
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 840–847,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Chinese Segmentation with a Word-Based Perceptron Algorithm

Yue Zhang and Stephen Clark
Oxford University Computing Laboratory

Wolfson Building, Parks Road
Oxford OX1 3QD, UK

{yue.zhang,stephen.clark}@comlab.ox.ac.uk

Abstract

Standard approaches to Chinese word seg-
mentation treat the problem as a tagging
task, assigning labels to the characters in
the sequence indicating whether the char-
acter marks a word boundary. Discrimina-
tively trained models based on local char-
acter features are used to make the tagging
decisions, with Viterbi decoding finding the
highest scoring segmentation. In this paper
we propose an alternative, word-based seg-
mentor, which uses features based on com-
plete words and word sequences. The gener-
alized perceptron algorithm is used for dis-
criminative training, and we use a beam-
search decoder. Closed tests on the first and
secondSIGHAN bakeoffs show that our sys-
tem is competitive with the best in the litera-
ture, achieving the highest reported F-scores
for a number of corpora.

1 Introduction

Words are the basic units to process for mostNLP

tasks. The problem of Chinese word segmentation
(CWS) is to find these basic units for a given sen-
tence, which is written as a continuous sequence of
characters. It is the initial step for most Chinese pro-
cessing applications.

Chinese character sequences are ambiguous, of-
ten requiring knowledge from a variety of sources
for disambiguation. Out-of-vocabulary (OOV) words
are a major source of ambiguity. For example, a
difficult case occurs when anOOV word consists

of characters which have themselves been seen as
words; here an automatic segmentor may split the
OOV word into individual single-character words.
Typical examples of unseen words include Chinese
names, translated foreign names and idioms.

The segmentation of known words can also be
ambiguous. For example, “ÙÌb” should be “Ù
Ì (here)b (flour)” in the sentence “ÙÌb�s�
5” (flour and rice are expensive here) or “Ù (here)
Ìb (inside)” in the sentence “ÙÌb�·” (it’s
cold inside here). The ambiguity can be resolved
with information about the neighboring words. In
comparison, for the sentences “=�����”,
possible segmentations include “=� (the discus-
sion)� (will) � (very)�� (be successful)” and
“=�� (the discussion meeting)� (very)�� (be
successful)”. The ambiguity can only be resolved
with contextual information outside the sentence.
Human readers often use semantics, contextual in-
formation about the document and world knowledge
to resolve segmentation ambiguities.

There is no fixed standard for Chinese word seg-
mentation. Experiments have shown that there is
only about75% agreement among native speakers
regarding the correct word segmentation (Sproat et
al., 1996). Also, specificNLP tasks may require dif-
ferent segmentation criteria. For example, “�¬ö
L” could be treated as a single word (Bank of Bei-
jing) for machine translation, while it is more natu-
rally segmented into “�¬ (Beijing)öL (bank)”
for tasks such as text-to-speech synthesis. There-
fore, supervised learning with specifically defined
training data has become the dominant approach.

Following Xue (2003), the standard approach to
840



supervised learning forCWS is to treat it as a tagging
task. Tags are assigned to each character in the sen-
tence, indicating whether the character is a single-
character word or the start, middle or end of a multi-
character word. The features are usually confined to
a five-character window with the current character
in the middle. In this way, dynamic programming
algorithms such as the Viterbi algorithm can be used
for decoding.

Several discriminatively trained models have re-
cently been applied to theCWS problem. Exam-
ples include Xue (2003), Peng et al. (2004) and Shi
and Wang (2007); these use maximum entropy (ME)
and conditional random field (CRF) models (Ratna-
parkhi, 1998; Lafferty et al., 2001). An advantage
of these models is their flexibility in allowing knowl-
edge from various sources to be encoded as features.

Contextual information plays an important role in
word segmentation decisions; especially useful is in-
formation about surrounding words. Consider the
sentence “-ý���”, which can be from “v-
(among which)ý� (foreign)�� (companies)”,
or “-ý (in China)�� (foreign companies)�
¡ (business)”. Note that the five-character window
surrounding “�” is the same in both cases, making
the tagging decision for that character difficult given
the local window. However, the correct decision can
be made by comparison of the two three-word win-
dows containing this character.

