
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 316–323,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Discriminative Classifiers for Deterministic Dependency Parsing

Johan Hall
Växjö University

jni@msi.vxu.se

Joakim Nivre
Växjö University and
Uppsala University

nivre@msi.vxu.se

Jens Nilsson
Växjö University

jha@msi.vxu.se

Abstract

Deterministic parsing guided by treebank-
induced classifiers has emerged as a
simple and efficient alternative to more
complex models for data-driven parsing.
We present a systematic comparison of
memory-based learning (MBL) and sup-
port vector machines (SVM) for inducing
classifiers for deterministic dependency
parsing, using data from Chinese, English
and Swedish, together with a variety of
different feature models. The comparison
shows that SVM gives higher accuracy for
richly articulated feature models across all
languages, albeit with considerably longer
training times. The results also confirm
that classifier-based deterministic parsing
can achieve parsing accuracy very close to
the best results reported for more complex
parsing models.

1 Introduction

Mainstream approaches in statistical parsing are
based on nondeterministic parsing techniques,
usually employing some kind of dynamic pro-
gramming, in combination with generative prob-
abilistic models that provide ann-best ranking of
the set of candidate analyses derived by the parser
(Collins, 1997; Collins, 1999; Charniak, 2000).
These parsers can be enhanced by using a discrim-
inative model, which reranks the analyses out-
put by the parser (Johnson et al., 1999; Collins
and Duffy, 2005; Charniak and Johnson, 2005).
Alternatively, discriminative models can be used
to search the complete space of possible parses
(Taskar et al., 2004; McDonald et al., 2005).

A radically different approach is to perform
disambiguation deterministically, using a greedy

parsing algorithm that approximates a globally op-
timal solution by making a sequence of locally
optimal choices, guided by a classifier trained on
gold standard derivations from a treebank. This
methodology has emerged as an alternative to
more complex models, especially in dependency-
based parsing. It was first used for unlabeled de-
pendency parsing by Kudo and Matsumoto (2002)
(for Japanese) and Yamada and Matsumoto (2003)
(for English). It was extended to labeled depen-
dency parsing by Nivre et al. (2004) (for Swedish)
and Nivre and Scholz (2004) (for English). More
recently, it has been applied with good results to
lexicalized phrase structure parsing by Sagae and
Lavie (2005).

The machine learning methods used to induce
classifiers for deterministic parsing are dominated
by two approaches. Support vector machines
(SVM), which combine the maximum margin
strategy introduced by Vapnik (1995) with the use
of kernel functions to map the original feature
space to a higher-dimensional space, have been
used by Kudo and Matsumoto (2002), Yamada and
Matsumoto (2003), and Sagae and Lavie (2005),
among others. Memory-based learning (MBL),
which is based on the idea that learning is the
simple storage of experiences in memory and that
solving a new problem is achieved by reusing so-
lutions from similar previously solved problems
(Daelemans and Van den Bosch, 2005), has been
used primarily by Nivre et al. (2004), Nivre and
Scholz (2004), and Sagae and Lavie (2005).

Comparative studies of learning algorithms are
relatively rare. Cheng et al. (2005b) report that
SVM outperforms MaxEnt models in Chinese de-
pendency parsing, using the algorithms of Yamada
and Matsumoto (2003) and Nivre (2003), while
Sagae and Lavie (2005) find that SVM gives better

316



performance than MBL in a constituency-based
shift-reduce parser for English.

In this paper, we present a detailed comparison
of SVM and MBL for dependency parsing using
the deterministic algorithm of Nivre (2003). The
comparison is based on data from three different
languages – Chinese, English, and Swedish – and
on five different feature models of varying com-
plexity, with a separate optimization of learning
algorithm parameters for each combination of lan-
guage and feature model. The central importance
of feature selection and parameter optimization in
machine learning research has been shown very
clearly in recent research (Daelemans and Hoste,
2002; Daelemans et al., 2003).

The rest of the paper is structured as follows.
Section 2 presents the parsing framework, includ-
ing the deterministic parsing algorithm and the
history-based feature models. Section 3 discusses
the two learning algorithms used in the experi-
ments, and section 4 describes the experimental
setup, including data sets, feature models, learn-
ing algorithm parameters, and evaluation metrics.
Experimental results are presented and discussed
in section 5, and conclusions in section 6.

