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Abstract

To date, parsers have made limited use of se-
mantic information, but there is evidence to
suggest that semantic features can enhance
parse disambiguation. This paper shows that
semantic classes help to obtain significant im-
provement in both parsing and PP attachment
tasks. We devise a gold-standard sense- and
parse tree-annotated dataset based on the in-
tersection of the Penn Treebank and SemCor,
and experiment with different approaches to
both semantic representation and disambigua-
tion. For the Bikel parser, we achieved a
maximal error reduction rate over the base-
line parser of 6.9% and 20.5%, for parsing and
PP-attachment respectively, using an unsuper-
vised WSD strategy. This demonstrates that
word sense information can indeed enhance
the performance of syntactic disambiguation.

1 Introduction

Traditionally, parse disambiguation has relied on
structural features extracted from syntactic parse
trees, and made only limited use of semantic in-
formation. There is both empirical evidence and
linguistic intuition to indicate that semantic fea-
tures can enhance parse disambiguation perfor-
mance, however. For example, a number of different
parsers have been shown to benefit from lexicalisa-
tion, that is, the conditioning of structural features
on the lexical head of the given constituent (Mager-
man, 1995; Collins, 1996; Charniak, 1997; Char-
niak, 2000; Collins, 2003). As an example of lexi-
calisation, we may observe in our training data that
knife often occurs as the manner adjunct of open in
prepositional phrases headed by with (c.f. open with

a knife), which would provide strong evidence for
with (a) knife attaching to open and not box in open
the box with a knife. It would not, however, pro-
vide any insight into the correct attachment of with
scissors in open the box with scissors, as the disam-
biguation model would not be able to predict that
knife and scissors are semantically similar and thus
likely to have the same attachment preferences.

In order to deal with this limitation, we propose to
integrate directly the semantic classes of words into
the process of training the parser. This is done by
substituting the original words with semantic codes
that reflect semantic classes. For example, in the
above example we could substitute both knife and
scissors with the semantic class TOOL, thus relating
the training and test instances directly. We explore
several models for semantic representation, based
around WordNet (Fellbaum, 1998).

Our approach to exploring the impact of lexical
semantics on parsing performance is to take two
state-of-the-art statistical treebank parsers and pre-
process the inputs variously. This simple method
allows us to incorporate semantic information into
the parser without having to reimplement a full sta-
tistical parser, and also allows for maximum compa-
rability with existing results in the treebank parsing
community. We test the parsers over both a PP at-
tachment and full parsing task.

In experimenting with different semantic repre-
sentations, we require some strategy to disambiguate
the semantic class of polysemous words in context
(e.g. determining for each instance of crane whether
it refers to an animal or a lifting device). We explore
a number of disambiguation strategies, including the
use of hand-annotated (gold-standard) senses, the

317



use of the most frequent sense, and an unsupervised
word sense disambiguation (WSD) system.

This paper shows that semantic classes help to
obtain significant improvements for both PP attach-
ment and parsing. We attain a 20.5% error reduction
for PP attachment, and 6.9% for parsing. These re-
sults are achieved using most frequent sense infor-
mation, which surprisingly outperforms both gold-
standard senses and automatic WSD.

The results are notable in demonstrating that very
simple preprocessing of the parser input facilitates
significant improvements in parser performance. We
provide the first definitive results that word sense
information can enhance Penn Treebank parser per-
formance, building on earlier results of Bikel (2000)
and Xiong et al. (2005). Given our simple procedure
for incorporating lexical semantics into the parsing
process, our hope is that this research will open the
door to further gains using more sophisticated pars-
ing models and richer semantic options.

2 Background

This research is focused on applying lexical seman-
tics in parsing and PP attachment tasks. Below, we
outline these tasks.

