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Abstract

We outline the problem of ad hoc rules in
treebanks, rules used for specific construc-
tions in one data set and unlikely to be used
again. These include ungeneralizable rules,
erroneous rules, rules for ungrammatical text,
and rules which are not consistent with the rest
of the annotation scheme. Based on a sim-
ple notion of rule equivalence and on the idea
of finding rules unlike any others, we develop
two methods for detecting ad hoc rules in flat
treebanks and show they are successful in de-
tecting such rules. This is done by examin-
ing evidence across the grammar and without
making any reference to context.

1 Introduction and Motivation

When extracting rules from constituency-based tree-
banks employing flat structures, grammars often
limit the set of rules (e.g., Charniak, 1996), due
to the large number of rules (Krotov et al., 1998)
and “leaky” rules that can lead to mis-analysis (Foth
and Menzel, 2006). Although frequency-based cri-
teria are often used, these are not without problems
because low-frequency rules can be valid and po-
tentially useful rules (see, e.g., Daelemans et al.,
1999), and high-frequency rules can be erroneous
(see., e.g., Dickinson and Meurers, 2005). A key
issue in determining the rule set is rule generaliz-
ability: will these rules be needed to analyze new
data? This issue is of even more importance when
considering the task of porting a parser trained on
one genre to another genre (e.g., Gildea, 2001). In-
frequent rules in one genre may be quite frequent in

another (Sekine, 1997) and their frequency may be
unrelated to their usefulness for parsing (Foth and
Menzel, 2006). Thus, we need to carefully consider
the applicability of rules in a treebank to new text.

Specifically, we need to examine ad hoc rules,
rules used for particular constructions specific to one
data set and unlikely to be used on new data. This is
why low-frequency rules often do not extend to new
data: if they were only used once, it was likely for
a specific reason, not something we would expect to
see again. Ungeneralizable rules, however, do not
extend to new text for a variety of reasons, not all of
which can be captured strictly by frequency.

While there are simply phenomena which, for var-
ious reasons, are rarely used (e.g., long coordinated
lists), other ungeneralizable phenomena are poten-
tially more troubling. For example, when ungram-
matical or non-standard text is used, treebanks em-
ploy rules to cover it, but do not usually indicate un-
grammaticality in the annotation. These rules are
only to be used in certain situations, e.g., for ty-
pographical conventions such as footnotes, and the
fact that the situation is irregular would be useful
to know if the purpose of an induced grammar is
to support robust parsing. And these rules are out-
right damaging if the set of treebank rules is in-
tended to accurately capture the grammar of a lan-
guage. This is true of precision grammars, where
analyses can be more or less preferred (see, e.g.,
Wagner et al., 2007), and in applications like in-
telligent computer-aided language learning, where
learner input is parsed to detect what is correct or
not (see, e.g., Vandeventer Faltin, 2003, ch. 2). If a
treebank grammar is used (e.g., Metcalf and Boyd,
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2006), then one needs to isolate rules for ungram-
matical data, to be able to distinguish grammatical
from ungrammatical input.

Detecting ad hoc rules can also reveal issues re-
lated to rule quality. Many ad hoc rules exist be-
cause they are erroneous. Not only are errors in-
herently undesirable for obtaining an accurate gram-
mar, but training on data with erroneous rules can
be detrimental to parsing performance (e.g., Dickin-
son and Meurers, 2005; Hogan, 2007) As annotation
schemes are not guaranteed to be completely con-
sistent, other ad hoc rules point to non-uniform as-
pects of the annotation scheme. Thus, identifying ad
hoc rules can also provide feedback on annotation
schemes, an especially important step if one is to
use the treebank for specific applications (see, e.g.,
Vadas and Curran, 2007), or if one is in the process
of developing a treebank.

Although statistical techniques have been em-
ployed to detect anomalous annotation (Ule and
Simov, 2004; Eskin, 2000), these methods do not
account for linguistically-motivated generalizations
across rules, and no full evaluation has been done
on a treebank. Our starting point for detecting ad
hoc rules is also that they are dissimilar to the rest
of the grammar, but we rely on a notion of equiva-
lence which accounts for linguistic generalizations,
as described in section 2. We generalize equivalence
in a corpus-independent way in section 3 to detect
ad hoc rules, using two different methods to deter-
mine when rules are dissimilar. The results in sec-
tion 4 show the success of the method in identifying
all types of ad hoc rules.