2 Inductive Dependency Parsing

The system we use for the experiments uses no
grammar but relies completely on inductive learn-
ing from treebank data. The methodology is based
on three essential components:

1. Deterministic parsing algorithms for building
dependency graphs (Kudo and Matsumoto,
2002; Yamada and Matsumoto, 2003; Nivre,
2003)

2. History-based models for predicting the next
parser action (Black et al., 1992; Magerman,
1995; Ratnaparkhi, 1997; Collins, 1999)

3. Discriminative learning to map histories to
parser actions (Kudo and Matsumoto, 2002;
Yamada and Matsumoto, 2003; Nivre et al.,
2004)

In this section we will define dependency graphs,
describe the parsing algorithm used in the experi-
ments and finally explain the extraction of features
for the history-based models.

2.1 Dependency Graphs

A dependency graph is a labeled directed graph,
the nodes of which are indices corresponding to
the tokens of a sentence. Formally:

Definition 1 Given a setR of dependency types
(arc labels), adependency graphfor a sentence
x = (w1, . . . , wn) is a labeled directed graph
G = (V, E, L), where:

1. V = Zn+1

2. E ⊆ V × V

3. L : E → R

The setV of nodes(or vertices) is the setZn+1 =
{0, 1, 2, . . . , n} (n ∈ Z

+), i.e., the set of non-
negative integers up to and includingn. This
means that every token indexi of the sentence is a
node (1 ≤ i ≤ n) and that there is a special node
0, which does not correspond to any token of the
sentence and which will always be a root of the
dependency graph (normally the only root). We
useV + to denote the set of nodes corresponding
to tokens (i.e.,V + = V − {0}), and we use the
termtoken nodefor members ofV +.

The setE of arcs (or edges) is a set of ordered
pairs(i, j), wherei andj are nodes. Since arcs are
used to represent dependency relations, we will
say thati is the headand j is the dependentof
the arc(i, j). As usual, we will use the notation
i → j to mean that there is an arc connectingi
andj (i.e., (i, j) ∈ E) and we will use the nota-
tion i →∗ j for the reflexive and transitive closure
of the arc relationE (i.e., i →∗ j if and only if
i = j or there is a path of arcs connectingi to j).

The functionL assigns a dependency type (arc
label)r ∈ R to every arce ∈ E.

Definition 2 A dependency graphG is well-
formedif and only if:

1. The node 0 is a root.

2. Every node has in-degree at most 1.

3. G is connected.1

4. G is acyclic.

5. G is projective.2

Conditions 1–4, which are more or less standard in
dependency parsing, together entail that the graph
is a rooted tree. The condition of projectivity, by
contrast, is somewhat controversial, since the anal-
ysis of certain linguistic constructions appears to

1To be more exact, we requireG to beweakly connected,
which entails that the corresponding undirected graph is con-
nected, whereas astrongly connectedgraph has adirected
path between any pair of nodes.

2An arc (i, j) is projective iff there is a path fromi to
every nodek such thati < j < k or i > j > k. A graphG
is projective if all its arcs are projective.

317



JJ
Economic

� �

?

NMOD

NN
news

� �

?

SBJ

VB
had

JJ
little

� �

?

NMOD

NN
effect

� �

?

OBJ

IN
on

� �

?

NMOD

JJ
financial

� �

?

NMOD

NN
markets

� �

?

PMOD

.

.

?

� �

P

Figure 1: Dependency graph for an English sentence from the WSJ section of the Penn Treebank

require non-projective dependency arcs. For the
purpose of this paper, however, this assumption is
unproblematic, given that all the treebanks used in
the experiments are restricted to projective depen-
dency graphs.

Figure 1 shows a well-formed dependency
graph for an English sentence, where each word
of the sentence is tagged with its part-of-speech
and each arc labeled with a dependency type.

2.2 Parsing Algorithm

We begin by defining parser configurations and the
abstract data structures needed for the definition of
history-based feature models.

Definition 3 Given a setR = {r0, r1, . . . rm}
of dependency types and a sentencex =
(w1, . . . , wn), a parser configurationfor x is a
quadruplec = (σ, τ, h, d), where:

1. σ is a stack of tokens nodes.

2. τ is a sequence of token nodes.

3. h : V +
x → V is a function from token nodes

to nodes.

4. d : V +
x → R is a function from token nodes

to dependency types.

5. For every token nodei ∈ V +
x , h(i) = 0 if

and only ifd(i) = r0.