In order to explore the potential of word-based
models, we adapt the perceptron discriminative
learning algorithm to theCWS problem. Collins
(2002) proposed the perceptron as an alternative to
the CRF method forHMM -style taggers. However,
our model does not map the segmentation problem
to a tag sequence learning problem, but defines fea-
tures on segmented sentences directly. Hence we
use a beam-search decoder during training and test-
ing; our idea is similar to that of Collins and Roark
(2004) who used a beam-search decoder as part of
a perceptron parsing model. Our work can also be
seen as part of the recent move towardssearch-based
learning methods which do not rely on dynamic pro-
gramming and are thus able to exploit larger parts of
the context for making decisions (Daume III, 2006).

We study several factors that influence the per-
formance of the perceptron word segmentor, includ-
ing the averaged perceptron method, the size of the

beam and the importance of word-based features.
We compare the accuracy of our final system to the
state-of-the-artCWS systems in the literature using
the first and secondSIGHAN bakeoff data. Our sys-
tem is competitive with the best systems, obtaining
the highest reported F-scores on a number of the
bakeoff corpora. These results demonstrate the im-
portance of word-based features forCWS. Further-
more, our approach provides an example of the po-
tential of search-based discriminative training meth-
ods forNLP tasks.

2 The Perceptron Training Algorithm

We formulate theCWSproblem as finding a mapping
from an input sentencex ∈ X to an output sentence
y ∈ Y , whereX is the set of possible raw sentences
and Y is the set of possible segmented sentences.
Given an input sentencex, the correct output seg-
mentationF (x) satisfies:

F (x) = arg max
y∈GEN(x)

Score(y)

where GEN(x) denotes the set of possible segmen-
tations for an input sentencex, consistent with nota-
tion from Collins (2002).

The score for a segmented sentence is computed
by first mapping it into a set of features. A feature
is an indicator of the occurrence of a certain pattern
in a segmented sentence. For example, it can be the
occurrence of “Ìb” as a single word, or the occur-
rence of “Ì” separated from “b” in two adjacent
words. By defining features, a segmented sentence
is mapped into a global feature vector, in which each
dimension represents the count of a particular fea-
ture in the sentence. The term “global” feature vec-
tor is used by Collins (2002) to distinguish between
feature count vectors for whole sequences and the
“local” feature vectors inME tagging models, which
are Boolean valued vectors containing the indicator
features for one element in the sequence.

Denote the global feature vector for segmented
sentencey with Φ(y) ∈ Rd, whered is the total
number of features in the model; then Score(y) is
computed by the dot product of vectorΦ(y) and a
parameter vectorα ∈ Rd, whereαi is the weight for
theith feature:

Score(y) = Φ(y) · α

841



Inputs: training examples(xi, yi)
Initialization : setα = 0
Algorithm :

for t = 1..T , i = 1..N
calculatezi = arg maxy∈GEN(xi) Φ(y) · α
if zi 6= yi

α = α + Φ(yi)− Φ(zi)
Outputs: α

Figure 1: the perceptron learning algorithm, adapted
from Collins (2002)

The perceptron training algorithm is used to deter-
mine the weight valuesα.

The training algorithm initializes the parameter
vector as all zeros, and updates the vector by decod-
ing the training examples. Each training sentence
is turned into the raw input form, and then decoded
with the current parameter vector. The output seg-
mented sentence is compared with the original train-
ing example. If the output is incorrect, the parameter
vector is updated by adding the global feature vector
of the training example and subtracting the global
feature vector of the decoder output. The algorithm
can perform multiple passes over the same training
sentences. Figure 1 gives the algorithm, whereN is
the number of training sentences andT is the num-
ber of passes over the data.

Note that the algorithm from Collins (2002) was
designed for discriminatively training anHMM -style
tagger. Features are extracted from an input se-
quencex and its corresponding tag sequencey:

Score(x, y) = Φ(x, y) · α

Our algorithm is not based on anHMM . For a given
input sequencex, even the length of different candi-
datesy (the number of words) is not fixed. Because
the output sequencey (the segmented sentence) con-
tains all the information from the input sequencex
(the raw sentence), the global feature vectorΦ(x, y)
is replaced withΦ(y), which is extracted from the
candidate segmented sentences directly.

