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Abstract 

Many algorithms have been developed 
to harvest lexical semantic resources, 
however few have linked the mined 
knowledge into formal knowledge re-
positories. In this paper, we propose two 
algorithms for automatically ontologiz-
ing (attaching) semantic relations into 
WordNet. We present an empirical 
evaluation on the task of attaching part-
of and causation relations, showing an 
improvement on F-score over a baseline 
model. 

1 Introduction 

NLP researchers have developed many algo-
rithms for mining knowledge from text and the 
Web, including facts (Etzioni et al. 2005), se-
mantic lexicons (Riloff and Shepherd 1997), 
concept lists (Lin and Pantel 2002), and word 
similarity lists (Hindle 1990). Many recent ef-
forts have also focused on extracting binary se-
mantic relations between entities, such as 
entailments (Szpektor et al. 2004), is-a (Ravi-
chandran and Hovy 2002), part-of (Girju et al. 
2003), and other relations. 

The output of most of these systems is flat lists 
of lexical semantic knowledge such as “Italy is-a 
country” and “orange similar-to blue”. However, 
using this knowledge beyond simple keyword 
matching, for example in inferences, requires it 
to be linked into formal semantic repositories 
such as ontologies or term banks like WordNet 
(Fellbaum 1998). 

Pantel (2005) defined the task of ontologizing 
a lexical semantic resource as linking its terms to 
the concepts in a WordNet-like hierarchy. For 
example, “orange similar-to blue” ontologizes in 
WordNet to “orange#2 similar-to blue#1” and 
“orange#2 similar-to blue#2”. In his framework, 

Pantel proposed a method of inducing ontologi-
cal co-occurrence vectors 1  which are subse-
quently used to ontologize unknown terms into 
WordNet with 74% accuracy. 

In this paper, we take the next step and explore 
two algorithms for ontologizing binary semantic 
relations into WordNet and we present empirical 
results on the task of attaching part-of and causa-
tion relations. Formally, given an instance  
(x, r, y) of a binary relation r between terms x 
and y, the ontologizing task is to identify the 
WordNet senses of x and y where r holds. For 
example, the instance (proton, PART-OF, element) 
ontologizes into WordNet as (proton#1, PART-OF, 
element#2). 

The first algorithm that we explore, called the 
anchoring approach, was suggested as a promis-
ing avenue of future work in (Pantel 2005). This 
bottom up algorithm is based on the intuition that 
x can be disambiguated by retrieving the set of 
terms that occur in the same relation r with y and 
then finding the senses of x that are most similar 
to this set. The assumption is that terms occur-
ring in the same relation will tend to have similar 
meaning. In this paper, we propose a measure of 
similarity to capture this intuition. 

In contrast to anchoring, our second algorithm, 
called the clustering approach, takes a top-down 
view. Given a relation r, suppose that we are 
given every conceptual instance of r, i.e., in-
stances of r in the upper ontology like (parti-
cles#1, PART-OF, substances#1). An instance  
(x, r, y) can then be ontologized easily by finding 
the senses of x and y that are subsumed by ances-
tors linked by a conceptual instance of r. For ex-
ample, the instance (proton, PART-OF, element) 
ontologizes to (proton#1, PART-OF, element#2) 
since proton#1 is subsumed by particles and 
element#2 is subsumed by substances. The prob-
lem then is to automatically infer the set of con-

                                                      
1 The ontological co-occurrence vector of a concept con-
sists of all lexical co-occurrences with the concept in a 
corpus. 
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ceptual instances. In this paper, we develop a 
clustering algorithm for generalizing a set of re-
lation instances to conceptual instances by look-
ing up the WordNet hypernymy hierarchy for 
common ancestors, as specific as possible, that 
subsume as many instances as possible. An in-
stance is then attached to its senses that are sub-
sumed by the highest scoring conceptual 
instances. 

2 Relevant Work 

Several researchers have worked on ontologizing 
semantic resources. Most recently, Pantel (2005) 
developed a method to propagate lexical co-
occurrence vectors to WordNet synsets, forming 
ontological co-occurrence vectors. Adopting an 
extension of the distributional hypothesis (Harris 
1985), the co-occurrence vectors are used to 
compute the similarity between synset/synset and 
between lexical term/synset. An unknown term is 
then attached to the WordNet synset whose co-
occurrence vector is most similar to the term’s 
co-occurrence vector. Though the author sug-
gests a method for attaching more complex lexi-
cal structures like binary semantic relations, the 
paper focused only on attaching terms. 

