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Abstract

Standard approaches to Chinese word seg-
mentation treat the problem as a tagging
task, assigning labels to the characters in
the sequence indicating whether the char-
acter marks a word boundary. Discrimina-
tively trained models based on local char-
acter features are used to make the tagging
decisions, with Viterbi decoding finding the
highest scoring segmentation. In this paper
we propose an alternative, word-based seg-
mentor, which uses features based on com-
plete words and word sequences. The gener-
alized perceptron algorithm is used for dis-
criminative training, and we use a beam-
search decoder. Closed tests on the first and
secondsiGHAN bakeoffs show that our sys-
tem is competitive with the best in the litera-
ture, achieving the highest reported F-scores
for a number of corpora.

Introduction

Words are the basic units to process for mese
tasks. The problem of Chinese word segmentatioiggarding the correct word segmentation (Sproat et
(cws) is to find these basic units for a given senal., 1996). Also, specifisiLp tasks may require dif-
tence, which is written as a continuous sequence &rent segmentation criteria. For examplaf; 7
characters. Itis the initial step for most Chinese profI” could be treated as a single word (Bank of Bei-
cessing applications.

of characters which have themselves been seen as
words; here an automatic segmentor may split the
oov word into individual single-character words.
Typical examples of unseen words include Chinese
names, translated foreign names and idioms.

The segmentation of known words can also be
ambiguous. For examplejX H.[f” should be X
HL (here)fii (flour)” in the sentencei% HL I FlIK AR
51" (flour and rice are expensive here) o&“(here)
LT (inside)” in the sentenceiX H [ 1R 4" (it's
cold inside here). The ambiguity can be resolved
with information about the neighboring words. In
comparison, for the sentence®: % £ 118 1 Ih”,
possible segmentations includg:*i% (the discus-
sion) 2> (will) 1R (very) 3 (be successful)” and
“Yh k£ (the discussion meeting} (very) i3 (be
successful)”. The ambiguity can only be resolved
with contextual information outside the sentence.
Human readers often use semantics, contextual in-
formation about the document and world knowledge
to resolve segmentation ambiguities.

There is no fixed standard for Chinese word seg-
mentation. Experiments have shown that there is
only about75% agreement among native speakers

jing) for machine translation, while it is more natu-

Chinese character sequences are ambiguous, Bily segmented intot 5t (Beijing) #417 (bank)”

ten requiring knowledge from a variety of sourcedor tasks such as text-to-speech synthesis. There-
for disambiguation. Out-of-vocabularg Ov) words e, _
are a major source of ambiguity. For example, #aining data has become the dominant approach.

difficult case occurs when anov word consists
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fore, supervised learning with specifically defined

Following Xue (2003), the standard approach to
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supervised learning farwsis to treat it as a tagging beam and the importance of word-based features.

task. Tags are assigned to each character in the s&e compare the accuracy of our final system to the

tence, indicating whether the character is a singlestate-of-the-art ws systems in the literature using

character word or the start, middle or end of a multithe first and secondiGHAN bakeoff data. Our sys-

character word. The features are usually confined tem is competitive with the best systems, obtaining

a five-character window with the current charactethe highest reported F-scores on a number of the

in the middle. In this way, dynamic programmingbakeoff corpora. These results demonstrate the im-

algorithms such as the Viterbi algorithm can be useportance of word-based features fows. Further-

for decoding. more, our approach provides an example of the po-
Several discriminatively trained models have retential of search-based discriminative training meth-

cently been applied to thews problem. Exam- ods fornLP tasks.

ples include Xue (2003), Peng et al. (2004) and Shi o ]

and Wang (2007); these use maximum entropg)( 2 | he Perceptron Training Algorithm

parkhi, 1998; Lafferty et al., 2001). An advantag&rom an input sentence € X to an output sentence
edge from various sources to be encoded as featurgs,qy is the set of possible segmented sentences.

word segmentation decisions; especially useful is inpentations () satisfies:

formation about surrounding words. Consider the

sentence "1 [E 4} i\, which can be from 4L 1 F(x) = arg max Scorgy)
(among which)iE 4} (foreign) 4\l (companies)”, y€GEN()

2{ “rH 1 (in (Ehina) b4 (foreign companies)l \yhere GENz) denotes the set of possible segmen-
7 (business)”. Note that the five-character windoWyinns for an input sentenee consistent with nota-
surrounding %+ is the same in both cases, makingon from Collins (2002).