2 Background

2.1 Equivalence classes
To define dissimilarity, we need a notion of simi-
larity, and, a starting point for this is the error de-
tection method outlined in Dickinson and Meurers
(2005). Since most natural language expressions are
endocentric, i.e., a category projects to a phrase of
the same category (e.g., X-bar Schema, Jackendoff,
1977), daughters lists with more than one possible
mother are flagged as potentially containing an er-
ror. For example, IN NP1 has nine different mothers
in the Wall Street Journal (WSJ) portion of the Penn

1Appendix A lists all categories used in this paper.

Treebank (Marcus et al., 1993), six of which are er-
rors.

This method can be extended to increase recall, by
treating similar daughters lists as equivalent (Dick-
inson, 2006, 2008). For example, the daughters lists
ADVP RB ADVP and ADVP , RB ADVP in (1) can
be put into the same equivalence class, because they
predict the same mother category. With this equiv-
alence, the two different mothers, PP and ADVP,
point to an error (in PP).

(1) a. to slash its work force in the U.S. , [PP

[ADV P as] soon/RB [ADV P as next month]]
b. to report ... [ADV P [ADV P immediately] ,/,

not/RB [ADV P a month later]]

Anything not contributing to predicting the
mother is ignored in order to form equivalence
classes. Following the steps below, 15,989 daugh-
ters lists are grouped into 3783 classes in the WSJ.

1. Remove daughter categories that are always
non-predictive to phrase categorization, i.e., al-
ways adjuncts, such as punctuation and the par-
enthetical (PRN) category.

2. Group head-equivalent lexical categories, e.g.,
NN (common noun) and NNS (plural noun).

3. Model adjacent identical elements as a single
element, e.g., NN NN becomes NN.

While the sets of non-predictive and head-equivalent
categories are treebank-specific, they require only a
small amount of manual effort.

2.2 Non-equivalence classes
Rules in the same equivalence class not only pre-
dict the same mother, they provide support that the
daughters list is accurate—the more rules within a
class, the better evidence that the annotation scheme
legitimately licenses that sequence. A lack of simi-
lar rules indicates a potentially anomalous structure.

Of the 3783 equivalence classes for the whole
WSJ, 2141 are unique, i.e., have only one unique
daughters list. For example, in (2), the daughters
list RB TO JJ NNS is a daughters list with no corre-
lates in the treebank; it is erroneous because close to
wholesale needs another layer of structure, namely
adjective phrase (ADJP) (Bies et al., 1995, p. 179).
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(2) they sell [merchandise] for [NP close/RB
to/TO wholesale/JJ prices/NNS ]

Using this strict equivalence to identify ad hoc
rules is quite successful (Dickinson, 2008), but
it misses a significant number of generalizations.
These equivalences were not designed to assist in
determining linguistic patterns from non-linguistic
patterns, but to predict the mother category, and thus
many correct rules are incorrectly flagged. To pro-
vide support for the correct rule NP → DT CD JJS
NNP JJ NNS in (3), for instance, we need to look
at some highly similar rules in the treebank, e.g.,
the three instances of NP → DT CD JJ NNP NNS,
which are not strictly equivalent to the rule in (3).

(3) [NP the/DT 100/CD largest/JJS Nasdaq/NNP
financial/JJ stocks/NNS ]

3 Rule dissimilarity and generalizability

3.1 Criteria for rule equivalence

With a notion of (non-)equivalence as a heuristic, we
can begin to detect ad hoc rules. First, however, we
need to redefine equivalence to better reflect syntac-
tic patterns.

Firstly, in order for two rules to be in the
same equivalence class—or even to be similar—the
mother must also be the same. This captures the
property that identical daughters lists with differ-
ent mothers are distinct (cf. Dickinson and Meurers,
2005). For example, looking back at (1), the one
occurrence of ADVP→ ADVP , RB ADVP is very
similar to the 4 instances of ADVP → RB ADVP,
whereas the one instance of PP→ADVP RB ADVP
is not and is erroneous. Daughters lists are thus now
only compared to rules with the same mother.

