C morph 0.56 0.63 0.73 0.63
C syll 0.77 0.77 0.78 0.74

Table 1: Word segmentation f-score results for all mod-
els, as a function of DP concentration parameterα. “U”
indicates unigram-based grammars, while “C” indicates
collocation-based grammars.

Sentence→ Word+

Word→ Phoneme+

Figure 1: The unigram word adaptor grammar, which
uses a unigram model to generate a sequence of words,
where each word is a sequence of phonemes. Adapted
nonterminals are underlined.

der to concentrate mass on high probability parses.
In all experiments below we setβ = 1, which corre-
sponds to a uniform prior on PCFG rule probabilities
θ. We tied the Dirichlet Process concentration pa-
rametersα, and performed runs withα = 1, 10, 100
and1000; apart from this, no attempt was made to
optimize the hyperparameters. Table 1 summarizes
the word segmentation f-scores for all models de-
scribed in this paper.

3.1 Unigram word adaptor grammar

Johnson et al. (2007a) presented an adaptor gram-
mar that defines a unigram model of word segmen-
tation and showed that it performs as well as the
unigram DP word segmentation model presented by
(Goldwater et al., 2006a). The adaptor grammar that
encodes a unigram word segmentation model shown
in Figure 1.

In this grammar and the grammars below, under-
lining indicates an adapted nonterminal. Phoneme
is a nonterminal that expands to each of the 50 dis-
tinct phonemes present in the Brent corpus. This
grammar defines a Sentence to consist of a sequence
of Words, where a Word consists of a sequence of
Phonemes. The category Word is adapted, which
means that the grammar learns the words that oc-
cur in the training corpus. We present our adap-

Sentence→ Words
Words→ Word
Words→ Word Words
Word→ Phonemes
Phonemes→ Phoneme
Phonemes→ Phoneme Phonemes

Figure 2: The unigram word adaptor grammar of Fig-
ure 1 where regular expressions are expanded using new
unadapted right-branching nonterminals.

Sentence

Word

y u w a n t

Word

t u

Word

s i D 6

Word

b U k

Figure 3: A parse of the phonemic representation of “you
want to see the book” produced by unigram word adap-
tor grammar of Figure 1. Only nonterminal nodes la-
beled with adapted nonterminals and the start symbol are
shown.

tor grammars using regular expressions for clarity,
but since our implementation does not handle reg-
ular expressions in rules, in the grammars actually
used by the program they are expanded using new
non-adapted nonterminals that rewrite in a uniform
right-branching manner. That is, the adaptor gram-
mar used by the program is shown in Figure 2.

The unigram word adaptor grammar generates
parses such as the one shown in Figure 3. Withα =
1 andα = 10 we obtained a word segmentation f-
score of0.55. Depending on the run, between1, 100
and1, 400 subtrees (i.e., new rules) were found for
Word. As reported in Goldwater et al. (2006a) and
Goldwater et al. (2007), a unigram word segmen-
tation model tends to undersegment and misanalyse
collocations as individual words. This is presumably
because the unigram model has no way to capture
dependencies between words in collocations except
to make the collocation into a single word.

3.2 Unigram morphology adaptor grammar

This section investigates whether learning mor-
phology together with word segmentation improves
word segmentation accuracy. Johnson et al. (2007a)
presented an adaptor grammar for segmenting verbs
into stems and suffixes that implements the DP-
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Sentence→ Word+

Word→ Stem(Suffix)
Stem→ Phoneme+

Suffix→ Phoneme+

Figure 4: The unigram morphology adaptor grammar,
which generates each Sentence as a sequence of Words,
and each Word as a Stem optionally followed by a Suffix.
Parentheses indicate optional constituents.

Sentence

Word

Stem

w a n

Suffix

6

Word

Stem

k l o z

Suffix

I t

Sentence

Word

Stem

y u

Suffix

h & v

Word

Stem

t u

Word

Stem

t E l

Suffix

m i

Figure 5: Parses of “wanna close it” and “you have to tell
me” produced by the unigram morphology grammar of
Figure 4. The first parse was chosen because it demon-
strates how the grammar is intended to analyse “wanna”
into a Stem and Suffix, while the second parse shows how
the grammar tends to use Stem and Suffix to capture col-
locations.

based unsupervised morphological analysis model
presented by Goldwater et al. (2006b). Here we
combine that adaptor grammar with the unigram
word segmentation grammar to produce the adap-
tor grammar shown in Figure 4, which is designed
to simultaneously learn both word segmentation and
morphology.

