
Proceedings of ACL-08: HLT, pages 209–217,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Efficient Multi-pass Decoding for Synchronous Context Free Grammars

Hao Zhang and Daniel Gildea
Computer Science Department

University of Rochester
Rochester, NY 14627

Abstract

We take a multi-pass approach to ma-
chine translation decoding when using syn-
chronous context-free grammars as the trans-
lation model andn-gram language models:
the first pass uses a bigram language model,
and the resulting parse forest is used in the
second pass to guide search with a trigram lan-
guage model. The trigram pass closes most
of the performance gap between a bigram de-
coder and a much slower trigram decoder, but
takes time that is insignificant in comparison
to the bigram pass. An additional fast de-
coding pass maximizing the expected count
of correct translation hypotheses increases the
BLEU score significantly.

1 Introduction

Statistical machine translation systems based
on synchronous grammars have recently shown
great promise, but one stumbling block to their
widespread adoption is that the decoding, or search,
problem during translation is more computationally
demanding than in phrase-based systems. This com-
plexity arises from the interaction of the tree-based
translation model with ann-gram language model.
Use of longern-grams improves translation results,
but exacerbates this interaction. In this paper, we
present three techniques for attacking this problem
in order to obtain fast, high-quality decoders.

First, we present a two-pass decoding algorithm,
in which the first pass explores states resulting from
an integrated bigram language model, and the sec-
ond pass expands these states into trigram-based

states. The general bigram-to-trigram technique
is common in speech recognition (Murveit et al.,
1993), where lattices from a bigram-based decoder
are re-scored with a trigram language model. We ex-
amine the question of whether, given the reordering
inherent in the machine translation problem, lower
order n-grams will provide as valuable a search
heuristic as they do for speech recognition.

Second, we explore heuristics for agenda-based
search, and present a heuristic for our second pass
that combines precomputed language model infor-
mation with information derived from the first pass.
With this heuristic, we achieve the same BLEU
scores and model cost as a trigram decoder with es-
sentially the same speed as a bigram decoder.

Third, given the significant speedup in the
agenda-based trigram decoding pass, we can rescore
the trigram forest to maximize the expected count of
correct synchronous constituents of the model, us-
ing the product of inside and outside probabilities.
Maximizing the expected count of synchronous con-
stituents approximately maximizes BLEU. We find
a significant increase in BLEU in the experiments,
with minimal additional time.

2 Language Model Integrated Decoding
for SCFG

We begin by introducing Synchronous Context Free
Grammars and their decoding algorithms when an
n-gram language model is integrated into the gram-
matical search space.

A synchronous CFG(SCFG) is a set of context-
free rewriting rules for recursively generating string
pairs. Each synchronous rule is a pair of CFG rules

209

with the nonterminals on the right hand side of one
CFG rule being one-to-one mapped to the other CFG
rule via a permutationπ. We adopt the SCFG nota-
tion of Satta and Peserico (2005). Superscriptin-
dicesin the right-hand side of grammar rules:

X → X
(1)
1 ...X(n)

n , X
(π(1))
π(1) ...X

(π(n))
π(n)

indicate that the nonterminals with the same index
are linked across the two languages, and will eventu-
ally be rewritten by the same rule application. Each
Xi is a variable which can take the value of any non-
terminal in the grammar.

In this paper, we focus on binary SCFGs and
without loss of generality assume that only the pre-
terminal unary rules can generate terminal string
pairs. Thus, we are focusing on Inversion Transduc-
tion Grammars (Wu, 1997) which are an important
subclass of SCFG. Formally, the rules in our gram-
mar include preterminal unary rules:

X → e/f

for pairing up words or phrases in the two languages
and binary production rules with straight or inverted
orders that are responsible for building up upper-
level synchronous structures. They are straight rules
written:

X → [Y Z]

and inverted rules written:

X → 〈Y Z〉.

Most practical non-binary SCFGs can be bina-
rized using the synchronous binarization technique
by Zhang et al. (2006). The Hiero-style rules of
(Chiang, 2005), which are not strictly binary but bi-
nary only on nonterminals:

X → yu X(1) youX(2); haveX(2) with X(1)

can be handled similarly through either offline bi-
narization or allowing a fixed maximum number of
gap words between the right hand side nonterminals
in the decoder.