Parsing
As our baseline parsers, we use two state-of-the-

art lexicalised parsing models, namely the Bikel
parser (Bikel, 2004) and Charniak parser (Charniak,
2000). While a detailed description of the respective
parsing models is beyond the scope of this paper, it
is worth noting that both parsers induce a context
free grammar as well as a generative parsing model
from a training set of parse trees, and use a devel-
opment set to tune internal parameters. Tradition-
ally, the two parsers have been trained and evaluated
over the WSJ portion of the Penn Treebank (PTB:
Marcus et al. (1993)). We diverge from this norm in
focusing exclusively on a sense-annotated subset of
the Brown Corpus portion of the Penn Treebank, in
order to investigate the upper bound performance of
the models given gold-standard sense information.

PP attachment in a parsing context
Prepositional phrase attachment (PP attachment)

is the problem of determining the correct attachment
site for a PP, conventionally in the form of the noun

or verb in a V NP PP structure (Ratnaparkhi et al.,
1994; Mitchell, 2004). For instance, in I ate a pizza
with anchovies, the PP with anchovies could attach
either to the verb (c.f. ate with anchovies) or to the
noun (c.f. pizza with anchovies), of which the noun
is the correct attachment site. With I ate a pizza with
friends, on the other hand, the verb is the correct at-
tachment site. PP attachment is a structural ambigu-
ity problem, and as such, a subproblem of parsing.

Traditionally the so-called RRR data (Ratna-
parkhi et al., 1994) has been used to evaluate PP
attachment algorithms. RRR consists of 20,081
training and 3,097 test quadruples of the form
(v,n1,p,n2), where the attachment decision is
either v or n1. The best published results over RRR
are those of Stetina and Nagao (1997), who em-
ploy WordNet sense predictions from an unsuper-
vised WSD method within a decision tree classifier.
Their work is particularly inspiring in that it signifi-
cantly outperformed the plethora of lexicalised prob-
abilistic models that had been proposed to that point,
and has not been beaten in later attempts.

In a recent paper, Atterer and Schütze (2007) crit-
icised the RRR dataset because it assumes that an
oracle parser provides the two hypothesised struc-
tures to choose between. This is needed to derive the
fact that there are two possible attachment sites, as
well as information about the lexical phrases, which
are typically extracted heuristically from gold stan-
dard parses. Atterer and Schütze argue that the only
meaningful setting for PP attachment is within a
parser, and go on to demonstrate that in a parser set-
ting, the Bikel parser is competitive with the best-
performing dedicated PP attachment methods. Any
improvement in PP attachment performance over the
baseline Bikel parser thus represents an advance-
ment in state-of-the-art performance.

That we specifically present results for PP attach-
ment in a parsing context is a combination of us sup-
porting the new research direction for PP attachment
established by Atterer and Schütze, and us wishing
to reinforce the findings of Stetina and Nagao that
word sense information significantly enhances PP
attachment performance in this new setting.

Lexical semantics in parsing
There have been a number of attempts to incorpo-

rate word sense information into parsing tasks. The

318



most closely related research is that of Bikel (2000),
who merged the Brown portion of the Penn Tree-
bank with SemCor (similarly to our approach in Sec-
tion 4.1), and used this as the basis for evaluation of
a generative bilexical model for joint WSD and pars-
ing. He evaluated his proposed model in a parsing
context both with and without WordNet-based sense
information, and found that the introduction of sense
information either had no impact or degraded parse
performance.

The only successful applications of word sense in-
formation to parsing that we are aware of are Xiong
et al. (2005) and Fujita et al. (2007). Xiong et al.
(2005) experimented with first-sense and hypernym
features from HowNet and CiLin (both WordNets
for Chinese) in a generative parse model applied
to the Chinese Penn Treebank. The combination
of word sense and first-level hypernyms produced
a significant improvement over their basic model.
Fujita et al. (2007) extended this work in imple-
menting a discriminative parse selection model in-
corporating word sense information mapped onto
upper-level ontologies of differing depths. Based
on gold-standard sense information, they achieved
large-scale improvements over a basic parse selec-
tion model in the context of the Hinoki treebank.