the tagging decision for that character difficult given e score for a segmented sentence is computed

the local window. quever, the correct decision CaRy first mapping it into a set of features. A feature
be made by comparison of the two three-word wing o, indicator of the occurrence of a certain pattern
dows containing this character. in a segmented sentence. For example, it can be the
In order to explore the potential of word-baseg,.cyrrence of 4! fi” as a single word, or the occur-
modgls, we ?.dapt the perceptron dlscrlml_r\at|v1e,\ence of 11 separated from fi” in two adjacent
learning algorithm to thecws problem.  Collins - yorgs. By defining features, a segmented sentence
(2002) proposed the perceptron as an alternative {0mapped into a global feature vector, in which each
the CRF method forHmm-style taggers. HOowever, gimension represents the count of a particular fea-
our model does not map the segmentation probleffje jn the sentence. The term “global” feature vec-
to a tag sequence learning problem, but defines fegy s used by Collins (2002) to distinguish between
tures on segmented sentences directly. Hence Weyre count vectors for whole sequences and the
use a beam-search decoder during training and tesj5.a)” feature vectors inie tagging models, which

Ing; our idea is similar to that of Collins and Roarkyye goolean valued vectors containing the indicator
(2004) who used a beam-search decoder as partf@hres for one element in the sequence.

a perceptron parsing model. Our work can also be pengte the global feature vector for segmented
seen as part of the recent move towasets ch-based sentencey with ®(y) € R?, whered is the total

learning methods which do not rely on dynamic proy, ,mper of features in the model; then Sdgieis

gramming and are thus able to exploit larger parts Q:fomputed by the dot product of vectd(y) and a
the context for making decisions (Daume lll, 2006)parameter vectar € R?, whereq, is the weight for
We study several factors that influence the pekyea;th feature:

formance of the perceptron word segmentor, includ-
ing the averaged perceptron method, the size of the Scordy) = ®(y) - @
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Inputs: training examplesz;, y;) 2.1 The averaged perceptron
Initialization : seta = 0

Algorithm : The averaged perceptron algorithm (Collins, 2002)
fort=1..T,i=1.N was proposed as a way of reducing overfitting on
calculatez; = arg max,cGeN@,) ®(¥) - @ the training data. It was motivated by the voted-
if 2; # vy perceptron algorithm (Freund and Schapire, 1999)
a=a+ ®(y;) — () and has been shown to give improved accuracy over
Outputs: @ the non-averaged perceptron on a number of tasks.

Let N be the number of training sentencésthe
Figure 1: the perceptron learning algorithm, adaptegumper of training iterations, ar@®! the parame-
from Collins (2002) ter vector immediately after theth sentence in the
tth iteration. The averaged parameter vegtar R¢
The perceptron training algorithm is used to deteiis defined as:
mine the weight values. 1
The training algorithm initializes the parameter vy = NT Z amt
vector as all zeros, and updates the vector by decod- n=1..N,t=1..T
ing the training examples. Each training sentence

is turned into the raw input form, and then decoded To compute the averaged parameterthe train-

with the current parameter vector. The output Se%g algorithm in Figure 1 can be modified by keep-
mented sentence is compared with the original trair?r-]g a total parameter vecto?! — 3" a™t, which is

ing example. If the output is incorrect, the parametzrﬁdated usingy after each training example. After

vector is updated by adding the global feature vect e final iterationyy is computed ag™ /NT. In the

of the training example and subtracting the glob d L :
t Igorith d instead of
feature vector of the decoder output. The algorithn:LVerage percepiron aigorttniyl)s Lsed instead o

) .. a as the final parameter vector.
can perform multiple passes over the same training
sentences. Figure 1 gives the algorithm, whires
the number of training sentences dfids the num-
ber of passes over the data.

Note that the algorithm from Collins (2002) was
designed for discriminatively training arMm-style
tagger. Features are extracted from an input s

guencer and its corresponding tag sequence

With a large number of features, calculating the
total parameter vectar™! after each training exam-
ple is expensive. Since the number of changed di-
mensions in the parameter vectoafter each train-
ing example is a small proportion of the total vec-
tor, we use a lazy update optimization for the train-
ing process. Define an update vectar to record
the number of the training sentengeand iteration
Scorézx,y) = ®(x,y) - @ t when each dimension of the averaged parameter
vector was last updated. Then after each training
sentence is processed, only update the dimensions
of the total parameter vector corresponding to the
eatures in the sentence. (Except for the last exam-
ple in the last iteration, when each dimensioriof
is updated, no matter whether the decoder output is
correct or not).