Parentheses indicate optional constituents in these
rules, so this grammar says that a Sentence consists
of a sequence of Words, and each Word consists of a
Stem followed by an optional Suffix. The categories
Word, Stem and Suffix are adapted, which means
that the grammar learns the Words, Stems and Suf-
fixes that occur in the training corpus. Technically
this grammar implements aHierarchical Dirichlet
Process (HDP) (Teh et al., 2006) because the base
distribution for the Word DP is itself constructed
from the Stem and Suffix distributions, which are

themselves generated by DPs.
This grammar recovers words with an f-score of

only 0.46 with α = 1 or α = 10, which is consid-
erably less accurate than the unigram model of sec-
tion 3.1. Typical parses are shown in Figure 5. The
unigram morphology grammar tends to misanalyse
even longer collocations as words than the unigram
word grammar does. Inspecting the parses shows
that rather than capturing morphological structure,
the Stem and Suffix categories typically expand to
words themselves, so the Word category expands to
a collocation. It may be possible to correct this by
“tuning” the grammar’s hyperparameters, but we did
not attempt this here.

These results are not too surprising, since the kind
of regular stem-suffix morphology that this grammar
can capture is not common in the Brent corpus. It
is possible that a more sophisticated model of mor-
phology, or even a careful tuning of the Bayesian
prior parametersα andβ, would produce better re-
sults.

3.3 Unigram syllable adaptor grammar

PCFG estimation procedures have been used to
model the supervised and unsupervised acquisition
of syllable structure (Müller, 2001; Müller, 2002);
and the best performance in unsupervised acquisi-
tion is obtained using a grammar that encodes lin-
guistically detailed properties of syllables whose
rules are inferred using a fairly complex algorithm
(Goldwater and Johnson, 2005). While that work
studied the acquisition of syllable structure from iso-
lated words, here we investigate whether learning
syllable structure together with word segmentation
improves word segmentation accuracy. Modeling
syllable structure is a natural application of adaptor
grammars, since the grammar can learn the possible
onset and coda clusters, rather than requiring them
to be stipulated in the grammar.

In the unigram syllable adaptor grammar shown
in Figure 7, Consonant expands to any consonant
and Vowel expands to any vowel. This gram-
mar defines a Word to consist of up to three Syl-
lables, where each Syllable consists of an Onset
and a Rhyme and a Rhyme consists of a Nucleus
and a Coda. Following Goldwater and Johnson
(2005), the grammar differentiates between OnsetI,
which expands to word-initial onsets, and Onset,
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Sentence

Word

OnsetI

W

Nucleus

A

CodaF

t s

Word

OnsetI

D

Nucleus

I

CodaF

s

Figure 6: A parse of “what’s this” produced by the
unigram syllable adaptor grammar of Figure 7. (Only
adapted non-root nonterminals are shown in the parse).

which expands to non-word-initial onsets, and be-
tween CodaF, which expands to word-final codas,
and Coda, which expands to non-word-final codas.
Note that we do not need to distinguish specific posi-
tions within the Onset and Coda clusters as Goldwa-
ter and Johnson (2005) did, since the adaptor gram-
mar learns these clusters directly. Just like the un-
igram morphology grammar, the unigram syllable
grammar also defines a HDP because the base dis-
tribution for Word is defined in terms of the Onset
and Rhyme distributions.

The unigram syllable grammar achieves a word
segmentation f-score of0.52 atα = 1, which is also
lower than the unigram word grammar achieves. In-
spection of the parses shows that the unigram sylla-
ble grammar also tends to misanalyse long colloca-
tions as Words. Specifically, it seems to misanalyse
function words as associated with the content words
next to them, perhaps because function words tend
to have simpler initial and final clusters.

We cannot compare our syllabification accuracy
with Goldwater’s and others’ previous work because
that work used different, supervised training data
and phonological representations based on British
rather than American pronunciation.