For these reasons, the parsing problems for more
realistic synchronous CFGs such as in Chiang
(2005) and Galley et al. (2006) are formally equiva-
lent to ITG. Therefore, we believe our focus on ITG

for the search efficiency issue is likely to generalize
to other SCFG-based methods.

Without ann-gram language model, decoding us-
ing SCFG is not much different from CFG pars-
ing. At each time a CFG rule is applied on the in-
put string, we apply the synchronized CFG rule for
the output language. From a dynamic programming
point of view, the DP states areX[i, j], whereX
ranges over all possible nonterminals andi and j
range over0 to the input string length|w|. Each
state stores the best translations obtainable. When
we reach the top stateS[0, |w|], we can get the best
translation for the entire sentence. The algorithm is
O(|w|3).

However, when we want to integrate ann-gram
language model into the search, our goal is search-
ing for the derivation whose total sum of weights
of productions andn-gram log probabilities is
maximized. Now the adjacent span-parameterized
statesX[i, k] and X[k, j] can interact with each
other by “peeping into” the leading and trailing
n − 1 words on the output side for each state.
Different boundary words differentiate the span-
parameterized states. Thus, to preserve the dynamic
programming property, we need to refine the states
by adding the boundary words into the parameter-
ization. TheLM -integrated states are represented
as X[i, j, u1,..,n−1, v1,..,n−1]. Since the number of
variables involved at each DP step has increased to
3 + 4(n − 1), the decoding algorithm is asymptoti-
cally O(|w|3+4(n−1)). Although it is possible to use
the “hook” trick of Huang et al. (2005) to factor-
ize the DP operations to reduce the complexity to
O(|w|3+3(n−1)), whenn is greater than2, the com-
plexity is still prohibitive.

3 Multi-pass LM-Integrated Decoding

In this section, we describe a multi-pass progres-
sive decoding technique that gradually augments the
LM -integrated states from lower orders to higher
orders. For instance, a bigram-integrated state
[X, i, j, u, v] is said to be a coarse-level state of a
trigram-integrate state[X, i, j, u, u′, v′, v], because
the latter state refines the previous by specifying
more inner words.

Progressive search has been used for HMM’s in
speech recognition (Murveit et al., 1993). The gen-

210

eral idea is to use a simple and fast decoding algo-
rithm to constrain the search space of a following
more complex and slower technique. More specif-
ically, a bigram decoding pass is executed forward
and backward to figure out the probability of each
state. Then the states can be pruned based on their
global score using the product of inside and outside
probabilities. The advanced decoding algorithm will
use the constrained space (a lattice in the case of
speech recognition) as a grammatical constraint to
help it focus on a smaller search space on which
more discriminative features are brought in.

The same idea has been applied to forests for pars-
ing. Charniak and Johnson (2005) use a PCFG to do
a pass of inside-outside parsing to reduce the state
space of a subsequent lexicalizedn-best parsing al-
gorithm to produce parses that are further re-ranked
by a MaxEnt model.

We take the same view as in speech recognition
that a trigram integrated model is a finer-grained
model than bigram model and in general we can do
an n − 1-gram decoding as a predicative pass for
the following n-gram pass. We need to do inside-
outside parsing as coarse-to-fine parsers do. How-
ever, we use the outside probability or cost informa-
tion differently. We do not combine the inside and
outside costs of a simpler model to prune the space
for a more complex model. Instead, for a given finer-
gained state, we combine its true inside cost with
the outside cost of its coarse-level counter-part to
estimate its worthiness of being explored. The use
of the outside cost from a coarser-level as the out-
side estimate makes our method naturally fall in the
framework of A* parsing.

Klein and Manning (2003) describe an A* pars-
ing framework for monolingual parsing and admis-
sible outside estimates that are computed using in-
side/outside parsing algorithm on simplified PCFGs
compared to the original PCFG. Zhang and Gildea
(2006) describe A* for ITG and develop admissible
heuristics for both alignment and decoding. Both
have shown the effectiveness of A* in situations
where the outside estimate approximates the true
cost closely such as when the sentences are short.
For decoding long sentences, it is difficult to come
up with good admissible (or inadmissible) heuris-
tics. If we can afford a bigram decoding pass, the
outside cost from a bigram model is conceivably a

very good estimate of the outside cost using a tri-
gram model since a bigram language model and a
trigram language model must be strongly correlated.
Although we lose the guarantee that the bigram-pass
outside estimate is admissible, we expect that it ap-
proximates the outside cost very closely, thus very
likely to effectively guide the heuristic search.