Other notable examples of the successful incorpo-
ration of lexical semantics into parsing, not through
word sense information but indirectly via selectional
preferences, are Dowding et al. (1994) and Hektoen
(1997). For a broader review of WSD in NLP appli-
cations, see Resnik (2006).

3 Integrating Semantics into Parsing

Our approach to providing the parsers with sense
information is to make available the semantic de-
notation of each word in the form of a semantic
class. This is done simply by substituting the origi-
nal words with semantic codes. For example, in the
earlier example of open with a knife we could sub-
stitute both knife and scissors with the class TOOL,
and thus directly facilitate semantic generalisation
within the parser. There are three main aspects that
we have to consider in this process: (i) the seman-
tic representation, (ii) semantic disambiguation, and
(iii) morphology.

There are many ways to represent semantic re-

lationships between words. In this research we
opt for a class-based representation that will map
semantically-related words into a common semantic
category. Our choice for this work was the WordNet
2.1 lexical database, in which synonyms are grouped
into synsets, which are then linked via an IS-A hi-
erarchy. WordNet contains other types of relations
such as meronymy, but we did not use them in this
research. With any lexical semantic resource, we
have to be careful to choose the appropriate level of
granularity for a given task: if we limit ourselves to
synsets we will not be able to capture broader gen-
eralisations, such as the one between knife and scis-
sors;1 on the other hand by grouping words related at
a higher level in the hierarchy we could find that we
make overly coarse groupings (e.g. mallet, square
and steel-wool pad are also descendants of TOOL in
WordNet, none of which would conventionally be
used as the manner adjunct of cut). We will test dif-
ferent levels of granularity in this work.

The second problem we face is semantic disam-
biguation. The more fine-grained our semantic rep-
resentation, the higher the average polysemy and the
greater the need to distinguish between these senses.
For instance, if we find the word crane in a con-
text such as demolish a house with the crane, the
ability to discern that this corresponds to the DE-
VICE and not ANIMAL sense of word will allow us
to avoid erroneous generalisations. This problem of
identifying the correct sense of a word in context is
known as word sense disambiguation (WSD: Agirre
and Edmonds (2006)). Disambiguating each word
relative to its context of use becomes increasingly
difficult for fine-grained representations (Palmer et
al., 2006). We experiment with different ways of
tackling WSD, using both gold-standard data and
automatic methods.

Finally, when substituting words with semantic
tags we have to decide how to treat different word
forms of a given lemma. In the case of English, this
pertains most notably to verb inflection and noun
number, a distinction which we lose if we opt to
map all word forms onto semantic classes. For our
current purposes we choose to substitute all word

1In WordNet 2.1, knife and scissors are sister synsets, both
of which have TOOL as their 4th hypernym. Only by mapping
them onto their 1st hypernym or higher would we be able to
capture the semantic generalisation alluded to above.
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forms, but we plan to look at alternative represen-
tations in the future.

4 Experimental setting

We evaluate the performance of our approach in two
settings: (1) full parsing, and (2) PP attachment
within a full parsing context. Below, we outline the
dataset used in this research and the parser evalu-
ation methodology, explain the methodology used
to perform PP attachment, present the different op-
tions for semantic representation, and finally detail
the disambiguation methods.

4.1 Dataset and parser evaluation

One of the main requirements for our dataset is the
availability of gold-standard sense and parse tree an-
notations. The gold-standard sense annotations al-
low us to perform upper bound evaluation of the rel-
ative impact of a given semantic representation on
parsing and PP attachment performance, to contrast
with the performance in more realistic semantic dis-
ambiguation settings. The gold-standard parse tree
annotations are required in order to carry out evalu-
ation of parser and PP attachment performance.