The idea is that the sequenceτ represents the re-
maining input tokens in a left-to-right pass over
the input sentencex; the stackσ contains partially
processed nodes that are still candidates for de-
pendency arcs, either as heads or dependents; and
the functionsh andd represent a (dynamically de-
fined) dependency graph for the input sentencex.
We refer to the token node on top of the stack as
the top tokenand the first token node of the input
sequence as thenext token.

When parsing a sentencex = (w1, . . . , wn),
the parser is initialized to a configurationc0 =
(ǫ, (1, . . . , n), h0, d0) with an empty stack, with

all the token nodes in the input sequence, and with
all token nodes attached to the special root node
0 with a special dependency typer0. The parser
terminates in any configurationcm = (σ, ǫ, h, d)
where the input sequence is empty, which happens
after one left-to-right pass over the input.

There are four possible parser transitions, two
of which are parameterized for a dependency type
r ∈ R.

1. LEFT-ARC(r) makes the top tokeni a (left)
dependent of the next tokenj with depen-
dency typer, i.e., j

r
→ i, and immediately

pops the stack.

2. RIGHT-ARC(r) makes the next tokenj a
(right) dependent of the top tokeni with de-
pendency typer, i.e.,i r

→ j, and immediately
pushesj onto the stack.

3. REDUCEpops the stack.

4. SHIFT pushes the next tokeni onto the stack.

The choice between different transitions is nonde-
terministic in the general case and is resolved by a
classifier induced from a treebank, using features
extracted from the parser configuration.

2.3 Feature Models

The task of the classifier is to predict the next
transition given the current parser configuration,
where the configuration is represented by a fea-
ture vectorΦ(1,p) = (φ1, . . . , φp). Each featureφi

is a function of the current configuration, defined
in terms of anaddress functionaφi

, which identi-
fies a specific token in the current parser configu-
ration, and anattribute functionfφi

, which picks
out a specific attribute of the token.

Definition 4 Let c = (σ, τ, h, d) be the current
parser configuration.

1. For everyi (i ≥ 0), σi and τi are address
functions identifying theith token ofσ and
τ , respectively (with indexing starting at 0).

318



2. If α is an address function, thenh(α), l(α),
and r(α) are address functions, identifying
the head (h), the leftmost child (l), and the
rightmost child (r), of the token identified by
α (according to the functionh).

3. If α is an address function, thenp(α), w(α)
and d(α) are feature functions, identifying
the part-of-speech (p), word form (w) and de-
pendency type (d) of the token identified by
α. We callp, w andd attribute functions.

A feature model is defined by specifying a vector
of feature functions. In section 4.2 we will define
the feature models used in the experiments.

3 Learning Algorithms

The learning problem for inductive dependency
parsing, defined in the preceding section, is a pure
classification problem, where the input instances
are parser configurations, represented by feature
vectors, and the output classes are parser transi-
tions. In this section, we introduce the two ma-
chine learning methods used to solve this problem
in the experiments.

3.1 MBL

MBL is a lazy learning method, based on the idea
that learning is the simple storage of experiences
in memory and that solving a new problem is
achieved by reusing solutions from similar previ-
ously solved problems (Daelemans and Van den
Bosch, 2005). In essence, this is ak nearest neigh-
bor approach to classification, although a vari-
ety of sophisticated techniques, including different
distance metrics and feature weighting schemes
can be used to improve classification accuracy.

For the experiments reported in this paper we
use the TIMBL software package for memory-
based learning and classification (Daelemans and
Van den Bosch, 2005), which directly handles
multi-valued symbolic features. Based on results
from previous optimization experiments (Nivre et
al., 2004), we use the modified value difference
metric (MVDM) to determine distances between
instances, and distance-weighted class voting for
determining the class of a new instance. The para-
meters varied during experiments are the number
k of nearest neighbors and the frequency threshold
l below which MVDM is replaced by the simple
Overlap metric.

3.2 SVM

SVM in its simplest form is a binary classifier
that tries to separate positive and negative cases in
training data by a hyperplane using a linear kernel
function. The goal is to find the hyperplane that
separates the training data into two classes with
the largest margin. By using other kernel func-
tions, such as polynomial or radial basis function
(RBF), feature vectors are mapped into a higher
dimensional space (Vapnik, 1998; Kudo and Mat-
sumoto, 2001). Multi-class classification with
n classes can be handled by the one-versus-all
method, withn classifiers that each separate one
class from the rest, or the one-versus-one method,
with n(n − 1)/2 classifiers, one for each pair of
classes (Vural and Dy, 2004). SVM requires all
features to be numerical, which means that sym-
bolic features have to be converted, normally by
introducing one binary feature for each value of
the symbolic feature.