Secondly, we use only two steps to determine
equivalence: 1) remove non-predictive daughter cat-
egories, and 2) group head-equivalent lexical cat-
egories.2 While useful for predicting the same
mother, the step of Kleene reduction is less useful
for our purposes since it ignores potential differ-
ences in argument structure. It is important to know
how many identical categories can appear within a
given rule, to tell whether it is reliable; VP → VB

2See Dickinson (2006) for the full mappings.

NP and VP→ VB NP NP, for example, are two dif-
ferent rules.3

Thirdly, we base our scores on token counts, in or-
der to capture the fact that the more often we observe
a rule, the more reliable it seems to be. This is not
entirely true, as mentioned above, but this prevents
frequent rules such as NP→ EX (1075 occurrences)
from being seen as an anomaly.

With this new notion of equivalence, we can now
proceed to accounting for similar rules in detecting
ad hoc rules.

3.2 Reliability scores
In order to devise a scoring method to reflect simi-
lar rules, the simplest way is to use a version of edit
distance between rules, as we do under the Whole
daughters scoring below. This reflects the intuition
that rules with similar lists of daughters reflect the
same properties. This is the “positive” way of scor-
ing rules, in that we start with a basic notion of
equivalence and look for more positive evidence that
the rule is legitimate. Rules without such evidence
are likely ad hoc.

Our goal, though, is to take the results and exam-
ine the anomalous rules, i.e., those which lack strong
evidence from other rules. We can thus more di-
rectly look for “negative” evidence that a rule is ad
hoc. To do this, we can examine the weakest parts
of each rule and compare those across the corpus, to
see which anomalous patterns emerge; we do this in
the Bigram scoring section below.

Because these methods exploit different proper-
ties of rules and use different levels of abstraction,
they have complementary aspects. Both start with
the same assumptions about what makes rules equiv-
alent, but diverge in how they look for rules which
do not fit well into these equivalences.

Whole daughters scoring The first method to de-
tect ad hoc rules directly accounts for similar rules
across equivalence classes. Each rule type is as-
signed a reliability score, calculated as follows:

1. Map a rule to its equivalence class.

2. For every rule token within the equivalence
class, add a score of 1.

3Experiments done with Kleene reduction show that the re-
sults are indeed worse.
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3. For every rule token within a highly similar
equivalence class, add a score of 1

2 .

Positive evidence that a rule is legitimate is ob-
tained by looking at similar classes in step #3, and
then rules with the lowest scores are flagged as po-
tentially ad hoc (see section 4.1). To determine
similarity, we use a modified Levenshtein distance,
where only insertions and deletions are allowed; a
distance of one qualifies as highly similar.4 Allow-
ing two or more changes would be problematic for
unary rules (e.g., (4a), and in general, would allow
us to add and subtract dissimilar categories. We thus
remain conservative in determining similarity.

Also, we do not utilize substitutions: while they
might be useful in some cases, it is too problematic
to include them, given the difference in meaning of
each category. Consider the problematic rules in (4).
In (4a), which occurs once, if we allow substitutions,
then we will find 760 “comparable” instances of VP
→ VB, despite the vast difference in category (verb
vs. adverb). Likewise, the rule in (4b), which occurs
8 times, would be “comparable” to the 602 instances
of PP → IN PP, used for multi-word prepositions
like because of.5 To maintain these true differences,
substitutions are not allowed.

(4) a. VP→ RB
b. PP→ JJ PP

This notion of similarity captures many general-
izations, e.g., that adverbial phrases are optional.
For example, in (5), the rule reduces to S → PP
ADVP NP ADVP VP. With a strict notion of equiv-
alence, there are no comparable rules. However, the
class S → PP NP ADVP VP, with 198 members,
is highly similar, indicating more confidence in this
correct rule.

