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Abstract

This  paper  describes  an  algorithm  to 
automatically generate a list of cognates in 
a  target  language  by  means  of  Support 
Vector  Machines.  While  Levenshtein 
distance was used to align the training file, 
no  knowledge  repository  other  than  an 
initial  list  of  cognates  used  for  training 
purposes  was  input  into  the  algorithm. 
Evaluation  was  set  up  in  a  cognate 
production  scenario  which  mimed  a  real-
life  situation  where  no  word  lists  were 
available in the target language, delivering 
the ideal environment to test the feasibility 
of  a  more  ambitious  project  that  will 
involve  language  portability.  An  overall 
improvement of 50.58% over the baseline 
showed promising horizons.

1 Introduction

Cognates are words  that have similar spelling and 
meaning across different languages. They account 
for  a  considerable  portion  of  technical  lexicons, 
and  they  found  application  in  several  NLP 
domains.  Some  major  applications  fields  include 
relevant  areas  such  as  bilingual  terminology 
compilation and statistical machine translation.

So far algorithms for cognate recognition have 
been focussing predominantly on the detection of 
cognate words  in a  text,  e.g.  (Kondrak and Dorr 
2004).  Sometimes,  though,  the  detection  of 
cognates in free-flowing text is rather impractical: 
being able to predict the possible translation in the 
target  language  would  optimize  algorithms  that 
make  extensive  use  of  the  Web or  very  large 
corpora, since there would be no need to scan the 

whole  data  each  time  in  order  to  find  the 
correspondent item. The proposed approach aims to 
look at the same problem from a totally different 
perspective,  that  is  to  produce  an  information 
repository about the target language that could then 
be  exploited  in  order  to  predict  how  the 
orthography of a “possible” cognate in the target 
language should look like. This  is necessary when 
no plain word list is available in the target language 
or the list  is incomplete.  The proposed algorithm 
merges for the first time two otherwise well-known 
methods, adopting a specific tagger implementation 
which  suggests  new areas  of  application for  this 
tool. Furthermore, once language portability will be 
in place, the cognate generation exercise will allow 
to  reformulate  the  recognition  exercise  as  well, 
which is  indeed a more straightforward one. The 
algorithm described in this paper is based on the 
assumption  that  linguistic  mappings  show  some 
kind of regularity and that they can be exploited in 
order to draw a net of implicit rules by means of a 
machine learning approach.

Section 2 deals with previous work done on the 
field  of  cognate  recognition,  while  Section  3 
describes in detail the algorithm used for this study. 
An evaluation scenario will be drawn in Section 4, 
while  Section  5  will  outline  the  directions  we 
intend to take in the next months.

2 Previous Work

The identification of cognates is a quite challenging 
NLP task. The most renowned approach to cognate 
recognition is to use spelling similarities between 
the  two  words  involved.  The  most  important 
contribution to this methodology has been given by 
Levenshtein  (1965),  who  calculated  the  changes 
needed in order to transform one word into another 
by applying four different edit operations – match, 

25



substitution, insertion and deletion – which became 
known under  the  name of  edit  distance  (ED).  A 
good case in point of a practical application of ED 
is represented by the studies in the field of lexicon 
acquisition from comparable corpora carried out by  
Koehn and Knight (2002) – who expand a list of 
English-German cognate words by applying well-
established  transformation rules  (e.g.  substitution 
of  k or  z by  c and of  –tät by  –ty, as in German 
Elektizität – English electricity) – as well as those 
that focused on word alignment in parallel corpora 
(e.g.  Melamed (2001)  and Simard et  al.  (1999)). 
Furthermore, Laviosa (2001) showed that cognates 
can be extremely helpful in translation studies, too.

Among others, ED was extensively used also by 
Mann  and  Yarowsky (2001),  who  try  to  induce 
translation  lexicons  between  cross-family 
languages  via  third languages.  Lexicons  are  then 
expanded  to  intra-family languages  by  means  of 
cognate  pairs  and  cognate  distance.  Related 
techniques  include  a  method  developed  by 
Danielsson and Mühlenbock (2000),  who associate 
two words by calculating the number of matching 
consonants, allowing for one mismatched character. 
A  quite  interesting  spin-off  was  analysed  by 
Kondrak  (2004),  who  first  highlighted  the 
importance of genetic cognates by comparing the 
phonetic  similarity of  lexemes  with  the  semantic 
similarity of the glosses.