3.4 Collocation word adaptor grammar

Goldwater et al. (2006a) showed that modeling de-
pendencies between adjacent words dramatically
improves word segmentation accuracy. It is not
possible to write an adaptor grammar that directly
implements Goldwater’s bigram word segmentation
model because an adaptor grammar has one DP per
adapted nonterminal (so the number of DPs is fixed
in advance) while Goldwater’s bigram model has
one DP per word type, and the number of word
types is not known in advance. However it is pos-

Sentence→ Word+

Word→ SyllableIF
Word→ SyllableI SyllableF
Word→ SyllableI Syllable SyllableF
Syllable→ (Onset) Rhyme
SyllableI→ (OnsetI) Rhyme
SyllableF→ (Onset) RhymeF
SyllableIF→ (OnsetI) RhymeF
Rhyme→ Nucleus(Coda)
RhymeF→ Nucleus(CodaF)
Onset→ Consonant+

OnsetI→ Consonant+

Coda→ Consonant+

CodaF→ Consonant+

Nucleus→ Vowel+

Figure 7: The unigram syllable adaptor grammar, which
generates each word as a sequence of up to three Sylla-
bles. Word-initial Onsets and word-final Codas are distin-
guished using the suffixes “I” and “F” respectively; these
are propagated through the grammar to ensure that these
appear in the correct positions.

Sentence→ Colloc+

Colloc→ Word+

Word→ Phoneme+

Figure 8: The collocation word adaptor grammar, which
generates a Sentence as sequence of Colloc(ations), each
of which consists of a sequence of Words.

sible for an adaptor grammar to generate a sentence
as a sequence ofcollocations, each of which con-
sists of a sequence of words. These collocations give
the grammar a way to model dependencies between
words.

With the DP concentration parametersα = 1000
we obtained a f-score of0.76, which is approxi-
mately the same as the results reported by Goldwa-
ter et al. (2006a) and Goldwater et al. (2007). This
suggests that the collocation word adaptor grammar
can capture inter-word dependencies similar to those
that improve the performance of Goldwater’s bigram
segmentation model.

3.5 Collocation morphology adaptor grammar

One of the advantages of working within a gram-
matical framework is that it is often easy to combine
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Sentence

Colloc

Word

y u

Word

w a n t

Word

t u

Colloc

Word

s i

Word

D 6

Word

b U k

Figure 9: A parse of “you want to see the book” produced
by the collocation word adaptor grammar of Figure 8.

Sentence→ Colloc+

Colloc→ Word+

Word→ Stem(Suffix)
Stem→ Phoneme+

Suffix→ Phoneme+

Figure 10: The collocation morphology adaptor gram-
mar, which generates each Sentence as a sequence of Col-
loc(ations), each Colloc as a sequence of Words, and each
Word as a Stem optionally followed by a Suffix.

different grammar fragments into a single grammar.
In this section we combine the collocation aspect
of the previous grammar with the morphology com-
ponent of the grammar presented in section 3.2 to
produce a grammar that generates Sentences as se-
quences of Colloc(ations), where each Colloc con-
sists of a sequence of Words, and each Word consists
of a Stem followed by an optional Suffix, as shown
in Figure 10.

This grammar achieves a word segmentation f-
score of0.73 atα = 100, which is much better than
the unigram morphology grammar of section 3.2,
but not as good as the collocation word grammar of
the previous section. Inspecting the parses shows

Sentence

Colloc

Word

Stem

y u

Word

Stem

h & v

Suffix

t u

Colloc

Word

Stem

t E l

Suffix

m i

Figure 11: A parse of the phonemic representation of
“you have to tell me” using the collocation morphology
adaptor grammar of Figure 10.

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

Figure 12: A parse of “have a drink” produced by the col-
location syllable adaptor grammar. (Only adapted non-
root nonterminals are shown in the parse).

that while the ability to directly model collocations
reduces the number of collocations misanalysed as
words, function words still tend to be misanalysed as
morphemes of two-word collocations. In fact, some
of the misanalyses have a certain plausibility to them
(e.g., “to” is often analysed as the suffix of verbs
such as “have”, “want” and “like”, while “me” is of-
ten analysed as a suffix of verbs such as “show” and
“tell”), but they lower the word f-score considerably.

3.6 Collocation syllable adaptor grammar

The collocation syllable adaptor grammar is the
same as the unigram syllable adaptor grammar of
Figure 7, except that the first production is replaced
with the following pair of productions.

Sentence→ Colloc+

Colloc→ Word+

This grammar generates a Sentence as a sequence of
Colloc(ations), each of which is composed of a se-
quence of Words, each of which in turn is composed
of a sequence of Syll(ables).