(5) [S [PP During his years in Chiriqui] ,/, [ADV P

however] ,/, [NP Mr. Noriega] [ADV P also]
[V P revealed himself as an officer as perverse
as he was ingenious] ./. ]

4The score is thus more generally 1
1+distance

, although we
ascribe no theoretical meaning to this

5Rules like PP → JJ PP might seem to be correct, but this
depends upon the annotation scheme. Phrases starting with due
to are sometimes annotated with this rule, but they also occur
as ADJP or ADVP or with due as RB. If PP→ JJ PP is correct,
identifying this rule actually points to other erroneous rules.

Bigram scoring The other method of detecting ad
hoc rules calculates reliability scores by focusing
specifically on what the classes do not have in com-
mon. Instead of examining and comparing rules in
their entirety, this method abstracts a rule to its com-
ponent parts, similar to features using information
about n-grams of daughter nodes in parse reranking
models (e.g., Collins and Koo, 2005).

We abstract to bigrams, including added START
and END tags, as longer sequences risk missing gen-
eralizations; e.g., unary rules would have no compa-
rable rules. We score rule types as follows:

1. Map a rule to its equivalence class, resulting in
a reduced rule.

2. Calculate the frequency of each
<mother,bigram> pair in a reduced rule:
for every reduced rule token with the same
pair, add a score of 1 for that bigram pair.

3. Assign the score of the least-frequent bigram as
the score of the rule.

We assign the score of the lowest-scoring bigram
because we are interested in anomalous sequences.
This is in the spirit of Květon and Oliva (2002),
who define invalid bigrams for POS annotation se-
quences in order to detect annotation errors..

As one example, consider (6), where the reduced
rule NP→ NP DT NNP is composed of the bigrams
START NP, NP DT, DT NNP, and NNP END. All of
these are relatively common (more than a hundred
occurrences each), except for NP DT, which appears
in only two other rule types. Indeed, DT is an in-
correct tag (NNP is correct): when NP is the first
daughter of NP, it is generally a possessive, preclud-
ing the use of a determiner.

(6) (NP (NP ABC ’s) (‘‘ ‘‘) (DT This) (NNP
Week))

The whole daughters scoring misses such prob-
lematic structures because it does not explicitly look
for anomalies. The disadvantage of the bigram scor-
ing, however, is its missing of the big picture: for
example, the erroneous rule NP→NNP CC NP gets
a large score (1905) because each subsequence is
quite common. But this exact sequence is rather rare
(NNP and NP are not generally coordinated), so the
whole daughters scoring assigns a low score (4.0).
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4 Evaluation

To gauge our success in detecting ad hoc rules, we
evaluate the reliability scores in two main ways: 1)
whether unreliable rules generalize to new data (sec-
tion 4.1), and, more importantly, 2) whether the un-
reliable rules which do generalize are ad hoc in other
ways—e.g., erroneous (section 4.2). To measure
this, we use sections 02-21 of the WSJ corpus as
training data to derive scores, section 23 as testing
data, and section 24 as development data.

4.1 Ungeneralizable rules

To compare the effectiveness of the two scoring
methods in identifying ungeneralizable rules, we ex-
amine how many rules from the training data do not
appear in the heldout data, for different thresholds.
In figure 1, for example, the method identifies 3548
rules with scores less than or equal to 50, 3439 of
which do not appear in the development data, result-
ing in an ungeneralizability rate of 96.93%.

To interpret the figures below, we first need to
know that of the 15,246 rules from the training data,
1832 occur in the development data, or only 12.02%,
corresponding to 27,038 rule tokens. There are also
396 new rules in the development data, making for a
total of 2228 rule types and 27,455 rule tokens.

4.1.1 Development data results
The results are shown in figure 1 for the whole

daughters scoring method and in figure 2 for the bi-
gram method. Both methods successfully identify
rules with little chance of occurring in new data, the
whole daughters method performing slightly better.

Thresh. Rules Unused Ungen.
1 311 311 100.00%

25 2683 2616 97.50%
50 3548 3439 96.93%

100 4596 4419 96.15%

Figure 1: Whole daughter ungeneralizability (devo.)