Basili (2000) proposed an unsupervised 
method to infer semantic classes (WordNet syn-
sets) for terms in domain-specific verb relations. 
These relations, such as (x, EXPAND, y) are first 
automatically learnt from a corpus. The semantic 
classes of x and y are then inferred using concep-
tual density (Agirre and Rigau 1996), a Word-
Net-based measure applied to all instantiation of 
x and y in the corpus. Semantic classes represent 
possible common generalizations of the verb ar-
guments. At the end of the process, a set of syn-
tactic-semantic patterns are available for each 
verb, such as: 

(social_group#1, expand, act#2) 
(instrumentality#2, expand, act#2) 

The method is successful on specific relations 
with few instances (such as domain verb rela-
tions) while its value on generic and frequent 
relations, such as part-of, was untested. 

Girju et al. (2003) presented a highly super-
vised machine learning algorithm to infer seman-
tic constraints on part-of relations, such as 
(object#1, PART-OF, social_event#1). These con-
straints are then used as selectional restrictions in 
harvesting part-of instances from ambiguous 
lexical patterns, like “X of Y”. The approach 
shows high performance in terms of precision 
and recall, but, as the authors acknowledge, it 

requires large human effort during the training 
phase. 

Others have also made significant additions to 
WordNet. For example, in eXtended WordNet 
(Harabagiu et al. 1999), the glosses in WordNet 
are enriched by disambiguating the nouns, verbs, 
adverbs, and adjectives with synsets. Another 
work has enriched WordNet synsets with topi-
cally related words extracted from the Web 
(Agirre et al. 2001). Finally, the general task of 
word sense disambiguation (Gale et al. 1991) is 
relevant since there the task is to ontologize each 
term in a passage into a WordNet-like sense in-
ventory. If we had a large collection of sense-
tagged text, then our mining algorithms could 
directly discover WordNet attachment points at 
harvest time. However, since there is little high 
precision sense-tagged corpora, methods are re-
quired to ontologize semantic resources without 
fully disambiguating text. 

3 Ontologizing Semantic Relations 

Given an instance (x, r, y) of a binary relation r 
between terms x and y, the ontologizing task is to 
identify the senses of x and y where r holds. In 
this paper, we focus on WordNet 2.0 senses, 
though any similar term bank would apply. 

Let Sx and Sy be the sets of all WordNet senses 
of x and y. A sense pair, sxy, is defined as any 
pair of senses of x and y: sxy={sx, sy} where sx∈Sx 
and sy∈Sy. The set of all sense pairs Sxy consists 
of all permutations between senses in Sx and Sy. 

In order to attach a relation instance (x, r, y) 
into WordNet, one must: 
• Disambiguate x and y, that is, find the subsets 

S'x⊆Sx and S'y⊆Sy for which the relation r holds; 
and 

• Instantiate the relation in WordNet, using the 
synsets corresponding to all correct permuta-
tions between the senses in S'x and S'y. We de-
note this set of attachment points as S'xy. 

If Sx or Sy is empty, no attachments are produced. 
For example, the instance (study, PART-OF, re-

port) is ontologized into WordNet through the 
senses S'x={survey#1, study#2} and 
S’y={report#1}. The final attachment points S'xy 
are: 

(survey#1, PART-OF, report#1) 
(study#1, PART-OF, report#1) 

Unlike common algorithms for word sense 
disambiguation, here it is important to take into 
consideration the semantic dependency between 
the two terms x and y. For example, an entity that 
is part-of a study has to be some kind of informa-
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tion. This knowledge about mutual selectional 
preference (the preferred semantic class that fills 
a certain relation role, as x or y) can be exploited 
to ontologize the instance. 

In the following sections, we propose two al-
gorithms for ontologizing binary semantic rela-
tions. 

3.1 Method 1: Anchor Approach 

Given an instance (x, r, y), this approach fixes the 
term y, called the anchor, and then disambiguates 
x by looking at all other terms that occur in the 
relation r with y. Based on the principle of distri-
butional similarity (Harris 1985), the algorithm 
assumes that the words that occur in the same 
relation r with y will be more similar to the cor-
rect sense(s) of x than the incorrect ones. After 
disambiguating x, the process is then inverted 
with x as the anchor to disambiguate y. 

In the first step, y is fixed and the algorithm 
retrieves the set of all other terms X' that occur in 
an instance (x', r, y), x' ∈ X'2. For example, given 
the instance (reflections, PART-OF, book), and a 
resource containing the following relations: 
 (false allegations, PART-OF, book) 
 (stories, PART-OF, book) 
 (expert analysis, PART-OF, book) 
 (conclusions, PART-OF, book) 

the resulting set X' would be: {allegations, sto-
ries, analysis, conclusions}. 