Our algorithm is not based on amvm. For a given
input sequence, even the length of different candi-
datesy (the number of words) is not fixed. Becaus
the output sequenag(the segmented sentence) con
tains all the information from the input sequence
(the raw sentence), the global feature vedi(r, y)

is replaced with®(y), which is extracted from the _ o
Denote thesth dimension in each vector before

candidate segmented sentences directly. : _ : _
Despite the above differences, since the theorerRECC€SSING thesth example in thefth iteration as

n—1,t n—1,t n—1,t
of convergence and their proof (Collins, 2002) arés ~»¢s ~ andr = (nrs,lr,s). Suppose
only dependent on the feature vectors, and not giat the decoder output, ; Is different from the

s n,t n,t
the source of the feature definitions, the perceptrdf@iNing exampley,,. Now a,™, o™ and7y™ can
algorithm is applicable to the training of oamws
model. !Daume 11l (2006) describes a similar algorithm.
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be updated in the following way: In.p_ut.: raw sentenceent — a list of characters
Initialization : set agendasrc = [[]], tgt =[]
o™t ="M oV ) (EN 4 —t N — 1) Variables: candidate sentenééem — a list of words

Algorithm :
nt _ . n—1t _
@s' = Qs + ®(yn) = D(zns) for index = 0..sent.length-1:

oyt =l + ®(yn) — B(2n) var char = sent[index]
Tt = (n,t) foreachitem in sre:
// append as a new word to the candidate
We found that this lazy update method was signif- varitem, = item
icantly faster than the naive method. item1.appendfhar.toWord())
tgt.inserttem;)
3 The Beam-Search Decoder Il append the character to the last word

if item.length> 1:
varitems = item
items[items.length—1].appendéhar)
tgt.insertftems)

The decoder reads characters from the input sen-
tence one at a time, and generates candidate seg-
mentations incrementally. At each stage, the next in-
coming character is combined with an existing can- .

. . . . src = tgt
didate in f[wo_dlfferent ways to generate new c_andl- tgt =]
dateg: it is either appended to the last word in th&)utputs: sre.bestitem
candidate, or taken as the start of a new word. This
method guarantees exhaustive generation of possible Figure 2: The decoding algorithm
segmentations for any input sentence.

Two agendas are used: the source agenda and the
target agenda. Initially the source agenda contaiféord and length information. Any segmented sen-
an empty sentence and the target agenda is empg§nce is mapped to a global feature vector according
At each processing stage, the decoder reads intg,these templates. There &6, 337 features with
character from the input sentence, combines it witRON-Zero values aftgf training iterations using the
each candidate in the source agenda and puts thevelopment data.
generated candidates onto the target agenda. AfterFor this particular feature set, the longest range
each character is processed, the items in the tard@gtures are word bigrams. Therefore, among partial
agenda are copied to the source agenda, and then gg@didates ending with the same bigram, the best
target agenda is cleaned, so that the newly generate@e Will also be in the best final candidate. The
candidates can be combined with the next inconflecoder can be optimized accordingly: when an in-
ing character to generate new candidates. After tH@ming character is combined with candidate items
last character is processed, the decoder returns #&a new word, only the best candidate is kept among
candidate with the best score in the source agendfose having the same last word.
Figure 2 gives the decoding algorithm.

For a sentence with lengththere are!~! differ- 5 Comparison with Previous Work

ent possible segmentations. To guarantee reasonable the ch ter-tagai dels. Li et al
running speed, the size of the target agenda is li Qrgggg € character- agglrthslmo els, f' i al. di
ited, keeping only thé3 best candidates. ) uses an uneven margin alteration of the tradi-

tional perceptron classifier (Li et al., 2002). Each
4 Feature templates character is classified independently, using infor-