Despite the above differences, since the theorems
of convergence and their proof (Collins, 2002) are
only dependent on the feature vectors, and not on
the source of the feature definitions, the perceptron
algorithm is applicable to the training of ourCWS

model.

2.1 The averaged perceptron

The averaged perceptron algorithm (Collins, 2002)
was proposed as a way of reducing overfitting on
the training data. It was motivated by the voted-
perceptron algorithm (Freund and Schapire, 1999)
and has been shown to give improved accuracy over
the non-averaged perceptron on a number of tasks.
Let N be the number of training sentences,T the
number of training iterations, andαn,t the parame-
ter vector immediately after thenth sentence in the
tth iteration. The averaged parameter vectorγ ∈ Rd

is defined as:

γ =
1

NT

∑

n=1..N,t=1..T

αn,t

To compute the averaged parametersγ, the train-
ing algorithm in Figure 1 can be modified by keep-
ing a total parameter vectorσn,t =

∑
αn,t, which is

updated usingα after each training example. After
the final iteration,γ is computed asσn,t/NT . In the
averaged perceptron algorithm,γ is used instead of
α as the final parameter vector.

With a large number of features, calculating the
total parameter vectorσn,t after each training exam-
ple is expensive. Since the number of changed di-
mensions in the parameter vectorα after each train-
ing example is a small proportion of the total vec-
tor, we use a lazy update optimization for the train-
ing process.1 Define an update vectorτ to record
the number of the training sentencen and iteration
t when each dimension of the averaged parameter
vector was last updated. Then after each training
sentence is processed, only update the dimensions
of the total parameter vector corresponding to the
features in the sentence. (Except for the last exam-
ple in the last iteration, when each dimension ofτ
is updated, no matter whether the decoder output is
correct or not).

Denote thesth dimension in each vector before
processing thenth example in thetth iteration as
αn−1,t

s , σn−1,t
s and τn−1,t

s = (nτ,s, tτ,s). Suppose
that the decoder outputzn,t is different from the
training exampleyn. Now αn,t

s , σn,t
s and τn,t

s can

1Daume III (2006) describes a similar algorithm.

842



be updated in the following way:

σn,t
s = σn−1,t

s + αn−1,t
s × (tN+n−tτ,sN− nτ,s)

αn,t
s = αn−1,t

s + Φ(yn)− Φ(zn,t)

σn,t
s = σn,t

s + Φ(yn)− Φ(zn,t)

τn,t
s = (n, t)

We found that this lazy update method was signif-
icantly faster than the naive method.

3 The Beam-Search Decoder

The decoder reads characters from the input sen-
tence one at a time, and generates candidate seg-
mentations incrementally. At each stage, the next in-
coming character is combined with an existing can-
didate in two different ways to generate new candi-
dates: it is either appended to the last word in the
candidate, or taken as the start of a new word. This
method guarantees exhaustive generation of possible
segmentations for any input sentence.

Two agendas are used: the source agenda and the
target agenda. Initially the source agenda contains
an empty sentence and the target agenda is empty.
At each processing stage, the decoder reads in a
character from the input sentence, combines it with
each candidate in the source agenda and puts the
generated candidates onto the target agenda. After
each character is processed, the items in the target
agenda are copied to the source agenda, and then the
target agenda is cleaned, so that the newly generated
candidates can be combined with the next incom-
ing character to generate new candidates. After the
last character is processed, the decoder returns the
candidate with the best score in the source agenda.
Figure 2 gives the decoding algorithm.

For a sentence with lengthl, there are2l−1 differ-
ent possible segmentations. To guarantee reasonable
running speed, the size of the target agenda is lim-
ited, keeping only theB best candidates.