3.1 Inside-outside Coarse Level Decoding

We describe the coarse level decoding pass in this
section. The decoding algorithms for the coarse
level and the fine level do not necessarily have to
be the same. The fine level decoding algorithm is an
A* algorithm. The coarse level decoding algorithm
can be CKY or A* or other alternatives.

Conceptually, the algorithm is finding the short-
est hyperpath in the hypergraph in which the nodes
are states likeX[i, j, u1,..,n−1, v1,..,n−1], and the hy-
peredges are the applications of the synchronous
rules to go from right-hand side states to left-hand
side states. The root of the hypergraph is a special
nodeS′[0, |w|, 〈s〉, 〈/s〉] which means the entire in-
put sentence has been translated to a string starting
with the beginning-of-sentence symbol and ending
at the end-of-sentence symbol. If we imagine a start-
ing node that goes to all possible basic translation
pairs, i.e., the instances of the terminal translation
rules for the input, we are searching the shortest hy-
per path from the imaginary bottom node to the root.
To help our outside parsing pass, we store the back-
pointers at each step of exploration.

The outside parsing pass, however, starts from the
root S′[|w|, 〈s〉, 〈/s〉] and follows the back-pointers
downward to the bottom nodes. The nodes need to
be visited in a topological order so that whenever
a node is visited, its parents have been visited and
its outside cost is over all possible outside parses.
The algorithm is described in pseudocode in Algo-
rithm 1. The number of hyperedges to traverse is
much fewer than in the inside pass because not ev-
ery state explored in the bottom up inside pass can
finally reach the goal. As for normal outside parsing,
the operations are the reverse of inside parsing. We
propagate the outside cost of the parent to its chil-
dren by combining with the inside cost of the other
children and the interaction cost, i.e., the language
model cost between the focused child and the other
children. Since we want to approximate the Viterbi

211

outside cost, it makes sense to maximize over all
possible outside costs for a given node, to be con-
sistent with the maximization of the inside pass. For
the nodes that have been explored in the bottom up
pass but not in the top-down pass, we set their out-
side cost to be infinity so that their exploration is
preferred only when the viable nodes from the first
pass have all been explored in the fine pass.

3.2 Heuristics for Fine-grained Decoding

In this section, we summarize the heuristics for finer
level decoding.

The motivation for combining the true inside
cost of the fine-grained model and the outside es-
timate given by the coarse-level parsing is to ap-
proximate the true global cost of a fine-grained state
as closely as possible. We can make the approx-
imation even closer by incorporating local higher-
order outsiden-gram information for a state of
X[i, j, u1,..,n−1, v1,..,n−1] into account. We call this
the best-borderestimate. For example, the best-
border estimate for trigram states is:

hBB(X, i, j, u1, u2, v1, v2)

=

[

max
s∈S(i,j)

Plm(u2 | s, u1)

]

·

[

max
s∈S(i,j)

Plm(s | v1, v2)

]

whereS(i, j) is the set of candidate target language
words outside the span of(i, j). hBB is the prod-
uct of the upper bounds for the two on-the-border
n-grams.

This heuristic function was one of the admissible
heuristics used by Zhang and Gildea (2006). The
benefit of including the best-border estimate is to re-
fine the outside estimate with respect to the inner
words which refine the bigram states into the trigram
states. If we do not take the inner words into consid-
eration when computing the outside cost, all states
that map to the same coarse level state would have
the same outside cost. When the simple best-border
estimate is combined with the coarse-level outside
estimate, it can further boost the search as will be
shown in the experiments. To summarize, our recipe

for faster decoding is that using

β(X[i, j, u1,..,n−1, v1,..,n−1])

+ α(X[i, j, u1, vn−1])

+ hBB(X, i, j, u1,...,n, v1,...,n) (1)

whereβ is the Viterbi inside cost andα is the Viterbi
outside cost, to globally prioritize then-gram inte-
grated states on the agenda for exploration.

3.3 Alternative Efficient Decoding Algorithms

The complexity ofn-gram integrated decoding for
SCFG has been tackled using other methods.