The only publicly-available resource with these
two characteristics at the time of this work was the
subset of the Brown Corpus that is included in both
SemCor (Landes et al., 1998) and the Penn Tree-
bank (PTB).2 This provided the basis of our dataset.
After sentence- and word-aligning the SemCor and
PTB data (discarding sentences where there was a
difference in tokenisation), we were left with a total
of 8,669 sentences containing 151,928 words. Note
that this dataset is smaller than the one described by
Bikel (2000) in a similar exercise, the reason being
our simple and conservative approach taken when
merging the resources.

We relied on this dataset alone for all the exper-
iments in this paper. In order to maximise repro-
ducibility and encourage further experimentation in
the direction pioneered in this research, we parti-
tioned the data into 3 sets: 80% training, 10% devel-
opment and 10% test data. This dataset is available
on request to the research community.

2OntoNotes (Hovy et al., 2006) includes large-scale tree-
bank and (selective) sense data, which we plan to use for future
experiments when it becomes fully available.

We evaluate the parsers via labelled bracketing re-
call (R), precision (P) and F-score (F1). We use
Bikel’s randomized parsing evaluation comparator3

(with p < 0.05 throughout) to test the statistical sig-
nificance of the results using word sense informa-
tion, relative to the respective baseline parser using
only lexical features.

4.2 PP attachment task

Following Atterer and Schütze (2007), we wrote
a script that, given a parse tree, identifies in-
stances of PP attachment ambiguity and outputs the
(v,n1,p,n2) quadruple involved and the attach-
ment decision. This extraction system uses Collins’
rules (based on TREEP (Chiang and Bikel, 2002))
to locate the heads of phrases. Over the combined
gold-standard parsing dataset, our script extracted a
total of 2,541 PP attachment quadruples. As with
the parsing data, we partitioned the data into 3 sets:
80% training, 10% development and 10% test data.
Once again, this dataset and the script used to ex-
tract the quadruples are available on request to the
research community.

In order to evaluate the PP attachment perfor-
mance of a parser, we run our extraction script over
the parser output in the same manner as for the gold-
standard data, and compare the extracted quadru-
ples to the gold-standard ones. Note that there is
no guarantee of agreement in the quadruple mem-
bership between the extraction script and the gold
standard, as the parser may have produced a parse
which is incompatible with either attachment possi-
bility. A quadruple is deemed correct if: (1) it exists
in the gold standard, and (2) the attachment deci-
sion is correct. Conversely, it is deemed incorrect if:
(1) it exists in the gold standard, and (2) the attach-
ment decision is incorrect. Quadruples not found in
the gold standard are discarded. Precision was mea-
sured as the number of correct quadruples divided by
the total number of correct and incorrect quadruples
(i.e. all quadruples which are not discarded), and re-
call as the number of correct quadruples divided by
the total number of gold-standard quadruples in the
test set. This evaluation methodology coincides with
that of Atterer and Schütze (2007).

Statistical significance was calculated based on

3www.cis.upenn.edu/˜dbikel/software.html
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a modified version of the Bikel comparator (see
above), once again with p < 0.05.

4.3 Semantic representation

We experimented with a range of semantic represen-
tations, all of which are based on WordNet 2.1. As
mentioned above, words in WordNet are organised
into sets of synonyms, called synsets. Each synset
in turn belongs to a unique semantic file (SF). There
are a total of 45 SFs (1 for adverbs, 3 for adjectives,
15 for verbs, and 26 for nouns), based on syntactic
and semantic categories. A selection of SFs is pre-
sented in Table 1 for illustration purposes.

We experiment with both full synsets and SFs as
instances of fine-grained and coarse-grained seman-
tic representation, respectively. As an example of
the difference in these two representations, knife in
its tool sense is in the EDGE TOOL USED AS A CUT-
TING INSTRUMENT singleton synset, and also in the
ARTIFACT SF along with thousands of other words
including cutter. Note that these are the two ex-
tremes of semantic granularity in WordNet, and we
plan to experiment with intermediate representation
levels in future research (c.f. Li and Abe (1998), Mc-
Carthy and Carroll (2003), Xiong et al. (2005), Fu-
jita et al. (2007)).