For the experiments reported in this paper
we use the LIBSVM library (Wu et al., 2004;
Chang and Lin, 2005) with the polynomial kernel
K(xi, xj) = (γxT

i xj +r)d, γ > 0, whered, γ and
r are kernel parameters. Other parameters that are
varied in experiments are the penalty parameterC,
which defines the tradeoff between training error
and the magnitude of the margin, and the termina-
tion criterionǫ, which determines the tolerance of
training errors.

We adopt the standard method for converting
symbolic features to numerical features by bina-
rization, and we use the one-versus-one strategy
for multi-class classification. However, to reduce
training times, we divide the training data into
smaller sets, according to the part-of-speech of
the next token in the current parser configuration,
and train one set of classifiers for each smaller
set. Similar techniques have previously been used
by Yamada and Matsumoto (2003), among others,
without significant loss of accuracy. In order to
avoid too small training sets, we pool together all
parts-of-speech that have a frequency below a cer-
tain thresholdt (set to 1000 in all the experiments).

4 Experimental Setup

In this section, we describe the experimental setup,
including data sets, feature models, parameter op-
timization, and evaluation metrics. Experimental
results are presented in section 5.

319



4.1 Data Sets

The data set used for Swedish comes from Tal-
banken (Einarsson, 1976), which contains both
written and spoken Swedish. In the experiments,
the professional prose section is used, consisting
of about 100k words taken from newspapers, text-
books and information brochures. The data has
been manually annotated with a combination of
constituent structure, dependency structure, and
topological fields (Teleman, 1974). This annota-
tion has been converted to dependency graphs and
the original fine-grained classification of gram-
matical functions has been reduced to 17 depen-
dency types. We use a pseudo-randomized data
split, dividing the data into 10 sections by allocat-
ing sentencei to sectioni mod 10. Sections 1–9
are used for 9-fold cross-validation during devel-
opment and section 0 for final evaluation.

The English data are from the Wall Street Jour-
nal section of the Penn Treebank II (Marcus et al.,
1994). We use sections 2–21 for training, sec-
tion 0 for development, and section 23 for the
final evaluation. The head percolation table of
Yamada and Matsumoto (2003) has been used
to convert constituent structures to dependency
graphs, and a variation of the scheme employed
by Collins (1999) has been used to construct arc
labels that can be mapped to a set of 12 depen-
dency types.

The Chinese data are taken from the Penn Chi-
nese Treebank (CTB) version 5.1 (Xue et al.,
2005), consisting of about 500k words mostly
from Xinhua newswire, Sinorama news magazine
and Hong Kong News. CTB is annotated with
a combination of constituent structure and gram-
matical functions in the Penn Treebank style, and
has been converted to dependency graphs using es-
sentially the same method as for the English data,
although with a different head percolation table
and mapping scheme. We use the same kind of
pseudo-randomized data split as for Swedish, but
we use section 9 as the development test set (train-
ing on section 1–8) and section 0 as the final test
set (training on section 1–9).

A standard HMM part-of-speech tagger with
suffix smoothing has been used to tag the test data
with an accuracy of 96.5% for English and 95.1%
for Swedish. For the Chinese experiments we have
used the original (gold standard) tags from the
treebank, to facilitate comparison with results pre-
viously reported in the literature.

Feature Φ1 Φ2 Φ3 Φ4 Φ5

p(σ0) + + + + +
p(τ0) + + + + +
p(τ1) + + + + +
p(τ2) + +
p(τ3) + +
p(σ1) +
d(σ0) + + + +
d(l(σ0)) + + + +
d(r(σ0)) + + + +
d(l(τ0)) + + + +
w(σ0) + + +
w(τ0) + + +
w(τ1) +
w(h(σ0)) +

Table 1: Feature models

4.2 Feature Models

Table 1 describes the five feature modelsΦ1–Φ5

used in the experiments, with features specified
in column 1 using the functional notation defined
in section 2.3. Thus,p(σ0) refers to the part-of-
speech of the top token, whiled(l(τ0)) picks out
the dependency type of the leftmost child of the
next token. It is worth noting that modelsΦ1–Φ2

are unlexicalized, since they do not contain any
features of the formw(α), while modelsΦ3–Φ5

are all lexicalized to different degrees.