4 Feature templates

The feature templates are shown in Table 1. Features
1 and 2 contain only word information, 3 to 5 con-
tain character and length information, 6 and 7 con-
tain only character information, 8 to 12 contain word
and character information, while 13 and 14 contain

Input : raw sentencesent – a list of characters
Initialization : set agendassrc = [[]], tgt = []
Variables: candidate sentenceitem – a list of words
Algorithm :

for index = 0..sent.length−1:
var char = sent[index]
foreachitem in src:

// append as a new word to the candidate
var item1 = item
item1.append(char.toWord())
tgt.insert(item1)
// append the character to the last word
if item.length> 1:

var item2 = item
item2[item2.length−1].append(char)
tgt.insert(item2)

src = tgt
tgt = []

Outputs: src.bestitem

Figure 2: The decoding algorithm

word and length information. Any segmented sen-
tence is mapped to a global feature vector according
to these templates. There are356, 337 features with
non-zero values after6 training iterations using the
development data.

For this particular feature set, the longest range
features are word bigrams. Therefore, among partial
candidates ending with the same bigram, the best
one will also be in the best final candidate. The
decoder can be optimized accordingly: when an in-
coming character is combined with candidate items
as a new word, only the best candidate is kept among
those having the same last word.

5 Comparison with Previous Work

Among the character-taggingCWS models, Li et al.
(2005) uses an uneven margin alteration of the tradi-
tional perceptron classifier (Li et al., 2002). Each
character is classified independently, using infor-
mation in the neighboring five-character window.
Liang (2005) uses the discriminative perceptron al-
gorithm (Collins, 2002) to score whole character tag
sequences, finding the best candidate by the global
score. It can be seen as an alternative to theME and
CRF models (Xue, 2003; Peng et al., 2004), which

843



1 wordw
2 word bigramw1w2

3 single-character wordw
4 a word starting with characterc and having

lengthl
5 a word ending with characterc and having

lengthl
6 space-separated charactersc1 andc2

7 character bigramc1c2 in any word
8 the first and last charactersc1 andc2 of any

word
9 wordw immediately before characterc
10 characterc immediately before wordw
11 the starting charactersc1 andc2 of two con-

secutive words
12 the ending charactersc1 andc2 of two con-

secutive words
13 a word of lengthl and the previous wordw
14 a word of lengthl and the next wordw

Table 1: feature templates

do not involve word information. Wang et al. (2006)
incorporates an N-gram language model inME tag-
ging, making use of word information to improve
the character tagging model. The key difference be-
tween our model and the above models is the word-
based nature of our system.

One existing method that is based on sub-word in-
formation, Zhang et al. (2006), combines aCRF and
a rule-based model. Unlike the character-tagging
models, theCRF submodel assigns tags to sub-
words, which include single-character words and
the most frequent multiple-character words from the
training corpus. Thus it can be seen as a step towards
a word-based model. However, sub-words do not
necessarily contain full word information. More-
over, sub-word extraction is performed separately
from feature extraction. Another difference from
our model is the rule-based submodel, which uses a
dictionary-based forward maximum match method
described by Sproat et al. (1996).

6 Experiments

Two sets of experiments were conducted. The first,
used for development, was based on the part of Chi-
nese Treebank 4 that is not in Chinese Treebank

3 (sinceCTB3 was used as part of the first bake-
off). This corpus contains240K characters (150K
words and4798 sentences).80% of the sentences
(3813) were randomly chosen for training and the
rest (985 sentences) were used as development test-
ing data. The accuracies and learning curves for the
non-averaged and averaged perceptron were com-
pared. The influence of particular features and the
agenda size were also studied.

The second set of experiments used training and
testing sets from the first and second international
Chinese word segmentation bakeoffs (Sproat and
Emerson, 2003; Emerson, 2005). The accuracies are
compared to other models in the literature.

F-measure is used as the accuracy measure. De-
fine precisionp as the percentage of words in the de-
coder output that are segmented correctly, and recall
r as the percentage of gold standard output words
that are correctly segmented by the decoder. The
(balanced) F-measure is2pr/(p + r).

CWS systems are evaluated by two types of tests.
The closed tests require that the system is trained
only with a designated training corpus. Any extra
knowledge is not allowed, including common sur-
names, Chinese and Arabic numbers, European let-
ters, lexicons, part-of-speech, semantics and so on.
Theopen tests do not impose such restrictions.

Open tests measure a model’s capability to utilize
extra information and domain knowledge, which can
lead to improved performance, but since this extra
information is not standardized, direct comparison
between open test results is less informative.