As a hybrid representation, we tested the effect
of merging words with their corresponding SF (e.g.
knife+ARTIFACT ). This is a form of semantic spe-
cialisation rather than generalisation, and allows the
parser to discriminate between the different senses
of each word, but not generalise across words.

For each of these three semantic representations,
we experimented with substituting each of: (1) all
open-class POSs (nouns, verbs, adjectives and ad-
verbs), (2) nouns only, and (3) verbs only. There are
thus a total of 9 combinations of representation type
and target POS.

4.4 Disambiguation methods

For a given semantic representation, we need some
form of WSD to determine the semantics of each
token occurrence of a target word. We experimented
with three options:

1. Gold-standard: Gold-standard annotations
from SemCor. This gives us the upper bound
performance of the semantic representation.

SF ID DEFINITION
adj.all all adjective clusters
adj.pert relational adjectives (pertainyms)
adj.ppl participial adjectives
adv.all all adverbs
noun.act nouns denoting acts or actions
noun.animal nouns denoting animals
noun.artifact nouns denoting man-made objects
...
verb.consumption verbs of eating and drinking
verb.emotion verbs of feeling
verb.perception verbs of seeing, hearing, feeling
...

Table 1: A selection of WordNet SFs

2. First Sense (1ST): All token instances of a
given word are tagged with their most fre-
quent sense in WordNet.4 Note that the first
sense predictions are based largely on the same
dataset as we use in our evaluation, such that
the predictions are tuned to our dataset and not
fully unsupervised.

3. Automatic Sense Ranking (ASR): First sense
tagging as for First Sense above, except that an
unsupervised system is used to automatically
predict the most frequent sense for each word
based on an independent corpus. The method
we use to predict the first sense is that of Mc-
Carthy et al. (2004), which was obtained us-
ing a thesaurus automatically created from the
British National Corpus (BNC) applying the
method of Lin (1998), coupled with WordNet-
based similarity measures. This method is fully
unsupervised and completely unreliant on any
annotations from our dataset.

In the case of SFs, we perform full synset WSD
based on one of the above options, and then map the
prediction onto the corresponding (unique) SF.

5 Results

We present the results for each disambiguation ap-
proach in turn, analysing the results for parsing and
PP attachment separately.

4There are some differences with the most frequent sense in
SemCor, due to extra corpora used in WordNet development,
and also changes in WordNet from the original version used for
the SemCor tagging.
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CHARNIAK BIKELSYSTEM R P F1 R P F1

Baseline .857 .808 .832 .837 .845 .841
SF .855 .809 .831 .847∗ .854∗ .850∗

SFn .860 .808 .833 .847∗ .853∗ .850∗

SFv .861 .811 .835 .847∗ .856∗ .851∗
word + SF .865∗ .814∗ .839∗ .837 .846 .842
word + SFn .862 .809 .835 .841∗ .850∗ .846∗

word + SFv .862 .810 .835 .840 .851 .845
Syn .863∗ .812 .837 .845∗ .853∗ .849∗

Synn .860 .807 .832 .841 .849 .845
Synv .863∗ .813∗ .837∗ .843∗ .851∗ .847∗

Table 2: Parsing results with gold-standard senses (∗ in-
dicates that the recall or precision is significantly better
than baseline; the best performing method in each col-
umn is shown in bold)

5.1 Gold standard

We disambiguated each token instance in our cor-
pus according to the gold-standard sense data, and
trained both the Charniak and Bikel parsers over
each semantic representation. We evaluated the
parsers in full parsing and PP attachment contexts.

The results for parsing are given in Table 2. The
rows represent the three semantic representations
(including whether we substitute only nouns, only
verbs or all POS). We can see that in almost all
cases the semantically-enriched representations im-
prove over the baseline parsers. These results are
statistically significant in some cases (as indicated
by ∗). The SFv representation produces the best re-
sults for Bikel (F-score 0.010 above baseline), while
for Charniak the best performance is obtained with
word+SF (F-score 0.007 above baseline). Compar-
ing the two baseline parsers, Bikel achieves better
precision and Charniak better recall. Overall, Bikel
obtains a superior F-score in all configurations.