This grammar achieves a word segmentation f-
score of0.78 at α = 100, which is the highest f-
score of any of the grammars investigated in this pa-
per, including the collocation word grammar, which
models collocations but not syllables. To confirm
that the difference is significant, we ran a Wilcoxon
test to compare the f-scores obtained from 8 runs of
the collocation syllable grammar withα = 100 and
the collocation word grammar withα = 1000, and
found that the difference is significant atp = 0.006.

4 Conclusion and future work

This paper has shown how adaptor grammars can
be used to study a variety of different linguistic hy-
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potheses about the interaction of morphology and
syllable structure with word segmentation. Techni-
cally, adaptor grammars are a way of specifying a
variety of Hierarchical Dirichlet Processes (HDPs)
that can spread their support over an unbounded
number of distinct subtrees, giving them the abil-
ity to learn which subtrees are most useful for de-
scribing the training corpus. Thus adaptor gram-
mars move beyond simple parameter estimation and
provide a principled approach to the Bayesian es-
timation of at least some types of linguistic struc-
ture. Because of this, less linguistic structure needs
to be “built in” to an adaptor grammar compared to a
comparable PCFG. For example, the adaptor gram-
mars for syllable structure presented in sections 3.3
and 3.6 learn more information about syllable onsets
and codas than the PCFGs presented in Goldwater
and Johnson (2005).

We used adaptor grammars to study the effects
of modeling morphological structure, syllabification
and collocations on the accuracy of a standard unsu-
pervised word segmentation task. We showed how
adaptor grammars can implement a previously in-
vestigated model of unsupervised word segmenta-
tion, the unigram word segmentation model. We
then investigated adaptor grammars that incorpo-
rate one additional kind of information, and found
that modeling collocations provides the greatest im-
provement in word segmentation accuracy, result-
ing in a model that seems to capture many of the
same interword dependencies as the bigram model
of Goldwater et al. (2006b).

We then investigated grammars that combine
these kinds of information. There does not seem
to be a straight forward way to design an adaptor
grammar that models both morphology and sylla-
ble structure, as morpheme boundaries typically do
not align with syllable boundaries. However, we
showed that an adaptor grammar that models col-
locations and syllable structure performs word seg-
mentation more accurately than an adaptor grammar
that models either collocations or syllable structure
alone. This is not surprising, since syllable onsets
and codas that occur word-peripherally are typically
different to those that appear word-internally, and
our results suggest that by tracking these onsets and
codas, it is possible to learn more accurate word seg-
mentation.

There are a number of interesting directions for
future work. In this paper all of the hyperparame-
tersαA were tied and varied simultaneously, but it
is desirable to learn these from data as well. Just
before the camera-ready version of this paper was
due we developed a method for estimating the hyper-
parameters by putting a vague Gamma hyper-prior
on eachαA and sampled using Metropolis-Hastings
with a sequence of increasingly narrow Gamma pro-
posal distributions, producing results for each model
that are as good or better than the best ones reported
in Table 1.

The adaptor grammars presented here barely
scratch the surface of the linguistically interesting
models that can be expressed as Hierarchical Dirich-
let Processes. The models of morphology presented
here are particularly naive—they only capture reg-
ular concatenative morphology consisting of one
paradigm class—which may partially explain why
we obtained such poor results using morphology
adaptor grammars. It’s straight forward to design
an adaptor grammar that can capture a finite number
of concatenative paradigm classes (Goldwater et al.,
2006b; Johnson et al., 2007a). We’d like to learn the
number of paradigm classes from the data, but do-
ing this would probably require extending adaptor
grammars to incorporate the kind of adaptive state-
splitting found in the iHMM and iPCFG (Liang et
al., 2007). There is no principled reason why this
could not be done, i.e., why one could not design an
HDP framework that simultaneously learns both the
fragments (as in an adaptor grammar) and the states
(as in an iHMM or iPCFG).

However, inference with these more complex
models will probably itself become more complex.
The MCMC sampler of Johnson et al. (2007a) used
here is satifactory for small and medium-sized prob-
lems, but it would be very useful to have more ef-
ficient inference procedures. It may be possible to
adapt efficient split-merge samplers (Jain and Neal,
2007) and Variational Bayes methods (Teh et al.,
2008) for DPs to adaptor grammars and other lin-
guistic applications of HDPs.
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