A  general  overview  of  the  most  important 
statistical  techniques  currently  used  for  cognate 
detection purposes was delivered by Inkpen  et al. 
(2005),  who addressed the  problem of  automatic 
classification of  word  pairs  as  cognates  or  false 
friends  and  analysed  the  impact  of  applying 
different  features  through  machine  learning 
techniques.  In her  paper,  she also  proposed  a 
method  to  automatically  distinguish  between 
cognates  and  false  friends,  while  examining  the 
performance  of  seven  different  machine  learning 
classifiers.

Further applications of ED include Mulloni and 
Pekar (2006), who designed an algorithm based on 
normalized  edit  distance  aiming  to  automatically 
extract translation rules, for then applying them to 
the original cognate list in order to expand it, and 
Brew and McKelvie (1996), who used approximate 
string  matching  in  order  to  align  sentences  and 
extract  lexicographically  interesting  word-word 
pairs from multilingual corpora.

Finally, it  is  worth  mentioning  that  the  work 
done  on  automatic  named  entity  transliteration 
often crosses  paths  with  the  research on cognate 

recognition. One good pointer leads to Kashani et 
al. (2006), who used a three-phase algorithm based 
on  HMM  to  solve  the  transliteration  problem 
between Arabic and English.

All the methodologies described above showed 
good potential, each one in its own way. This paper 
aims to merge some successful ideas together, as 
well  as  providing  an  independent  and  flexible 
framework  that  could  be  applied  to  different 
scenarios.

3 Proposed Approach

When approaching the algorithm design phase, we 
were  faced with two major  decisions:  firstly, we 
had to decide which kind of machine learning (ML) 
approach should be  used to gather  the  necessary 
information, secondly we needed to determine how 
to exploit the knowledge base gathered in the most 
appropriate and productive way. As it turned out, 
the  whole  work  ended  up  to  revolve  around  the 
intuition that  a simple tagger could lead to quite 
interesting  results,  if  only  we  could  scale  down 
from  sentence  level  to  word  level,  that  is  to 
produce  a  tag for  single  letters  instead of  whole 
words.  In other  words,  we wanted to exploit  the 
analogy  between  PoS  tagging  and  cognate 
prediction:  given  a  sequence  of  symbols  –  i.e. 
source language unigrams – and tags aligned with 
them – i.e. target language n-grams –, we aim to 
predict tags for more symbols. Thereby the context 
provided  by  the  neighbors  of  a symbol  and  the 
previous tags are used as evidence to decide its tag. 
After  an  extensive  evaluation  of  the  major  ML-
based  taggers  available,  we  decided  to  opt  for 
SVMTool, a generator of sequential taggers based 
on  Support  Vector  Machines  developed  by 
Gimenez  and  Marquez  (2004).  In  fact,  various 
experiments carried out on similar software showed 
that  SVMTool was the most  suitable  one for  the 
type of data being examined, mainly because of its 
flexible approach to our input file. Also, SVMTool 
allows to define context by providing an adjustable 
sliding window for the extraction of features. Once 
the model was trained, we went on to create the 
most  orthographically  probable  cognate  in  the 
target language. The following sections exemplify 
the  cognate  creation  algorithm,  the  learning  step 
and the exploitation of the information gathered.

3.1 Cognate Creation Algorithm

Figure 1 shows the cognate creation algorithm in 
detail.
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Input: C1, a list of English-German cognate pairs 
{L1,L2}; C2, a test file of cognates in L1

Output: AL, a list of artificially constructed 
cognates in the target language 

1 for c in C1 do:
2 determine the edit operations to arrive 

from L1 to L2
3 use the edit operations to produce a 

formatted training file for the SVM tagger 
4 end
5 Learn orthographic mappings between L1 

and L2 (L1 unigram = instance, L2 n-gram = 
category)

6 Align all words of the test file vertically in a 
letter-by-letter fashion (unigram = instance)

7 Tag the test file with the SVM tagger
8 Group the tagger output into words and 

produce a list of cognate pairs

Figure 1. The cognate creation algorithm. 