The results for the PP attachment experiments us-
ing gold-standard senses are given in Table 3, both
for the Charniak and Bikel parsers. Again, the F-
score for the semantic representations is better than
the baseline in all cases. We see that the improve-
ment is significant for recall in most cases (particu-
larly when using verbs), but not for precision (only
Charniak over Synv and word+SFv for Bikel). For
both parsers the best results are achieved with SFv,
which was also the best configuration for parsing
with Bikel. The performance gain obtained here is
larger than in parsing, which is in accordance with
the findings of Stetina and Nagao that lexical se-
mantics has a considerable effect on PP attachment

CHARNIAK BIKELSYSTEM R P F1 R P F1

Baseline .667 .798 .727 .659 .820 .730
SF .710 .808 .756 .714∗ .809 .758
SFn .671 .792 .726 .706 .818 .758
SFv .729∗ .823 .773∗ .733∗ .827 .778∗
word + SF .710∗ .801 .753 .706∗ .837 .766∗

word + SFn .698∗ .813 .751 .706∗ .829 .763∗

word + SFv .714∗ .805 .757∗ .706∗ .837∗ .766∗

Syn .722∗ .814 .765∗ .702∗ .825 .758
Synn .678 .805 .736 .690 .822 .751
Synv .702∗ .817∗ .755∗ .690∗ .834 .755∗

Table 3: PP attachment results with gold-standard senses
(∗ indicates that the recall or precision is significantly bet-
ter than baseline; the best performing method in each col-
umn is shown in bold)

performance. As in full-parsing, Bikel outperforms
Charniak, but in this case the difference in the base-
lines is not statistically significant.

5.2 First sense (1ST)

For this experiment, we use the first sense data from
WordNet for disambiguation. The results for full
parsing are given in Table 4. Again, the perfor-
mance is significantly better than baseline in most
cases, and surprisingly the results are even better
than gold-standard in some cases. We hypothesise
that this is due to the avoidance of excessive frag-
mentation, as occurs with fine-grained senses. The
results are significantly better for nouns, with SFn

performing best. Verbs seem to suffer from lack of
disambiguation precision, especially for Bikel. Here
again, Charniak trails behind Bikel.

The results for the PP attachment task are shown
in Table 5. The behaviour is slightly different here,
with Charniak obtaining better results than Bikel in
most cases. As was the case for parsing, the per-
formance with 1ST reaches and in many instances
surpasses gold-standard levels, achieving statistical
significance over the baseline in places. Compar-
ing the semantic representations, the best results are
achieved with SFv, as we saw in the gold-standard
PP-attachment case.

5.3 Automatic sense ranking (ASR)

The final option for WSD is automatic sense rank-
ing, which indicates how well our method performs
in a completely unsupervised setting.

The parsing results are given in Table 6. We can
see that the scores are very similar to those from
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CHARNIAK BIKELSYSTEM R P F1 R P F1

Baseline .857 .807 .832 .837 .845 .841
SF .851 .804 .827 .843 .850 .846
SFn .863∗ .813 .837∗ .850∗ .854∗ .852∗
SFv .857 .808 .832 .843 .853∗ .848
word + SF .859 .810 .834 .833 .841 .837
word + SFn .862∗ .811 .836 .844∗ .851∗ .848∗

word + SFv .857 .808 .832 .831 .839 .835
Syn .857 .810 .833 .837 .844 .840
Synn .863∗ .812 .837∗ .844∗ .851∗ .848∗

Synv .860 .810 .834 .836 .844 .840

Table 4: Parsing results with 1ST (∗ indicates that the
recall or precision is significantly better than baseline; the
best performing method in each column is shown in bold)