4.3 Optimization

As already noted, optimization of learning algo-
rithm parameters is a prerequisite for meaningful
comparison of different algorithms, although an
exhaustive search of the parameter space is usu-
ally impossible in practice.

For MBL we have used the modified value
difference metric (MVDM) and class voting
weighted by inverse distance (ID) in all experi-
ments, and performed a grid search for the op-
timal values of the numberk of nearest neigh-
bors and the frequency thresholdl for switching
from MVDM to the simple Overlap metric (cf.
section 3.1). The best values are different for dif-
ferent combinations of data sets and models but
are generally found in the range 3–10 fork and in
the range 1–8 forl.

The polynomial kernel of degree 2 has been
used for all the SVM experiments, but the kernel
parametersγ andr have been optimized together
with the penalty parameterC and the termination

320



Swedish English Chinese
FM LM AS EM AS EM AS EM

U L U L U L U L U L U L
Φ1 MBL 75.3 68.7 16.0 11.4 *76.5 73.7 9.8 7.7 66.4 63.6 14.3 12.1

SVM 75.4 68.9 16.3 12.1 76.4 73.6 9.8 7.7 66.4 63.6 14.2 12.1
Φ2 MBL 81.9 74.4 31.4 19.8 81.2 78.2 19.8 14.9 73.0 70.7 22.6 18.8

SVM *83.1 *76.3 *34.3 *24.0 81.3 78.3 19.4 14.9 *73.2 *71.0 22.1 18.6
Φ3 MBL 85.9 81.4 37.9 28.9 85.5 83.7 26.5 23.7 77.9 76.3 26.3 23.4

SVM 86.2 *82.6 38.7 *32.5 *86.4 *84.8 *28.5 *25.9 *79.7 *78.3 *30.1 *25.9
Φ4 MBL 86.1 82.1 37.6 30.1 87.0 85.2 29.8 26.0 79.4 77.7 28.0 24.7

SVM 86.0 82.2 37.9 31.2 *88.4 *86.8 *33.2 *30.3 *81.7 *80.1 *31.0 *27.0
Φ5 MBL 86.6 82.3 39.9 29.9 88.0 86.2 32.8 28.4 81.1 79.2 30.2 25.9

SVM 86.9 *83.2 40.7 *33.7 *89.4 *87.9 *36.4 *33.1 *84.3 *82.7 *34.5 *30.5

Table 2: Parsing accuracy; FM: feature model; LM: learning method; AS: attachment score, EM: exact
match; U: unlabeled, L: labeled

criterion e. The intervals for the parameters are:
γ: 0.16–0.40;r: 0–0.6;C: 0.5–1.0;e: 0.1–1.0.

4.4 Evaluation Metrics

The evaluation metrics used for parsing accuracy
are theunlabeled attachment scoreASU , which is
the proportion of tokens that are assigned the cor-
rect head (regardless of dependency type), and the
labeled attachment scoreASL, which is the pro-
portion of tokens that are assigned the correct head
and the correct dependency type. We also consider
theunlabeled exact matchEMU , which is the pro-
portion of sentences that are assigned a completely
correct dependency graph without considering de-
pendency type labels, and thelabeled exact match
EML, which also takes dependency type labels
into account. Attachment scores are presented as
mean scores per token, and punctuation tokens are
excluded from all counts. For all experiments we
have performed a McNemar test of significance at
α = 0.01 for differences between the two learning
methods. We also compare learning and parsing
times, as measured on an AMD 64-bit processor
running Linux.

5 Results and Discussion

Table 2 shows the parsing accuracy for the com-
bination of three languages (Swedish, English and
Chinese), two learning methods (MBL and SVM)
and five feature models (Φ1–Φ5), with algorithm
parameters optimized as described in section 4.3.
For each combination, we measure theattachment
score(AS) and theexact match(EM). A signif-
icant improvement for one learning method over
the other is marked by an asterisk (*).