Determination of the Edit Operations

The algorithm takes as input two distinct cognate 
lists, one for training and one for testing purposes. 
It is important to note that the input languages need 
to share the same alphabet, since the algorithm is 
currently still  depending on  edit  distance.  Future 
developments  will  allow for  language portability, 
which is already matter of study. The first sub-step 
(Figure 1, Line 2) deals with the determination of 
the  edit  operations  and  its  association  with  the 
cognate  pair,  as  shown  in  Figure  2.  The  four 
options provided by edit distance, as described by 
Levenshtein  (1965),  are  Match,  Substitution, 
Insertion and Deletion.

toilet/toilette

t    |o    |i    |l    |e    |t    |   |

t    |o    |i    |l    |e    |t    |t  |e

MATCH|MATCH|MATCH|MATCH|MATCH|MATCH|INS|INS

tractor/traktor

t    |r    |a    |c    |t    |o    |r

t    |r    |a    |k    |t    |o    |r

MATCH|MATCH|MATCH|SUBST|MATCH|MATCH|MATCH

absolute/absolut

a    |b    |s    |o    |l    |u    |t    |e

a    |b    |s    |o    |l    |u    |t    |

MATCH|MATCH|MATCH|MATCH|MATCH|MATCH|MATCH|DEL

Figure 2. Edit operation association

Preparation of the Training File

This sub-step  (Figure 1, Line 3)  turned out to be 
the  most  challenging  task,  since  we  needed  to 

produce the input file that offered the best layout 
possible for the machine learning module. We first 
tried to insert several empty slots between letters in 
the source language file, so that we could cope with 
maximally  two  subsequent  insertions.  While  all 
words are in lower case, we identified the spaces 
with a capital X, which would have allowed us to 
subsequently discard it without running the risk to 
delete useful letters in the last step of the algorithm. 
The  choice  of  manipulating  the  source  language 
file was supported by the fact that we were aiming 
to limit  the  features  of  the  ML module  to  27  at 
most, that is the letters of the alphabet from “a” to 
“z”  plus  the  upper  case  “X”  meaning  blank. 
Nonetheless,  we  soon  realized  that  the  space 
feature outweighed all other features and biased the  
output towards shorter words.  Also, the input word 
was  so  interspersed  that  it  did  not  allow  the 
learning machine  to  recognize  recurrent  patterns. 
Further  empirical  activity  showed  that  far  better 
results could be achieved by sticking to the original 
letter sequence in the source word and allow for an 
indefinite number of feature to be learned. This was 
implemented by  grouping  letters  on  the  basis  of 
their edit operation relation to the source language. 
Figure  3  exemplifies  a  typical  situation  where 
insertions and deletions are catered for.

START START START START

a a m m

b b a a

i i c k

o o r ro

g g o e

e e e e

n n c k

e e o o

t t n n

i i o o

c X m m

a X i is

l s c ch

l c . END

y h

. END

Figure 3. Layout of the training entries 
macroeconomic/makrooekonomisch and 
abiogenetically/abiogenetisch, showing insertions 
and deletions

As shown in Figure 3,  German diacritics have 
been substituted by their extended version – i.e. “ö” 
as  been  rendered  as  “oe”:  this  was  due  to  the 
inability  of  SVMTool  to  cope  with  diacritics. 
Figure 3 also shows how insertions and deletions 
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were  treated.  This  design  choice  caused  a  non-
foreseeable number of features to be learned by the 
ML module. While apparently a negative issue that  
could cause data to be too sparse to be relevant, we 
trusted our intuition that the feature growing graph 
would just flat out after an initial spike, that is the 
number  of  insertion  edits  would  not  produce  an 
explosion of source/target n-gram equivalents, but 
only  a  short  expansion  to  the  original  list  of 
mapping pairings.  This proved to be correct by the 
evaluation phase described below.