CHARNIAK BIKELSYSTEM R P F1 R P F1

Baseline .667 .798 .727 .659 .820 .730
SF .710 .808 .756 .702 .806 .751
SFn .671 .781 .722 .702 .829 .760
SFv .737∗ .836∗ .783∗ .718∗ .821 .766∗
word + SF .706 .811 .755 .694 .823 .753
word + SFn .690 .815 .747 .667 .810 .731
word + SFv .714∗ .805 .757∗ .710∗ .819 .761∗

Syn .725∗ .833∗ .776∗ .698 .828 .757
Synn .698 .828∗ .757∗ .667 .817 .734
Synv .722∗ .811 .763∗ .706∗ .818 .758∗

Table 5: PP attachment results with 1ST (∗ indicates that
the recall or precision is significantly better than baseline;
the best performing method in each column is shown in
bold)

1ST, with improvements in some cases, particularly
for Charniak. Again, the results are better for nouns,
except for the case of SFv with Bikel. Bikel outper-
forms Charniak in terms of F-score in all cases.

The PP attachment results are given in Table 7.
The results are similar to 1ST, with significant im-
provements for verbs. In this case, synsets slightly
outperform SF. Charniak performs better than Bikel,
and the results for Synv are higher than the best ob-
tained using gold-standard senses.

6 Discussion

The results of the previous section show that the im-
provements in parsing results are small but signifi-
cant, for all three word sense disambiguation strate-
gies (gold-standard, 1ST and ASR). Table 8 sum-
marises the results, showing that the error reduction
rate (ERR) over the parsing F-score is up to 6.9%,
which is remarkable given the relatively superficial
strategy for incorporating sense information into the
parser. Note also that our baseline results for the

CHARNIAK BIKELSYSTEM R P F1 R P F1

Baseline .857 .807 .832 .837 .845 .841
SF .863 .815∗ .838 .845∗ .852 .849
SFn .862 .810 .835 .845∗ .850 .847∗

SFv .859 .810 .833 .846∗ .856∗ .851∗
word + SF .859 .810 .834 .836 .844 .840
word + SFn .865∗ .813∗ .838∗ .844∗ .852∗ .848∗

word + SFv .856 .806 .830 .832 .839 .836
Syn .856 .807 .831 .840 .847 .843
Synn .864∗ .813∗ .838∗ .844∗ .851∗ .847∗

Synv .857 .806 .831 .837 .845 .841

Table 6: Parsing results with ASR (∗ indicates that the
recall or precision is significantly better than baseline; the
best performing method in each column is shown in bold)

CHARNIAK BIKELSYSTEM R P F1 R P F1

Baseline .667 .798 .727 .659 .820 .730
SF .733∗ .824 .776∗ .698 .805 .748
SFn .682 .791 .733 .671 .807 .732
SFv .733∗ .813 .771∗ .710∗ .812 .757∗

word + SF .714∗ .798 .754 .675 .800 .732
word + SFn .690 .807 .744 .659 .804 .724
word + SFv .706∗ .800 .750 .702∗ .814 .754∗

Syn .733∗ .827 .778∗ .694 .805 .745
Synn .686 .810 .743 .667 .806 .730
Synv .714∗ .816 .762∗ .714∗ .816 .762∗

Table 7: PP attachment results with ASR (∗ indicates that
the recall or precision is significantly better than baseline;
the best performance in each column is shown in bold)

dataset are almost the same as previous work pars-
ing the Brown corpus with similar models (Gildea,
2001), which suggests that our dataset is representa-
tive of this corpus.