Independently of language and learning
method, the most complex feature modelΦ5

gives the highest accuracy across all metrics. Not

surprisingly, the lowest accuracy is obtained with
the simplest feature modelΦ1. By and large, more
complex feature models give higher accuracy,
with one exception for Swedish and the feature
modelsΦ3 andΦ4. It is significant in this context
that the Swedish data set is the smallest of the
three (about 20% of the Chinese data set and
about 10% of the English one).

If we compare MBL and SVM, we see that
SVM outperforms MBL for the three most com-
plex modelsΦ3, Φ4 andΦ5, both for English and
Chinese. The results for Swedish are less clear,
although the labeled accuracy forΦ3 andΦ5 are
significantly better. For theΦ1 model there is no
significant improvement using SVM. In fact, the
small differences found in the ASU scores are to
the advantage of MBL. By contrast, there is a large
gap between MBL and SVM for the modelΦ5 and
the languages Chinese and English. For Swedish,
the differences are much smaller (except for the
EML score), which may be due to the smaller size
of the Swedish data set in combination with the
technique of dividing the training data for SVM
(cf. section 3.2).

Another important factor when comparing two
learning methods is the efficiency in terms of time.
Table 3 reports learning and parsing time for the
three languages and the five feature models. The
learning time correlates very well with the com-
plexity of the feature model and MBL, being a lazy
learning method, is much faster than SVM. For the
unlexicalized feature modelsΦ1 andΦ2, the pars-
ing time is also considerably lower for MBL, espe-
cially for the large data sets (English and Chinese).
But as model complexity grows, especially with
the addition of lexical features, SVM gradually
gains an advantage over MBL with respect to pars-
ing time. This is especially striking for Swedish,

321



Method Model Swedish English Chinese
LT PT LT PT LT PT

Φ1 MBL 1 s 2 s 16 s 26 s 7 s 8 s
SVM 40 s 14 s 1.5 h 14 min 1.5 h 17 min

Φ2 MBL 3 s 5 s 35 s 32 s 13 s 14 s
SVM 40 s 13 s 1 h 11 min 1.5 h 15 min

Φ3 MBL 6 s 1 min 1.5 min 9.5 min 46 s 10 min
SVM 1 min 15 s 1 h 9 min 2 h 16 min

Φ4 MBL 8 s 2 min 1.5 min 9 min 45 s 12 min
SVM 2 min 18 s 2 h 12 min 2.5 h 14 min

Φ5 MBL 10 s 7 min 3 min 41 min 1.5 min 46 min
SVM 2 min 25 s 1.5 h 10 min 6 h 24 min

Table 3: Time efficiency; LT: learning time, PT: parsing time

where the training data set is considerably smaller
than for the other languages.

Compared to the state of the art in dependency
parsing, the unlabeled attachment scores obtained
for Swedish with modelΦ5, for both MBL and
SVM, are about 1 percentage point higher than the
results reported for MBL by Nivre et al. (2004).
For the English data, the result for SVM with
modelΦ5 is about 3 percentage points below the
results obtained with the parser of Charniak (2000)
and reported by Yamada and Matsumoto (2003).
For Chinese, finally, the accuracy for SVM with
modelΦ5 is about one percentage point lower than
the best reported results, achieved with a deter-
ministic classifier-based approach using SVM and
preprocessing to detect root nodes (Cheng et al.,
2005a), although these results are not based on
exactly the same dependency conversion and data
split as ours.

6 Conclusion

We have performed an empirical comparison of
MBL (T IMBL) and SVM (LIBSVM) as learning
methods for classifier-based deterministic depen-
dency parsing, using data from three languages
and feature models of varying complexity. The
evaluation shows that SVM gives higher parsing
accuracy and comparable or better parsing effi-
ciency for complex, lexicalized feature models
across all languages, whereas MBL is superior
with respect to training efficiency, even if training
data is divided into smaller sets for SVM. The best
accuracy obtained for SVM is close to the state of
the art for all languages involved.

Acknowledgements

The work presented in this paper was partially sup-
ported by the Swedish Research Council. We are
grateful to Hiroyasu Yamada and Yuan Ding for

sharing their head percolation tables for English
and Chinese, respectively, and to three anonymous
reviewers for helpful comments and suggestions.

References

Ezra Black, Frederick Jelinek, John D. Lafferty,
David M. Magerman, Robert L. Mercer, and Salim
Roukos. 1992. Towards history-based grammars:
Using richer models for probabilistic parsing. In
Proceedings of the 5th DARPA Speech and Natural
Language Workshop, pages 31–37.