Learning Mappings Across Languages

Once the preliminary steps had been taken care of, 
the training file was passed on to SVMTlearn, the 
learning  module  of  SVMTool. At  this  point  the 
focus switches over to the tool itself, which learns 
regular  patterns  using  Support  Vector Machines 
and then uses the information gathered to tag any 
possible list of words  (Figure 1, Line 5). The tool 
chooses automatically the best scoring tag, but – as 
a matter of  fact  – it  calculates up to 10 possible 
alternatives  for  each  letter  and  ranks  them  by 
probability scores: in the current paper the reported 
results were based on the best scoring “tag”, but the 
algorithm  can  be  easily  modified  in  order  to 
accommodate the outcome of the combination of 
all 10 scores. As it will be shown later in Section 4,  
this is potentially of great interest if we intend to 
work in a cognate creation scenario.

As far the last three steps of the algorithm are 
concerned, they are closely related to the practical 
implementation  of  our  methodology, hence  they 
will be described extensively in Section 4.

4 Evaluation

In order to evaluate the cognate creation algorithm, 
we decided to set up a specific evaluation scenario 
where possible cognates needed to be identified but  
no word list  to choose from existed in the target 
language.  Specifically,  we  were  interested  in 
producing the correct word in the target language, 
starting  from a  list  of  possible  cognates  in  the 
source language. An alternative evaluation setting 
could  have  been  based  on  a  scenario  which 
included  a  scrambling and  matching routine,  but 
after the good results showed by Mulloni and Pekar 
(2006), we thought that yet a different environment 
would  have  offered  more  insight  into  the  field. 
Also, we wanted to evaluate the actual strength of 
our  approach,  in  order  to  decide  if  future  work 
should be heading this way.

4.1 Data

The method was evaluated on an English-German 
cognate  list  including  2105  entries.  Since  we 
wanted to keep as much data available for testing 
as  possible,  we  decided  to  split  the  list  in  80% 
training  (1683  entries)  and  20%  (422  entries) 
testing.

4.2 Task Description

The list used for training/testing purposes included 
cognates  only.  Therefore,  the  optimal  outcome 
would have been a word in the target language that 
perfectly matched the cognate of the corresponding 
source language word in the original file. The task 
was therefore a quite straightforward one:  train the 
SVM tagger  using  the  training  data  file  and  – 
starting from a list of words in the source language 
(English) – produce a word in the target language 
(German) that  looked as  close as possible  to the 
original  cognate  word.  Also,  we  counted  all 
occurrences  where  no  changes  across  languages 
took place – i.e. the target word was spelled in the 
very same way as the source word – and we set this  
number  as  a  baseline  for  the  assessment  of  our 
results.

Preparation of the Training and Test Files

The  training  file  was  formatted  as  described  in 
Section 3.1. In addition to that, the training and test 
files  featured  a  START/START delimiter  at  the 
beginning of the word and ./END delimiter at the 
end of it (Figure 1, Line 6). 

Learning Parameters

Once  formatting was  done,  the  training file  was 
passed  on  to  SVMTlearn.  Notably,  SVMTool 
comes  with  a  standard  configuration:  for  the 
purpose of this exercise we decided to keep most of 
the standard default parameters, while tuning only 
the settings related to the definition of the feature 
set. Also, because of the choices made during the 
design of the training file – i.e. to stick to a strict 
linear layout in the L1 word – we felt that a rather 
small context window of 5 with the core position 
set to 2 – that is, considering a context of 2 features  
before  and  2  features  after  the  feature  currently 
examined – could offer a good trade-off between 
accuracy and acceptable working times. Altogether 
185  features  were  learnt,  which  confirmed  the 
intuition  mentioned  in  Section  3.1.  Furthermore, 
when considering the feature definition, we decided 
to stick to unigrams, bigrams and trigrams, even if 
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up to five-grams were obviously possible. Notably, 
the configuration file pictured below shows how a 
Model 0 and a global left-right-left tagging option 
were  applied.  Both  choices  were  made  after  an 
extensive  empirical  observation  of  several 
model/direction combinations.  This  file  is  highly 
configurable  and  offers  a  vast  range  of  possible 
combinations. Future activities will concentrate to a 
greater  extent  on  the  experimentations  of  other 
possible configuration scenarios in order to find the  
tuning that  performs best.  Gimenez and Marquez 
(2004)  offer a  detailed description of  the  models 
and  all  available  options,  as  well  as  a  general 
introduction to the use of SVMtool, while Figure 4 
shows the feature set used to learn mappings from a 
list of English/German cognate pairs.