4.1.2 Comparing across data
Is this ungeneralizability consistent over different

data sets? To evaluate this, we use the whole daugh-
ters scoring method, since it had a higher ungener-
alizability rate in the development data, and we use

Thresh. Rules Unused Ungen.
1 599 592 98.83%
5 1661 1628 98.01%

10 2349 2289 97.44%
15 2749 2657 96.65%
20 3120 2997 96.06%

Figure 2: Bigram ungeneralizability (devo.)

section 23 of the WSJ and the Brown corpus portion
of the Penn Treebank.

Given different data sizes, we now report the cov-
erage of rules in the heldout data, for both type and
token counts. For instance, in figure 3, for a thresh-
old of 50, 108 rule types appear in the development
data, and they appear 141 times. With 2228 total
rule types and 27,455 rule tokens, this results in cov-
erages of 4.85% and 0.51%, respectively.

In figures 3, 4, and 5, we observe the same trends
for all data sets: low-scoring rules have little gener-
alizability to new data. For a cutoff of 50, for exam-
ple, rules at or below this mark account for approxi-
mately 5% of the rule types used in the data and half
a percent of the tokens.

Types Tokens
Thresh. Used Cov. Used Cov.

10 23 1.03% 25 0.09%
25 67 3.01% 78 0.28%
50 108 4.85% 141 0.51%

100 177 7.94% 263 0.96%
All 1832 82.22% 27,038 98.48%

Figure 3: Coverage of rules in WSJ, section 24

Types Tokens
Thresh. Used Cov. Used Cov.

10 33 1.17% 39 0.08%
25 82 2.90% 117 0.25%
50 155 5.49% 241 0.51%

100 242 8.57% 416 0.88%
All 2266 80.24% 46,375 98.74%

Figure 4: Coverage of rules in WSJ, section 23

Note in the results for the larger Brown corpus
that the percentage of overall rule types from the
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Types Tokens
Thresh. Used Cov. Used Cov.

10 187 1.51% 603 0.15%
25 402 3.25% 1838 0.45%
50 562 4.54% 2628 0.64%

100 778 6.28% 5355 1.30%
All 4675 37.75% 398,136 96.77%

Figure 5: Coverage of rules in Brown corpus

training data is only 37.75%, vastly smaller than the
approximately 80% from either WSJ data set. This
illustrates the variety of the grammar needed to parse
this data versus the grammar used in training.

We have isolated thousands of rules with little
chance of being observed in the evaluation data, and,
as we will see in the next section, many of the rules
which appear are problematic in other ways. The
ungeneralizabilty results make sense, in light of the
fact that reliability scores are based on token counts.
Using reliability scores, however, has the advantage
of being able to identify infrequent but correct rules
(cf. example (5)) and also frequent but unhelpful
rules. For example, in (7), we find erroneous cases
from the development data of the rules WHNP →
WHNP WHPP (five should be NP) and VP→ NNP
NP (OKing should be VBG). These rules appear 27
and 16 times, respectively, but have scores of only
28.0 and 30.5, showing their unreliability. Future
work can separate the effect of frequency from the
effect of similarity (see also section 4.3).

(7) a. [WHNP [WHNP five] [WHPP of whom]]
b. received hefty sums for * [V P OKing/NNP

[NP the purchase of ...]]

4.2 Other ad hoc rules
The results in section 4.1 are perhaps unsuprising,
given that many of the identified rules are simply
rare. What is important, therefore, is to figure out
why some rules appeared in the heldout data at
all. As this requires qualitative analysis, we hand-
examined the rules appearing in the development
data. We set out to examine about 100 rules, and
so we report only for the corresponding threshold,
finding that ad hoc rules are predominant.

For the whole daughters scoring, at the 50 thresh-
old, 55 (50.93%) of the 108 rules in the development

data are errors. Adding these to the ungeneralizable
rules, 98.48% (3494/3548) of the 3548 rules are un-
helpful for parsing, at least for this data set. An ad-
ditional 12 rules cover non-English or fragmented
constructions, making for 67 clearly ad hoc rules.

For the bigram scoring, at the 20 threshold, 67
(54.47%) of the 123 rules in the development data
are erroneous, and 8 more are ungrammatical. This
means that 97.88% (3054/3120) of the rules at this
threshold are unhelpful for parsing this data, still
slightly lower than the whole daughters scoring.