mation in the neighboring five-character window.
The feature templates are shown in Table 1. Featuresmng (2005) uses the discriminative perceptron al-
1 and 2 contain only word information, 3 to 5 con-gorithm (Collins, 2002) to score whole character tag
tain character and length information, 6 and 7 consequences, finding the best candidate by the global
tain only character information, 8 to 12 contain wordscore. It can be seen as an alternative toteeand
and character information, while 13 and 14 contaitRF models (Xue, 2003; Peng et al., 2004), which
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1 | wordw 3 (sincecTB3 was used as part of the first bake-
2 | word bigramw;ws off). This corpus contain840K characters 50K
3 | single-character worg words and4798 sentences)80% of the sentences
4 | aword starting with characterand having ~ (3813) were randomly chosen for training and the
lengthl rest 085 sentences) were used as development test-
5 | aword ending with characterand having  ing data. The accuracies and learning curves for the
length! non-averaged and averaged perceptron were com-
6 | space-separated charactersindes pared. The influence of particular features and the
7 | character bigram; c in any word agenda size were also studied.
8 | the firstand last charactergandc; of any The second set of experiments used training and
word testing sets from the first and second international
9 | wordw immediately before character Chinese word segmentation bakeoffs (Sproat and
10 | character immediately before word Emerson, 2003; Emerson, 2005). The accuracies are
11 | the starting characters andc; oftwocon-  compared to other models in the literature.
secutive words F-measure is used as the accuracy measure. De-
12 | the ending characters andc; of two con-  fine precisiorp as the percentage of words in the de-
secutive words coder output that are segmented correctly, and recall
13 | aword of lengthl and the previous word r as the percentage of gold standard output words
14 | a word of lengthl and the next worav that are correctly segmented by the decoder. The

Table 1: feature templates

(balanced) F-measurelgr/(p + r).
Ccws systems are evaluated by two types of tests.
The closed tests require that the system is trained

do not involve word information. Wang et al. (2006)0nly with a designated training corpus. Any extra

incorporates an N-gram language modeivia tag-

knowledge is not allowed, including common sur-

ging’ making use of word information to improvenames, Chinese and Arabic numberS, European let-
the character tagging model. The key difference bders, lexicons, part-of-speech, semantics and so on.
tween our model and the above models is the word-heopen tests do not impose such restrictions.
based nature of our system.
One existing method that is based on sub-word irfXtra information and domain knowledge, which can

Open tests measure a model’s capability to utilize

lead to improved performance, but since this extra

formation, Zhang et al. (2006), combinesRF and
a rule-based model. Unlike the character-tagginjformation is not standardized, direct comparison
models, thecrRF submodel assigns tags to subPetween open testresults is less informative.
words, which include single-character words and !N this paper, we focus only on the closed test.
the most frequent multiple-character words from th&lowever, the perceptron model allows a wide range
training corpus. Thus it can be seen as a step towargsfeatures, and so future work will consider how to
a word-based model. However, sub-words do ndftégrate open resources into our system.
necessarily contain full word information. More-

over, sub-word extraction is performed separateI?/ _ _ _
from feature extraction. Another difference from!" this experiment, the agenda size was sétidor

our model is the rule-based submodel, which uses9th training and testing. Table 2 shows the preci-

dictionary-based forward maximum match metho&ion, recall and F-measure for the development set
described by Sproat et al. (1996). after1 to 10 training iterations, as well as the num-

ber of mistakes made in each iteration. The corre-

sponding learning curves for both the non-averaged

and averaged perceptron are given in Figure 3.

Two sets of experiments were conducted. The first, The table shows that the number of mistakes made

used for development, was based on the part of Chin each iteration decreases, reflecting the conver-

nese Treebank 4 that is not in Chinese Treebargence of the learning algorithm. The averaged per-
844
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Iteration 1 2 3 4 5 6 7 8 9 10

P (non-avg) 89.0 916 920 923 925 925 925 927 92.6 92.6
R (non-avg) 88.3 914 922 926 927 928 93.0 93.0 931 93.2
F (non-avg) 886 915 921 925 926 926 927 928 928 929
P (avg) 91.7 928 931 922 931 932 932 93.2 932 932
R (avg) 916 929 933 934 934 935 935 935 936 93.6
F (avg) 916 929 932 933 933 934 933 933 934 934
#Wrong sentences 3401 1652 945 621 463 288 217 176 151 139

Table 2: accuracy using non-averaged and averaged perceptron.
P - precision (%), R - recall (%), F - F-measure.

B 2 4 8 16 32 64 128 256 512 1024

Tr | 660 610 683 830 1111 1645 2545 4922 9104 15598
Seg| 18.65 18.18 28.85 26.52 36.58 56.45 9545 173.38 325.99 559.87
F 86.90 92,95 93.33 93.38 93.25 93.29 93.19 93.07 93.24 93.34

Table 3: the influence of agenda size.
B - agenda size, Tr - training time (seconds), Seg - testing time (secondB)nteasure.

0.94 -

also affects the training time, and resulting model,

093 | since the perceptron training algorithm uses the de-
coder output to adjust the model parameters. Table 3
%21 shows the accuracies with ten different agenda sizes,

091 each used for both training and testing.