#ambiguous-right [default]

A0k = w(-2) w(-1) w(0) w(1) w(2) w(-2,-1) 

w(-1,0) w(0,1) w(1,2) w(-1,1) w(-2,2) 

w(-2,1) w(-1,2) w(-2,0) w(0,2) w(-2,-1,0) 

w(-2,-1,1) w(-2,-1,2) w(-2,0,1) w(-2,0,2) 

w(-1,0,1) w(-1,0,2) w(-1,1,2) w(0,1,2) p(-2) 

p(-1) p(0) p(1) p(2) p(-2,-1) p(-1,0) p(0,1) 

p(1,2) p(-1,1) p(-2,2) p(-2,1) p(-1,2) 

p(-2,0) p(0,2) p(-2,-1,0) p(-2,-1,1) 

p(-2,-1,2) p(-2,0,1) p(-2,0,2) p(-1,0,1) 

p(-1,0,2) p(-1,1,2) p(0,1,2) k(0) k(1) k(2) 

m(0) m(1) m(2)

Figure 4. Feature set for known words (A0k). The 
same feature set is used for unknown words (A0u), 
as well.

Tagging of the Test File and Cognate Generation

Following the learning step, a tagging routine was 
invoked,  which  produced the  best  scoring output 
for every single line – i.e. letter or word boundary – 
of the test file, which now looked very similar to 
the file we used for training (Figure 1, Line 7). At 
this  stage,  we  grouped  test  instances  together  to 
form words and associated each  L1 word with its 
newly generated counterpart in L2 (Figure 1, Line 
8).

4.3 Results

The generated words were then compared with the 
words included in the original cognate file.

When evaluating the results we decided to split 
the data into three classes, rather than two: “Yes” 
(correct), “No” (incorrect) and “Very Close”. The 
reason why we chose to add an extra class was that 
when  analysing  the  data  we  noticed  that  many 
important  mappings  were  correctly  detected,  but 
the  word  was  still  not  perfect  because  of  minor 

orthographic discrepancies that the tagging module 
did get right in a different entry. In such cases we 
felt that more training data would have produced a 
stronger  association  score  that  could  have 
eventually led to a correct output.  Decisions were 
made  by  an  annotator  with  a  well-grounded 
knowledge of Support  Vector Machines and their 
behaviour,  which  turned  out  to  be  quite  useful 
when deciding which output should be classified as 
“Very Close”. For fairness reasons, this extra class 
was added to the “No” class when delivering the 
final results.  Examples of  the “Very Close” class 
are reported in Table 1.

Original EN Original DE Output DE

majestically majestatetisch majestisch

setting setzend settend

machineries maschinerien machinerien

naked nakkt nackt

southwest suedwestlich suedwest

Table 1. Examples of the class “Very Close”.

In Figure 5 we show the  accuracy of the SVM-
based  cognate  generation  algorithm  versus  the 
baseline, adding the “Very Close” class to both the 
“Yes” class (correct) and the “No” class (incorrect).

Figure 5. Accuracy of the SVM-based algorithm 
vs. the baseline (blue line).

The test file included a total of 422 entries, with 
85 orthographically identical entries in  L1 and  L2 
(baseline). The SVM-based algorithm managed to 
produce 128 correct cognates, making errors in 264  
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cases. The “Very Close” class was assigned to 30 
entries.  Figure  5  shows that  30.33% of  the  total 
entries were correctly identified, while an increase 
of 50.58% over the baseline was achieved.

5 Conclusions and Future Work

In  this  paper  we  proposed  an  algorithm for  the 
automatic  generation  of  cognates  from  two 
different languages sharing the same alphabet. An 
increase of 50.58% over the baseline and a 30.33% 
of overall accuracy were reported. Even if accuracy 
is  rather  poor, if  we consider that  no knowledge 
repository other  than an initial list of cognates was 
available,  we  feel  that  the  results  are  still  quite 
encouraging.

As  far  as  the  learning  module  is  concerned, 
future ameliorations will focus on the fine tuning of 
the features used by the classifier as well as on the 
choice of the model, while main research activities 
are  still  concerned  with  the  development  of  a 
methodology allowing for language portability: as 
a  matter  of  fact,  n-gram  co-occurrencies  are 
currently  being  investigated  as  a  possible 
alternative to Edit Distance.
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