4.2.1 Problematic cases
But what about the remaining rules for both meth-

ods which are not erroneous or ungrammatical?
First, as mentioned at the outset, there are several
cases which reveal non-uniformity in the annota-
tion scheme or guidelines. This may be justifiable,
but it has an impact on grammars using the annota-
tion scheme. Consider the case of NAC (not a con-
stituent), used for complex NP premodifiers. The
description for tagging titles in the guidelines (Bies
et al., 1995, p. 208-209) covers the exact case found
in section 24, shown in (8a). This rule, NAC→ NP
PP, is one of the lowest-scoring rules which occurs,
with a whole daughters score of 2.5 and a bigram
score of 3, yet it is correct. Examining the guide-
lines more closely, however, we find examples such
as (8b). Here, no extra NP layer is added, and it is
not immediately clear what the criteria are for hav-
ing an intermediate NP.

(8) a. a “ [NAC [NP Points] [PP of Light]] ” foun-
dation

b. The Wall Street Journal “ [NAC American
Way [PP of Buying]] ” Survey

Secondly, rules with mothers which are simply
rare are prone to receive lower scores, regardless of
their generalizability. For example, the rules dom-
inated by SINV, SQ, or SBARQ are all correct (6
in whole daughters, 5 in bigram), but questions are
not very frequent in this news text: SQ appears
only 350 times and SBARQ 222 times in the train-
ing data. One might thus consider normalizing the
scores based on the overall frequency of the parent.

Finally, and most prominently, there are issues
with coordinate structures. For example, NP→ NN
CC DT receives a low whole daughters score of 7.0,
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despite the fact that NP → NN and NP → DT are
very common rules. This is a problem for both meth-
ods: for the whole daughters scoring, of the 108,
28 of them had a conjunct (CC or CONJP) in the
daughters list, and 18 of these were correct. Like-
wise, for the bigram scoring, 18 had a conjunct, and
12 were correct. Reworking similarity scores to re-
flect coordinate structures and handle each case sep-
arately would require treebank-specific knowledge:
the Penn Treebank, for instance, distinguishes unlike
coordinated phrases (UCP) from other coordinated
phrases, each behaving differently.

4.2.2 Comparing the methods
There are other cases in which one method out-

performs the other, highlighting their strengths and
weaknesses. In general, both methods fare badly
with clausal rules, i.e., those dominated by S, SBAR,
SINV, SQ, or SBARQ, but the effect is slightly
greater on the bigram scoring, where 20 of the 123
rules are clausal, and 16 of these are correct (i.e.,
80% of them are misclassified). To understand this,
we have to realize that most modifiers are adjoined
at the sentence level when there is any doubt about
their attachment (Bies et al., 1995, p. 13), leading to
correct but rare subsequences. In sentence (9), for
example, the reduced rule S → SBAR PP NP VP
arises because both the introductory SBAR and the
PP are at the same level. This SBAR PP sequence is
fairly rare, resulting in a bigram score of 13.

(9) [S [SBAR As the best opportunities for corpo-
rate restructurings are exhausted * of course]
,/, [PP at some point] [NP the market] [V P will
start * to reject them] ./.]

Whole daughters scoring, on the other hand, assigns
this rule a high reliability score of 2775.0, due to
the fact that both SBAR NP VP and PP NP VP
sequences are common. For rules with long mod-
ifier sequences, whole daughters scoring seems to
be more effective since modifiers are easily skipped
over in comparing to other rules. Whole daughters
scoring is also imprecise with clausal rules (10/12
are misclassified), but identifies less of them, and
they tend to be for rare mothers (see above).

Various cases are worse for the whole daughters
scoring. First are quantifier phrases (QPs), which
have a highly varied set of possible heads and argu-

ments. QP is “used for multiword numerical expres-
sions that occur within NP (and sometimes ADJP),
where the QP corresponds frequently to some kind
of complex determiner phrase” (Bies et al., 1995, p.
193). This definition leads to rules which look dif-
ferent from QP to QP. Some of the lowest-scoring,
correct rules are shown in (10). We can see that there
is not a great deal of commonality about what com-
prises quantifier phrases, even if subparts are com-
mon and thus not flagged by the bigram method.