In this paper, we focus only on the closed test.
However, the perceptron model allows a wide range
of features, and so future work will consider how to
integrate open resources into our system.

6.1 Learning curve

In this experiment, the agenda size was set to16, for
both training and testing. Table 2 shows the preci-
sion, recall and F-measure for the development set
after1 to 10 training iterations, as well as the num-
ber of mistakes made in each iteration. The corre-
sponding learning curves for both the non-averaged
and averaged perceptron are given in Figure 3.

The table shows that the number of mistakes made
in each iteration decreases, reflecting the conver-
gence of the learning algorithm. The averaged per-

844



Iteration 1 2 3 4 5 6 7 8 9 10
P (non-avg) 89.0 91.6 92.0 92.3 92.5 92.5 92.5 92.7 92.6 92.6
R (non-avg) 88.3 91.4 92.2 92.6 92.7 92.8 93.0 93.0 93.1 93.2
F (non-avg) 88.6 91.5 92.1 92.5 92.6 92.6 92.7 92.8 92.8 92.9
P (avg) 91.7 92.8 93.1 92.2 93.1 93.2 93.2 93.2 93.2 93.2
R (avg) 91.6 92.9 93.3 93.4 93.4 93.5 93.5 93.5 93.6 93.6
F (avg) 91.6 92.9 93.2 93.3 93.3 93.4 93.3 93.3 93.4 93.4
#Wrong sentences 3401 1652 945 621 463 288 217 176 151 139

Table 2: accuracy using non-averaged and averaged perceptron.
P - precision (%), R - recall (%), F - F-measure.

B 2 4 8 16 32 64 128 256 512 1024
Tr 660 610 683 830 1111 1645 2545 4922 9104 15598
Seg 18.65 18.18 28.85 26.52 36.58 56.45 95.45 173.38 325.99 559.87
F 86.90 92.95 93.33 93.38 93.25 93.29 93.19 93.07 93.24 93.34

Table 3: the influence of agenda size.
B - agenda size, Tr - training time (seconds), Seg - testing time (seconds), F -F-measure.

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

1 2 3 4 5 6 7 8 9 10

number of training iterations

F
-m

ea
su

re

non-averaged

averaged

Figure 3: learning curves of the averaged and non-
averaged perceptron algorithms

ceptron algorithm improves the segmentation ac-
curacy at each iteration, compared with the non-
averaged perceptron. The learning curve was used
to fix the number of training iterations at6 for the
remaining experiments.

6.2 The influence of agenda size

Reducing the agenda size increases the decoding
speed, but it could cause loss of accuracy by elimi-
nating potentially good candidates. The agenda size

also affects the training time, and resulting model,
since the perceptron training algorithm uses the de-
coder output to adjust the model parameters. Table 3
shows the accuracies with ten different agenda sizes,
each used for both training and testing.

Accuracy does not increase beyondB = 16.
Moreover, the accuracy is quite competitive even
with B as low as 4. This reflects the fact that the best
segmentation is often within the current top few can-
didates in the agenda.2 Since the training and testing
time generally increases asN increases, the agenda
size is fixed to16 for the remaining experiments.

6.3 The influence of particular features

Our CWS model is highly dependent upon word in-
formation. Most of the features in Table 1 are related
to words. Table 4 shows the accuracy with various
features from the model removed.

Among the features, vocabulary words (feature 1)
and length prediction by characters (features 3 to 5)
showed strong influence on the accuracy, while word
bigrams (feature 2) and special characters in them
(features 11 and 12) showed comparatively weak in-
fluence.

2The optimization in Section 4, which has a pruning effect,
was applied to this experiment. Similar observations were made
in separate experiments without such optimization.