The improvement in PP attachment was larger
(20.5% ERR), and also statistically significant. The
results for PP attachment are especially important,
as we demonstrate that the sense information has
high utility when embedded within a parser, where
the parser needs to first identify the ambiguity and
heads correctly. Note that Atterer and Schütze
(2007) have shown that the Bikel parser performs as
well as the state-of-the-art in PP attachment, which
suggests our method improves over the current state-
of-the-art. The fact that the improvement is larger
for PP attachment than for full parsing is suggestive
of PP attachment being a parsing subtask where lex-
ical semantic information is particularly important,
supporting the findings of Stetina and Nagao (1997)
over a standalone PP attachment task. We also ob-
served that while better PP-attachment usually im-
proves parsing, there is some small variation. This
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WSD TASK PAR BASE SEM ERR BEST

Pars.
C .832 .839∗ 4.2% word+SF

Gold- B .841 .851∗ 6.3% SFv

standard
PP

C .727 .773∗ 16.9% SFv

B .730 .778∗ 17.8% SFv

Pars.
C .832 .837∗ 3.0% SFn, Synn

1ST
B .841 .852∗ 6.9% SFn

PP
C .727 .783∗ 20.5% SFv

B .730 .766∗ 13.3% SFv

Pars.
C .832 .838∗ 3.6% SF, word+SFn, Synn

ASR
B .841 .851∗ 6.3% SFv

PP
C .727 .778∗ 18.7% Syn
B .730 .762∗ 11.9% Synv

Table 8: Summary of F-score results with error reduc-
tion rates and the best semantic representation(s) for each
setting (C = Charniak, B = Bikel)

means that the best configuration for PP-attachment
does not always produce the best results for parsing

One surprising finding was the strong perfor-
mance of the automatic WSD systems, actually
outperforming the gold-standard annotation overall.
Our interpretation of this result is that the approach
of annotating all occurrences of the same word with
the same sense allows the model to avoid the data
sparseness associated with the gold-standard distinc-
tions, as well as supporting the merging of differ-
ent words into single semantic classes. While the
results for gold-standard senses were intended as
an upper bound for WordNet-based sense informa-
tion, in practice there was very little difference be-
tween gold-standard senses and automatic WSD in
all cases barring the Bikel parser and PP attachment.

Comparing the two parsers, Charniak performs
better than Bikel on PP attachment when automatic
WSD is used, while Bikel performs better on parsing
overall. Regarding the choice of WSD system, the
results for both approaches are very similar, show-
ing that ASR performs well, even if it does not re-
quire sense frequency information.

The analysis of performance according to the se-
mantic representation is not so clear cut. Gener-
alising only verbs to semantic files (SFv) was the
best option in most of the experiments, particularly
for PP-attachment. This could indicate that seman-
tic generalisation is particularly important for verbs,
more so than nouns.

Our hope is that this paper serves as the bridge-
head for a new line of research into the impact of
lexical semantics on parsing. Notably, more could
be done to fine-tune the semantic representation be-

tween the two extremes of full synsets and SFs.
One could also imagine that the appropriate level of
generalisation differs across POS and even the rel-
ative syntactic role, e.g. finer-grained semantics are
needed for the objects than subjects of verbs.

On the other hand, the parsing strategy is very
simple, as we just substitute words by their semantic
class and then train statistical parsers on the trans-
formed input. The semantic class should be an in-
formation source that the parsers take into account in
addition to analysing the actual words used. Tighter
integration of semantics into the parsing models,
possibly in the form of discriminative reranking
models (Collins and Koo, 2005; Charniak and John-
son, 2005; McClosky et al., 2006), is a promising
way forward in this regard.

7 Conclusions

In this work we have trained two state-of-the-art
statistical parsers on semantically-enriched input,
where content words have been substituted with
their semantic classes. This simple method allows
us to incorporate lexical semantic information into
the parser, without having to reimplement a full sta-
tistical parser. We tested the two parsers in both a
full parsing and a PP attachment context.

This paper shows that semantic classes achieve
significant improvement both on full parsing and
PP attachment tasks relative to the baseline parsers.
PP attachment achieves a 20.5% ERR, and parsing
6.9% without requiring hand-tagged data.

The results are highly significant in demonstrating
that a simplistic approach to incorporating lexical
semantics into a parser significantly improves parser
performance. As far as we know, these are the first
results over both WordNet and the Penn Treebank to
show that semantic processing helps parsing.
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