The hook trick of Huang et al. (2005) factor-
izes the dynamic programming steps and lowers the
asymptotic complexity of then-gram integrated de-
coding, but has not been implemented in large-scale
systems where massive pruning is present.

The cube-pruning by Chiang (2007) and the lazy
cube-pruning of Huang and Chiang (2007) turn the
computation of beam pruning of CYK decoders into
a top-k selection problem given two columns of
translation hypotheses that need to be combined.
The insight for doing the expansion top-down lazily
is that there is no need to uniformly explore every
cell. The algorithm starts with requesting the first
best hypothesis from the root. The request translates
into requests for thek-bests of some of its children
and grandchildren and so on, because re-ranking at
each node is needed to get the top ones.

Venugopal et al. (2007) also take a two-pass de-
coding approach, with the first pass leaving the lan-
guage model boundary words out of the dynamic
programming state, such that only one hypothesis is
retained for each span and grammar symbol.

4 Decoding to Maximize BLEU

The ultimate goal of efficient decoding to find the
translation that has a highest evaluation score using
the least time possible. Section 3 talks about utiliz-
ing the outside cost of a lower-order model to esti-
mate the outside cost of a higher-order model, boost-
ing the search for the higher-order model. By doing
so, we hope the intrinsic metric of our model agrees
with the extrinsic metric of evaluation so that fast
search for the model is equivalent to efficient decod-
ing. But the mismatch between the two is evident,
as we will see in the experiments. In this section,

212

Algorithm 1 OutsideCoarseParsing()
for all X[i, j, u, v] in topological orderdo

for all children pairs pointed to by the back-pointersdo
if X → [Y Z] then

� the two children areY [i, k, u, u′] andZ[k, j, v′, v]
α(Y [i, k, u, u′]) = max {α(Y [i, k, u, u′]),

α(X[i, j, u, v]) + β(Z[k, j, v′, v]) + rule(X → [Y Z]) + bigram(u′, v′)}
α(Z[k, j, v′, v]) = max {α(Z[k, j, v′, v]),

α(X[i, j, u, v]) + β(Y [i, k, u, u′]) + rule(X → [Y Z]) + bigram(u′, v′)}
end if
if X → 〈Y Z〉 then

� the two children areY [i, k, v′, v] andZ[k, j, u, u′]
α(Y [i, k, v′, v]) = max {α(Y [i, k, v′, v]),

α(X[i, j, u, v]) + β(Z[k, j, u, u′]) + rule(X → 〈Y Z〉) + bigram(u′, v′)}
α(Z[k, j, u, u′]) = max {α(Z[k, j, u, u′]),

α(X[i, j, u, v]) + β(Y [i, k, v′, v]) + rule(X → 〈Y Z〉) + bigram(u′, v′)}
end if

end for
end for

we deal with the mismatch by introducing another
decoding pass that maximizes the expected count
of synchronous constituents in the tree correspond-
ing to the translation returned. BLEU is based on
n-gram precision, and since each synchronous con-
stituent in the tree adds a new 4-gram to the trans-
lation at the point where its children are concate-
nated, the additional pass approximately maximizes
BLEU.

Kumar and Byrne (2004) proposed the framework
of Minimum Bayesian Risk (MBR) decoding that
minimizes the expected loss given a loss function.
Their MBR decoding is a reranking pass over ann-
best list of translations returned by the decoder. Our
algorithm is another dynamic programming decod-
ing pass on the trigram forest, and is similar to the
parsing algorithm for maximizing expected labelled
recall presented by Goodman (1996).

4.1 Maximizing the expected count of correct
synchronous constituents

We introduce an algorithm that maximizes the ex-
pected count of correct synchronous constituents.
Given a synchronous constituent specified by the
state[X, i, j, u, u′, v′, v], its probability of being cor-
rect in the model is

EC([X, i, j, u, u′, v′, v])

= α([X, i, j, u, u′, v′, v]) · β([X, i, j, u, u′, v′, v]),

whereα is the outside probability andβ is the in-
side probability. We approximateβ andα using the
Viterbi probabilities. Since decoding from bottom
up in the trigram pass already gives us the inside
Viterbi scores, we only have to visit the nodes in
the reverse order once we reach the root to compute
the Viterbi outside scores. The outside-pass Algo-
rithm 1 for bigram decoding can be generalized to
the trigram case. We want to maximize over all
translations (synchronous trees)T in the forest af-
ter the trigram decoding pass according to

max
T

∑

[X,i,j,u,u′,v′,v]∈T

EC([X, i, j, u, u′, v′, v]).