Accuracy does not increase beyorlt]l = 16.
Moreover, the accuracy is quite competitive even

0.9 4

F-measure

089 1 o nonaveraged with B as low as 4. This reflects the fact that the best

0 | ——averaged segmentation is often within the current top few can-
didates in the agendaSince the training and testing

087 1 time generally increases &é increases, the agenda

size is fixed tol6 for the remaining experiments.

0.86 T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
number of training iterations

6.3 The influence of particular features

Figure 3: learning curves Qf the averaged and nomur cws model is highly dependent upon word in-
averaged perceptron algorithms formation. Most of the features in Table 1 are related
to words. Table 4 shows the accuracy with various

ceptron algorithm improves the segmentation ad€atures from the model removed.
curacy at each iteration, compared with the non- Among the features, vocabulary words (feature 1)

averaged perceptron. The learning curve was us&@d length prediction by characters (features 3 to 5)
to fix the number of training iterations &tfor the ~Showed strong influence on the accuracy, while word

remaining experiments. bigrams (feature 2) and special characters in them
(features 11 and 12) showed comparatively weak in-
6.2 The influence of agenda size fluence.

Reducing the agenda size increases the decoding; — _ _ _
The optimization in Section 4, which has a pruning effect,

spe_ed, but it _COUId cause IOS_S of accuracy by e“mWas applied to this experiment. Similar observations were made
nating potentially good candidates. The agenda siz@separate experiments without such optimization.
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Features | F Features | F AS CU PU | SAV | OAY
All 93.38| w/o 1 92.88 S01 | 93.8 90.1 95.1|93.0]| 95.0
w/o 2 93.36|| w/0 3,4,5| 92.72 S04 93.9] 93.9| 94.0
w/o 6 93.13|| w/o 7 93.13 S05 | 94.2 89.4| 91.8 | 95.3
w/o 8 93.14 | w/0 9,10 | 93.31 S06 | 945 924 92.493.1| 95.0
w/o 11, 12| 93.38 | w/o 13, 14| 93.23 S08 90.4 93.6/ 92.0| 94.3
. S09 | 96.1 94.6| 95.4 | 95.3
Table 4: the influence of features. (F: F-measure. S10 947! 94.7 | 94.0
Feature numbers are from Table 1) S12 | 959 916 9381 95.6
Peng| 95.6 92.8 94.1 94.2 | 95.0
6.4 Closed test on thesiGHAN bakeoffs 96.5 94.6 94.0

Four training and testing corpora were used in théable 5: the accuracies over the fiSGHAN bake-
first bakeoff (Sproat and Emerson, 2003), includingff data.

the Academia Sinica Corpus (AS), the Penn Chinese
Treebank Corpus (CTB), the Hong Kong City Uni- AS CU PK MR | SAV | OAV
versity Corpus (CU) and the Peking University Cor- S14 | 94.7 943 95.0 96.495.1| 95.4
pus (PU). However, because the testing data fromS15b| 95.2 94.1 94.1 95.8 94.8 | 95.4
the Penn Chinese Treebank Corpus is currently unS27 | 945 94.0 95.0 96.094.9 | 954
available, we excluded this corpus. The corpora areZh-a | 94.7 94.6 945 96.495.1| 954
encoded in GB (PU, CTB) and BIG5 (AS, CU). In_Zh-b | 95.1 951 95.1 97.1| 95.6 | 95.4
order to test them consistently in our system, they 946 951 945 97.2

are all converted to UTF8 without loss of informa- .
tion Table 6: the accuracies over the sec@1dHAN

The results are shown in Table 5. We follow thebakeOfr data.

format from Peng et al. (2004). Each row repre-

sents acws model. The first eight rows representDifferent encodings were provided, and the UTF8
models from Sproat and Emerson (2003) that parti¢lata for all four corpora were used in this experi-
ipated in at least one closed test from the table, roment.

“Peng” represents therF model from Peng et al.  Following the format of Table 5, the results for
(2004), and the last row represents our model. Théis bakeoff are shown in Table 6. We chose the
first three columns represent tests with the AS, Cthree models that achieved at least one best score
and PU corpora, respectively. The best score in eagithe closed tests from Emerson (2005), as well as
column is shown in bold. The last two columns repthe sub-word-based model of Zhang et al. (2006) for
resent the average accuracy of each model over themparison. Row “Zh-a” and “Zh-b” represent the
tests it participated in (SAV), and our average ovepure sub-worccRFmodel and the confidence-based
the same tests (OAV), respectively. For each row theombination of thecRF and rule-based models, re-
best average is shown in bold. spectively.