Chih-Chung Chang and Chih-Jen Lin. 2005. LIB-
SVM: A library for support vector machines.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. InProceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 173–180.

Eugene Charniak. 2000. A Maximum-Entropy-
Inspired Parser. InProceedings of the First Annual
Meeting of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL),
pages 132–139.

Yuchang Cheng, Masayuki Asahara, and Yuji Mat-
sumoto. 2005a. Chinese deterministic dependency
analyzer: Examining effects of global features and
root node finder. InProceedings of the Fourth
SIGHAN Workshop on Chinese Language Process-
ing, pages 17–24.

Yuchang Cheng, Masayuki Asahara, and Yuji Mat-
sumoto. 2005b. Machine learning-based depen-
dency analyzer for Chinese. InProceedings of
the International Conference on Chinese Computing
(ICCC).

Michael Collins and Nigel Duffy. 2005. Discrimina-
tive reranking for natural language parsing.Compu-
tational Linguistics, 31:25–70.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. InProceedings of the
35th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 16–23.

322



Michael Collins. 1999.Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Walter Daelemans and Veronique Hoste. 2002. Eval-
uation of machine learning methods for natural lan-
guage processing tasks. InProceedings of the Third
International Conference on Language Resources
and Evaluation (LREC), pages 755–760.

Walter Daelemans and Antal Van den Bosch. 2005.
Memory-Based Language Processing. Cambridge
University Press.

Walter Daelemans, Veronique Hoste, Fien De Meulder,
and Bart Naudts. 2003. Combined optimization of
feature selection and algorithm parameter interac-
tion in machine learning of language. InProceed-
ings of the 14th European Conference on Machine
Learning (ECML), pages 84–95.

Jan Einarsson. 1976. Talbankens skrift-
språkskonkordans. Lund University, Department of
Scandinavian Languages.

Mark Johnson, Stuart Geman, Steven Canon, Zhiyi
Chi, and Stefan Riezler. 1999. Estimators for
stochastic “unification-based” grammars. InPro-
ceedings of the 37th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
535–541.

Taku Kudo and Yuji Matsumoto. 2001. Chunking
with support vector machines. InProceedings of
the Second Meeting of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Taku Kudo and Yuji Matsumoto. 2002. Japanese de-
pendency analysis using cascaded chunking. InPro-
ceedings of the Sixth Workshop on Computational
Language Learning (CoNLL), pages 63–69.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. InProceedings of the 33rd An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 276–283.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark
Ferguson, Karen Katz, and Britta Schasberger.
1994. The Penn Treebank: Annotating predicate-
argument structure. InProceedings of the ARPA Hu-
man Language Technology Workshop, pages 114–
119.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. InProceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 91–98.

Joakim Nivre and Mario Scholz. 2004. Deterministic
dependency parsing of English text. InProceedings
of the 20th International Conference on Computa-
tional Linguistics (COLING), pages 64–70.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. InProceed-
ings of the 8th Conference on Computational Nat-
ural Language Learning (CoNLL), pages 49–56.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. InProceedings of the
8th International Workshop on Parsing Technologies
(IWPT), pages 149–160.

Adwait Ratnaparkhi. 1997. A linear observed time
statistical parser based on maximum entropy mod-
els. In Proceedings of the Second Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1–10.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. InProceed-
ings of the 9th International Workshop on Parsing
Technologies (IWPT), pages 125–132.

Ben Taskar, Dan Klein, Michael Collins, Daphne
Koller, and Christopher Manning. 2004. Max-
margin parsing. InProceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1–8.

Ulf Teleman. 1974.Manual f̈or grammatisk beskriv-
ning av talad och skriven svenska. Studentlitteratur.

Vladimir Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer.

Vladimir Vapnik. 1998. Statistical Learning Theory.
John Wiley and Sons, New York.

Volkan Vural and Jennifer G. Dy. 2004. A hierarchi-
cal method for multi-class support vector machines.
ACM International Conference Proceeding Series,
69:105–113.

Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. 2004.
Probability estimates for multi-class classification
by pairwise coupling.Journal of Machine Learning
Research, 5:975–1005.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The Penn Chinese Treebank: Phrase
structure annotation of a large corpus.Natural Lan-
guage Engineering, 11(2):207–238.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. InProceedings of the 8th International
Workshop on Parsing Technologies (IWPT), pages
195–206.

323