The expression can be factorized and computed us-
ing dynamic programming on the forest.

5 Experiments

We did our decoding experiments on the LDC 2002
MT evaluation data set for translation of Chinese
newswire sentences into English. The evaluation
data set has 10 human translation references for each
sentence. There are a total of 371 Chinese sentences
of no more than 20 words in the data set. These
sentences are the test set for our different versions
of language-model-integrated ITG decoders. We
evaluate the translation results by comparing them
against the reference translations using the BLEU
metric.

213

The word-to-word translation probabilities are
from the translation model of IBM Model 4 trained
on a 160-million-word English-Chinese parallel cor-
pus using GIZA++. The phrase-to-phrase transla-
tion probabilities are trained on 833K parallel sen-
tences. 758K of this was data made available by
ISI, and another 75K was FBIS data. The language
model is trained on a 30-million-word English cor-
pus. The rule probabilities for ITG are trained using
EM on a corpus of 18,773 sentence pairs with a to-
tal of 276,113 Chinese words and 315,415 English
words.

5.1 Bigram-pass Outside Cost as Trigram-pass
Outside Estimate

We first fix the beam for the bigram pass, and change
the outside heuristics for the trigram pass to show
the difference before and after using the first-pass
outside cost estimate and the border estimate. We
choose the beam size for the CYK bigram pass to be
10 on the log scale. The first row of Table 1 shows
the number of explored hyperedges for the bigram
pass and its BLEU score. In the rows below, we
compare the additional numbers of hyperedges that
need to be explored in the trigram pass using differ-
ent outside heuristics. It takes too long to finish us-
ing uniform outside estimate; we have to use a tight
beam to control the agenda-based exploration. Us-
ing the bigram outside cost estimate makes a huge
difference. Furthermore, using Equation 1, adding
the additional heuristics on the best trigrams that can
appear on the borders of the current hypothesis, on
average we only need to explore 2700 additional hy-
peredges per sentence to boost the BLEU score from
21.77 to 23.46. The boost is so significant that over-
all the dominant part of search time is no longer the
second pass but the first bigram pass (inside pass ac-
tually) which provides a constrained space and out-
side heuristics for the second pass.

5.2 Two-pass decoding versus One-pass
decoding

By varying the beam size for the first pass, we can
plot graphs of model scores versus search time and
BLEU scores versus search time as shown in Fig-
ure 1. We use a very large beam for the second pass
due to the reason that the outside estimate for the
second pass is discriminative enough to guide the

Decoding Method Avg. Hyperedges BLEU
Bigram Pass 167K 21.77
Trigram Pass

UNI – –
BO + 629.7K=796.7K 23.56

BO+BB +2.7K =169.7K 23.46

Trigram One-pass,
with Beam 6401K 23.47

Table 1: Speed and BLEU scores for two-pass decoding.
UNI stands for the uniform (zero) outside estimate. BO
stands for the bigram outside cost estimate. BB stands for
the best border estimate, which is added to BO.

Decoder Time BLEU Model Score
One-pass agenda 4317s 22.25 -208.849

One-pass CYK 3793s 22.89 -207.309
Multi-pass, CYK first
agenda second pass 3689s 23.56 -205.344

MEC third pass 3749s 24.07 -203.878
Lazy-cube-pruning 3746s 22.16 -208.575

Table 2: Summary of different trigram decoding strate-
gies, using about the same time (10 seconds per sen-
tence).

search. We sum up the total number of seconds for
both passes to compare with the baseline systems.
On average, less than 5% of time is spent in the sec-
ond pass.