(10) a. [QP only/RB three/CD of/IN the/DT
nine/CD] justices

b. [QP too/RB many/JJ] cooks
c. 10 % [QP or/CC more/JJR]

Secondly, whole daughters scoring relies on com-
plete sequences, and thus whether Kleene reduction
(step #3 in section 2) is used makes a marked dif-
ference. For example, in (11), the rule NP→ DT JJ
NNP NNP JJ NN NN is completely correct, despite
its low whole daughters score of 15.5 and one oc-
currence. This rule is similar to the 10 occurrences
of NP → DT JJ NNP JJ NN in the training set, but
we cannot see this without performing Kleene re-
duction. For noun phrases at least, using Kleene re-
duction might more accurately capture comparabil-
ity. This is less of an issue for bigram scoring, as
all the bigrams are perfectly valid, resulting here in
a relatively high score (556).

(11) [NP the/DT basic/JJ Macintosh/NNP
Plus/NNP central/JJ processing/NN unit/NN ]

4.3 Discriminating rare rules
In an effort to determine the effectiveness of the
scores on isolating structures which are not linguis-
tically sound, in a way which factors out frequency,
we sampled 50 rules occurring only once in the
training data. We marked for each whether it was
correct or how it was ad hoc, and we did this blindly,
i.e., without knowledge of the rule scores. Of these
50, only 9 are errors, 2 cover ungrammatical con-
structions, and 8 more are unclear. Looking at the
bottom 25 scores, we find that the whole daughters
and bigrams methods both find 6 errors, or 67% of
them, additionally finding 5 unclear cases for the
whole daughters and 6 for the bigrams method. Er-
roneous rules in the top half appear to be ones which
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happened to be errors, but could actually be correct
in other contexts (e.g.,NP → NN NNP NNP CD).
Although it is a small data set, the scores seem to be
effectively sorting rare rules.

5 Summary and Outlook

We have outlined the problem of ad hoc rules in
treebanks—ungeneralizable rules, erroneous rules,
rules for ungrammatical text, and rules which are not
necessarily consistent with the rest of the annotation
scheme. Based on the idea of finding rules unlike
any others, we have developed methods for detecting
ad hoc rules in flat treebanks, simply by examining
properties across the grammar and without making
any reference to context.

We have been careful not to say how to use
the reliability scores. First, without 100% accu-
racy, it is hard to know what their removal from
a parsing model would mean. Secondly, assign-
ing confidence scores to rules, as we have done,
has a number of other potential applications. Parse
reranking techniques, for instance, rely on knowl-
edge about features other than those found in the
core parsing model in order to determine the best
parse (e.g., Collins and Koo, 2005; Charniak and
Johnson, 2005). Active learning techniques also re-
quire a scoring function for parser confidence (e.g.,
Hwa et al., 2003), and often use uncertainty scores
of parse trees in order to select representative sam-
ples for learning (e.g., Tang et al., 2002). Both could
benefit from more information about rule reliability.

Given the success of the methods, we can strive
to make them more corpus-independent, by remov-
ing the dependence on equivalence classes. In some
ways, comparing rules to similar rules already natu-
rally captures equivalences among rules. In this pro-
cess, it will also be important to sort out the impact
of similarity from the impact of frequency on iden-
tifying ad hoc structures.
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A Relevant Penn Treebank categories

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
RB Adverb
TO to
VB Verb, base form
VBG Verb, gerund or present participle

Figure 6: POS tags in the PTB (Santorini, 1990)

ADJP Adjective Phrase
ADVP Adverb Phrase
CONJP Conjunction Phrase
NAC Not A Constituent
NP Noun Phrase
PP Prepositional Phrase
PRN Parenthetical
QP Quantifier Phrase
S Simple declarative clause
SBAR Clause introduced by subordinating conjunction
SBARQ Direct question introduced by wh-word/phrase
SINV Inverted declarative sentence
SQ Inverted yes/no question
UCP Unlike Coordinated Phrase
VP Verb Phrase
WHNP Wh-noun Phrase
WHPP Wh-prepositional Phrase

Figure 7: Syntactic categories in the PTB (Bies et al.,
1995)
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Genève, Genève.
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