845



Features F Features F
All 93.38 w/o 1 92.88
w/o 2 93.36 w/o 3, 4, 5 92.72
w/o 6 93.13 w/o 7 93.13
w/o 8 93.14 w/o 9, 10 93.31
w/o 11, 12 93.38 w/o 13, 14 93.23

Table 4: the influence of features. (F: F-measure.
Feature numbers are from Table 1)

6.4 Closed test on theSIGHAN bakeoffs

Four training and testing corpora were used in the
first bakeoff (Sproat and Emerson, 2003), including
the Academia Sinica Corpus (AS), the Penn Chinese
Treebank Corpus (CTB), the Hong Kong City Uni-
versity Corpus (CU) and the Peking University Cor-
pus (PU). However, because the testing data from
the Penn Chinese Treebank Corpus is currently un-
available, we excluded this corpus. The corpora are
encoded in GB (PU, CTB) and BIG5 (AS, CU). In
order to test them consistently in our system, they
are all converted to UTF8 without loss of informa-
tion.

The results are shown in Table 5. We follow the
format from Peng et al. (2004). Each row repre-
sents aCWS model. The first eight rows represent
models from Sproat and Emerson (2003) that partic-
ipated in at least one closed test from the table, row
“Peng” represents theCRF model from Peng et al.
(2004), and the last row represents our model. The
first three columns represent tests with the AS, CU
and PU corpora, respectively. The best score in each
column is shown in bold. The last two columns rep-
resent the average accuracy of each model over the
tests it participated in (SAV), and our average over
the same tests (OAV), respectively. For each row the
best average is shown in bold.

We achieved the best accuracy in two of the three
corpora, and better overall accuracy than the major-
ity of the other models. The average score of S10
is 0.7% higher than our model, but S10 only partici-
pated in the HK test.

Four training and testing corpora were used in
the second bakeoff (Emerson, 2005), including the
Academia Sinica corpus (AS), the Hong Kong City
University Corpus (CU), the Peking University Cor-
pus (PK) and the Microsoft Research Corpus (MR).

AS CU PU SAV OAV
S01 93.8 90.1 95.1 93.0 95.0
S04 93.9 93.9 94.0
S05 94.2 89.4 91.8 95.3
S06 94.5 92.4 92.4 93.1 95.0
S08 90.4 93.6 92.0 94.3
S09 96.1 94.6 95.4 95.3
S10 94.7 94.7 94.0
S12 95.9 91.6 93.8 95.6
Peng 95.6 92.8 94.1 94.2 95.0

96.5 94.6 94.0

Table 5: the accuracies over the firstSIGHAN bake-
off data.

AS CU PK MR SAV OAV
S14 94.7 94.3 95.0 96.4 95.1 95.4
S15b 95.2 94.1 94.1 95.8 94.8 95.4
S27 94.5 94.0 95.0 96.0 94.9 95.4
Zh-a 94.7 94.6 94.5 96.4 95.1 95.4
Zh-b 95.1 95.1 95.1 97.1 95.6 95.4

94.6 95.1 94.5 97.2

Table 6: the accuracies over the secondSIGHAN

bakeoff data.

Different encodings were provided, and the UTF8
data for all four corpora were used in this experi-
ment.

Following the format of Table 5, the results for
this bakeoff are shown in Table 6. We chose the
three models that achieved at least one best score
in the closed tests from Emerson (2005), as well as
the sub-word-based model of Zhang et al. (2006) for
comparison. Row “Zh-a” and “Zh-b” represent the
pure sub-wordCRF model and the confidence-based
combination of theCRF and rule-based models, re-
spectively.

Again, our model achieved better overall accu-
racy than the majority of the other models. One sys-
tem to achieve comparable accuracy with our sys-
tem is Zh-b, which improves upon the sub-wordCRF

model (Zh-a) by combining it with an independent
dictionary-based submodel and improving the accu-
racy of known words. In comparison, our system is
based on a single perceptron model.

In summary, closed tests for both the first and the
second bakeoff showed competitive results for our

846



system compared with the best results in the litera-
ture. Our word-based system achieved the best F-
measures over the AS (96.5%) and CU (94.6%) cor-
pora in the first bakeoff, and the CU (95.1%) and
MR (97.2%) corpora in the second bakeoff.

7 Conclusions and Future Work

We proposed a word-basedCWS model using the
discriminative perceptron learning algorithm. This
model is an alternative to the existing character-
based tagging models, and allows word information
to be used as features. One attractive feature of the
perceptron training algorithm is its simplicity, con-
sisting of only a decoder and a trivial update process.
We use a beam-search decoder, which places our
work in the context of recent proposals for search-
based discriminative learning algorithms. Closed
tests using the first and secondSIGHAN CWS bake-
off data demonstrated our system to be competitive
with the best in the literature.