In Figure 1, we have four competing decoders.
bitri cyk is our two-pass decoder, using CYK as
the first pass decoding algorithm and using agenda-
based decoding in the second pass which is guided
by the first pass.agendais our trigram-integrated
agenda-based decoder. The other two systems are
also one-pass.cyk is our trigram-integrated CYK
decoder.lazy kbestis our top-down k-best-style de-
coder.1

Figure 1(left) compares the search efficiencies of
the four systems.bitri cykat the top ranks first.cyk
follows it. The curves oflazy kbestandagendacross

1In our implementation of the lazy-cube-pruning based ITG
decoder, we vary the re-ranking buffer size and the the top-k

list size which are the two controlling parameters for the search
space. But we did not use anyLM estimate to achieve early
stopping as suggested by Huang and Chiang (2007). Also, we
did not have a translation-model-only pruning pass. So the re-
sults shown in this paper for the lazy cube pruning method is
not of its best performance.

214

and are both below the curves ofbitri cyk andcyk.
This figure indicates the advantage of the two-pass
decoding strategy in producing translations with a
high model score in less time.

However, model scores do not directly translate
into BLEU scores. In Figure 1(right),bitri cyk is
better thanCYKonly in a certain time window when
the beam is neither too small nor too large. But
the window is actually where we are interested – it
ranges from 5 seconds per sentence to 20 seconds
per sentence. Table 2 summarizes the performance
of the four decoders when the decoding speed is at
10 seconds per sentence.

5.3 Does the hook trick help?

We have many choices in implementing the bigram
decoding pass. We can do either CYK or agenda-
based decoding. We can also use the dynamic pro-
gramming hook trick. We are particularly interested
in the effect of the hook trick in a large-scale system
with aggressive pruning.

Figure 2 compares the four possible combinations
of the decoding choices for the first pass:bitri cyk,
bitri agenda, bitri cyk hookandbitri agendahook.
bitri cyk which simply uses CYK as the first pass
decoding algorithm is the best in terms of perfor-
mance and time trade-off. The hook-based de-
coders do not show an advantage in our experiments.
Only bitri agendahookgets slightly better thanbi-
tri agendawhen the beam size increases. So, it is
very likely the overhead of building hooks offsets its
benefit when we massively prune the hypotheses.

5.4 Maximizing BLEU

The bitri cyk decoder spends little time in the
agenda-based trigram pass, quickly reaching the
goal item starting from the bottom of the chart. In
order to maximize BLEU score using the algorithm
described in Section 4, we need a sizable trigram
forest as a starting point. Therefore, we keep pop-
ping off more items from the agenda after the goal
is reached. Simply by exploring more (200 times
the log beam) after-goal items, we can optimize the
Viterbi synchronous parse significantly, shown in
Figure 3(left) in terms of model score versus search
time.

However, the mismatch between model score and
BLEU score persists. So, we try our algorithm

of maximizing expected count of synchronous con-
stituents on the trigram forest. We find signifi-
cant improvement in BLEU, as shown in Figure 3
(right) by the curve ofbitri cyk epassmecons. bi-
tri cyk epassmeconsbeats bothbitri cyk and cyk
in terms of BLEU versus time if using more than
1.5 seconds on average to decode each sentence. At
each time point, the difference in BLEU between
bitri cyk epassmeconsand the highest ofbitri cyk
andcyk is around .5 points consistently as we vary
the beam size for the first pass. We achieve the
record-high BLEU score 24.34 using on average 21
seconds per sentence, compared to the next-highest
score of 23.92 achieved bycykusing on average 78
seconds per sentence.

6 Conclusion

We present a multi-pass method to speed upn-
gram integrated decoding for SCFG. We use an in-
side/outside parsing algorithm to get the Viterbi out-
side cost of bigram integrated states which is used as
an outside estimate for trigram integrated states. The
coarse-level outside cost plus the simple estimate for
border trigrams speeds up the trigram decoding pass
hundreds of times compared to using no outside es-
timate.

Maximizing the probability of the synchronous
derivation is not equivalent to maximizing BLEU.
We use a rescoring decoding pass that maximizes the
expected count of synchronous constituents. This
technique, together with the progressive search at
previous stages, gives a decoder that produces the
highest BLEU score we have obtained on the data in
a very reasonable amount of time.

As future work, new metrics for the final pass may
be able to better approximate BLEU. As the bigram
decoding pass currently takes the bulk of the decod-
ing time, better heuristics for this phase may speed
up the system further.

Acknowledgments This work was supported by
NSF ITR-0428020 and NSF IIS-0546554.

References

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In ACL.