We achieved the best accuracy in two of the three Again, our model achieved better overall accu-
corpora, and better overall accuracy than the majoracy than the majority of the other models. One sys-
ity of the other models. The average score of S1lfém to achieve comparable accuracy with our sys-
is 0.7% higher than our model, but S10 only partici-tem is Zh-b, which improves upon the sub-wamF
pated in the HK test. model (Zh-a) by combining it with an independent

Four training and testing corpora were used idlictionary-based submodel and improving the accu-
the second bakeoff (Emerson, 2005), including theacy of known words. In comparison, our system is
Academia Sinica corpus (AS), the Hong Kong Citybased on a single perceptron model.

University Corpus (CU), the Peking University Cor- In summary, closed tests for both the first and the
pus (PK) and the Microsoft Research Corpus (MR)xsecond bakeoff showed competitive results for our
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system compared with the best results in the litera- ceptron algorithms. IfProceedings of EMNLP, pages 1-8,
ture. Our word-based system achieved the best F-Philadelphia, USA, July.

measures over the AS@.5%) and CU 04.6%) cor-  Hal Daume . 2006.Practical Sructured Learning for Natu-
pora in the first bakeoff, and the CO%1%) and ral Language Processing. Ph.D. thesis, USC.

MR (97.2%) corpora in the second bakeoff. Thomas Emerson. 2005. The second international Chinese
word segmentation bakeoff. IRroceedings of The Fourth
7 Conclusions and Future Work SIGHAN Workshap, Jeju, Korea.

. Y. Freund and R. Schapire. 1999. Large margin classification
We proposed a word-basezivs model using the ' ysing the perceptron algorithm. Machine Learning, pages

discriminative perceptron learning algorithm. This 277-296.
model is an alternative to the existing characters, |afferty, A. McCallum, and F. Pereira. 2001. Conditional
based tagging models, and allows word information random fields: Probabilistic models for segmenting and la-
to be used as features. One attractive feature of theP€!ing sequence data. ~Froceedings of the 18th ICML,
L. . L . Al pages 282-289, Massachusetts, USA.

perceptron training algorithm is its simplicity, con-

ioti i . Li, Zaragoza, R. H., Herbrich, J. Shawe-Taylor, and J. Kan-
sisting of only a decoder and a trivial Up,date procesé’. dola. 2002. The perceptron algorithm with uneven margins.
We use a beam-search decoder, which places ourin proceedings of the 9th ICML, pages 379-386, Sydney,
work in the context of recent proposals for search- Australia.
based discriminative learning algorithms. Close§aoyong Li, Chuanjiang Miao, Kalina Bontcheva, and Hamish
tests using the first and secoatsHAN cws bake- Cunningham. 2005. Perceptron learning for Chinese word
off data demonstrated our system to be competitive SeImentation. IiProceedings of the Fourth SIGHAN Work-

. . . shop, Jeju, Korea.
with the best in the literature.

Open features, such as knowledge of numbers ahd
European letters, and relationships from semantic .
networks (Shi and Wang, 2007), have been reporté:dpeng’ F. Feng, , and A. McCallum. 2004. Chinese segmenta-

. . . tion and new word detection using conditional random fields.
to improve accuracy. Therefore, given the flexibility |n proceedings of COLING, Geneva, Switzerland.

of the feat_ure-based perceptron model, _a n ObVIO%\deait Ratnaparkhi. 1998viaximum Entropy Models for Nat-
next step is the study of open features in the seg- yral Language Ambiguity Resolution. Ph.D. thesis, UPenn.

mentor. . N . Yanxin Shi and Menggiu Wang. 2007. A dual-layer CRF
Also, we wish to explore the possibility of in-  pased joint decoding method for cascade segmentation and

corporatingPos tagging and parsing features into labelling tasks. IrProceedings of IJCAI, Hyderabad, India.

the discriminative model, leading to joint decodgichard Sproat and Thomas Emerson. 2003. The first interna-
ing. The advantage is two-fold: higher level syn- tional Chinese word segmentation bakeoff. Firoceedings
tactic information can be used in word segmenta- ggggis‘jﬁ?;‘dSGHANV\brkShOp’ pages 282-289, Sapporo,
tion, while joint decoding helps to prevent bottom- T _

up error propagation among the different processin (Pt & U B SO S L S ort for Chinese. In
steps. Computational Linguistics, volume 22(3), pages 377-404.

rcy Liang. 2005. Semi-supervised learning for natural lan-
guage. Master’s thesis, MIT.
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