Open features, such as knowledge of numbers and
European letters, and relationships from semantic
networks (Shi and Wang, 2007), have been reported
to improve accuracy. Therefore, given the flexibility
of the feature-based perceptron model, an obvious
next step is the study of open features in the seg-
mentor.

Also, we wish to explore the possibility of in-
corporatingPOS tagging and parsing features into
the discriminative model, leading to joint decod-
ing. The advantage is two-fold: higher level syn-
tactic information can be used in word segmenta-
tion, while joint decoding helps to prevent bottom-
up error propagation among the different processing
steps.

Acknowledgements

This work is supported by the ORS and Clarendon
Fund. We thank the anonymous reviewers for their
insightful comments.

References
Michael Collins and Brian Roark. 2004. Incremental parsing

with the perceptron algorithm. InProceedings of ACL’04,
pages 111–118, Barcelona, Spain, July.

Michael Collins. 2002. Discriminative training methods for
hidden markov models: Theory and experiments with per-

ceptron algorithms. InProceedings of EMNLP, pages 1–8,
Philadelphia, USA, July.

Hal Daume III. 2006.Practical Structured Learning for Natu-
ral Language Processing. Ph.D. thesis, USC.

Thomas Emerson. 2005. The second international Chinese
word segmentation bakeoff. InProceedings of The Fourth
SIGHAN Workshop, Jeju, Korea.

Y. Freund and R. Schapire. 1999. Large margin classification
using the perceptron algorithm. InMachine Learning, pages
277–296.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional
random fields: Probabilistic models for segmenting and la-
beling sequence data. InProceedings of the 18th ICML,
pages 282–289, Massachusetts, USA.

Y. Li, Zaragoza, R. H., Herbrich, J. Shawe-Taylor, and J. Kan-
dola. 2002. The perceptron algorithm with uneven margins.
In Proceedings of the 9th ICML, pages 379–386, Sydney,
Australia.

Yaoyong Li, Chuanjiang Miao, Kalina Bontcheva, and Hamish
Cunningham. 2005. Perceptron learning for Chinese word
segmentation. InProceedings of the Fourth SIGHAN Work-
shop, Jeju, Korea.

Percy Liang. 2005. Semi-supervised learning for natural lan-
guage. Master’s thesis, MIT.

F. Peng, F. Feng, , and A. McCallum. 2004. Chinese segmenta-
tion and new word detection using conditional random fields.
In Proceedings of COLING, Geneva, Switzerland.

Adwait Ratnaparkhi. 1998.Maximum Entropy Models for Nat-
ural Language Ambiguity Resolution. Ph.D. thesis, UPenn.

Yanxin Shi and Mengqiu Wang. 2007. A dual-layer CRF
based joint decoding method for cascade segmentation and
labelling tasks. InProceedings of IJCAI, Hyderabad, India.

Richard Sproat and Thomas Emerson. 2003. The first interna-
tional Chinese word segmentation bakeoff. InProceedings
of The Second SIGHAN Workshop, pages 282–289, Sapporo,
Japan, July.

R. Sproat, C. Shih, W. Gail, and N. Chang. 1996. A stochas-
tic finite-state word-segmentation algorithm for Chinese. In
Computational Linguistics, volume 22(3), pages 377–404.

Xinhao Wang, Xiaojun Lin, Dianhai Yu, Hao Tian, and Xihong
Wu. 2006. Chinese word segmentation with maximum en-
tropy and n-gram language model. InProceedings of the
Fifth SIGHAN Workshop, pages 138–141, Sydney, Australia,
July.

N. Xue. 2003. Chinese word segmentation as character tag-
ging. In International Journal of Computational Linguistics
and Chinese Language Processing, volume 8(1).

Ruiqiang Zhang, Genichiro Kikui, and Eiichiro Sumita. 2006.
Subword-based tagging by conditional random fields for
Chinese word segmentation. InProceedings of the Human
Language Technology Conference of the NAACL, Compan-
ion, volume Short Papers, pages 193–196, New York City,
USA, June.

847