215

-224

-222

-220

-218

-216

-214

-212

-210

-208

-206

-204

 10 100 1000 10000 100000

lo
g

sc
or

e

total secs

bitri_cyk
cyk

agenda
lazy kbest

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 10 100 1000 10000 100000

bl
eu

total secs

bitri_cyk
cyk

agenda
lazy kbest

Figure 1: We compare the two-pass ITG decoder with the one-pass trigram-integrated ITG decoders in terms of both
model scores vs. time (left) and BLEU scores vs. time (right). The model score here is the log probability of the
decoded parse, summing up both the translation model and thelanguage model. We vary the beam size (for the first
pass in the case of two-pass) to search more and more thoroughly.

-222

-220

-218

-216

-214

-212

-210

-208

-206

-204

 100 1000 10000 100000

lo
g

sc
or

e

total secs

bitri_cyk
bitri_cyk_hook

bitri_agenda
bitri_agenda_hook

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 100 1000 10000 100000

bl
eu

total secs

bitri_cyk
bitri_cyk_hook

bitri_agenda
bitri_agenda_hook

Figure 2: We use different first-pass decoding algorithms, fixing the second pass to be agenda-based which is guided
by the outside cost of the first pass. Left: model score vs. time. Right: BLEU score vs. time.

-222

-220

-218

-216

-214

-212

-210

-208

-206

-204

-202

 100 1000 10000 100000

lo
g

sc
or

e

total secs

bitri_cyk delayed-stopping
bitri_cyk

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 10 100 1000 10000 100000

bl
eu

total secs

bitri_cyk_epass_me_cons
bitri_cyk

cyk

Figure 3: Left: improving the model score by extended agenda-exploration after the goal is reached in the best-first
search. Right: maximizing BLEU by the maximizing expectation pass on the expanded forest.

216

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. InProceedings of
the 43rd Annual Conference of the Association for
Computational Linguistics (ACL-05), pages 263–270.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2).

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. InProceed-
ings of the International Conference on Computational
Linguistics/Association for Computational Linguistics
(COLING/ACL-06), pages 961–968, July.

Joshua Goodman. 1996. Parsing algorithms and metrics.
In Proceedings of the 34th Annual Conference of the
Association for Computational Linguistics (ACL-96),
pages 177–183.

Liang Huang and David Chiang. 2007. Faster algorithms
for decoding with integrated language models. InPro-
ceedings of ACL, Prague, June.

Liang Huang, Hao Zhang, and Daniel Gildea. 2005.
Machine translation as lexicalized parsing with hooks.
In International Workshop on Parsing Technologies
(IWPT05), Vancouver, BC.

Dan Klein and Christopher D. Manning. 2003. A* pars-
ing: Fast exact Viterbi parse selection. InProceed-
ings of the 2003 Meeting of the North American chap-
ter of the Association for Computational Linguistics
(NAACL-03).

Shankar Kumar and William Byrne. 2004. Minimum
bayes-risk decoding for statistical machine translation.
In Daniel Marcu Susan Dumais and Salim Roukos,
editors,HLT-NAACL 2004: Main Proceedings, pages
169–176, Boston, Massachusetts, USA, May 2 - May
7. Association for Computational Linguistics.

Hy Murveit, John W. Butzberger, Vassilios V. Digalakis,
and Mitchel Weintraub. 1993. Large-vocabulary dic-
tation using SRI’s decipher speech recognition system:
Progressive-search techniques. InProceedings of the
IEEE International Conference on Acoustics, Speech,
& Signal Processing (IEEE ICASSP-93), volume 2,
pages 319–322. IEEE.

Giorgio Satta and Enoch Peserico. 2005. Some com-
putational complexity results for synchronous context-
free grammars. InProceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Processing
(HLT/EMNLP), pages 803–810, Vancouver, Canada,
October.

Ashish Venugopal, Andreas Zollmann, and Stephan Vo-
gel. 2007. An efficient two-pass approach to
synchronous-CFG driven statistical MT. InNAACL07,
Rochester, NY, April.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

Hao Zhang and Daniel Gildea. 2006. Efficient search for
inversion transduction grammar. In2006 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), Sydney.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for machine
translation. InProceedings of the 2006 Meeting of the
North American chapter of the Association for Com-
putational Linguistics (NAACL-06), pages 256–263.

217