All possible permutations, Sxx', between the 
senses of x and the senses of each term in X', 
called Sx', are computed. For each sense pair  
{sx, sx'} ∈ Sxx', a similarity score r(sx, sx') is calcu-
lated using WordNet: 
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where the distance d(sx, sx') is the length of the 
shortest path connecting the two synsets in the 
hypernymy hierarchy of WordNet, and f(sx') is 
the number of times sense sx' occurs in any of the 
instances of X'. Note that if no connection be-
tween two synsets exists, then r(sx, sx') = 0. 

The overall sense score for each sense sx of x 
is calculated as: 
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Finally, the algorithm inverts the process by 
setting x as the anchor and computes r(sy) for 
                                                      

2 For semantic relations between complex terms, like (ex-
pert analysis, PART-OF, book), only the head noun of terms 
are recorded, like “analysis”. As a future work, we plan to 
use the whole term if it is present in WordNet. 

each sense of y. All possible permutations of 
senses are computed and scored by averaging 
r(sx) and r(sy). Permutations scoring higher than a 
threshold τ1 are selected as the attachment points 
in WordNet. We experimentally set τ1 = 0.02. 

3.2 Method 2: Clustering Approach 

The main idea of the clustering approach is to 
leverage the lexical behaviors of the two terms in 
an instance as a whole. The assumption is that 
the general meaning of the relation is derived 
from the combination of the two terms. 

The algorithm is divided in two main phases. 
In the first phase, semantic clusters are built us-
ing the WordNet senses of all instances. A se-
mantic cluster is defined by the set of instances 
that have a common semantic generalization. We 
denote the conceptual instance of the semantic 
cluster as the pair of WordNet synsets that repre-
sents this generalization. For example the follow-
ing two part-of instances: 
 (second section, PART-OF, Los Angeles-area news) 
 (Sandag study, PART-OF, report) 

are in a common cluster represented by the fol-
lowing conceptual instance: 
 [writing#2, PART-OF, message#2] 

since writing#2 is a hypernym of both section 
and study, and message#2 is a hypernym of news 
and report3. 

In the second phase, the algorithm attaches an 
instance into WordNet by using WordNet dis-
tance metrics and frequency scores to select the 
best cluster for each instance. A good cluster is 
one that: 
• achieves a good trade-off between generality 

and specificity; and 
• disambiguates among the senses of x and y us-

ing the other instances’ senses as support. 
For example, given the instance (second section, 
PART-OF, Los Angeles-area news) and the follow-
ing conceptual instances: 
 [writing#2, PART-OF, message#2] 
 [object#1, PART-OF, message#2] 
 [writing#2, PART-OF, communication#2]  
 [social_group#1, PART-OF, broadcast#2]   
 [organization#, PART-OF, message#2] 

the first conceptual instance should be scored 
highest since it is both not too generic nor too 
specific and is supported by the instance (Sandag 
study, PART-OF, report), i.e., the conceptual in-
stance subsumes both instances. The second and 

                                                      
3 Again, here, we use the syntactic head of each term for 
generalization since we assume that it drives the meaning 
of the term itself. 
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the third conceptual instances should be scored 
lower since they are too generic, while the last 
two should be scored lower since the sense for 
section and news are not supported by other in-
stances. The system then outputs, for each in-
stance, the set of sense pairs that are subsumed 
by the highest scoring conceptual instance. In the 
previous example: 

(section#1, PART-OF, news#1) 
(section#1, PART-OF, news#2) 
(section#1, PART-OF, news#3) 

are selected, as they are subsumed by [writing#2, 
PART-OF, message#2]. These sense pairs are then 
retained as attachment points into WordNet. 

Below, we describe each phase in more detail. 

Phase 1: Cluster Building 

Given an instance (x, r, y), all sense pair permu-
tations sxy={sx, sy} are retrieved from WordNet. 
A set of candidate conceptual instances, Cxy, is 
formed for each instance from the permutation of 
each WordNet ancestor of sx and sy, following the 
hypernymy link, up to degree τ2. 

Each candidate conceptual instance,  
c={cx, cy}, is scored by its degree of generaliza-
tion as follows: 

 
)1()1(

1)(
+×+

=
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where ni is the number of hypernymy links 
needed to go from si to ci, for i ∈ {x, y}. r(c) 
ranges from [0, 1] and is highest when little gen-
eralization is needed. 

For example, the instance (Sandag study, 
PART-OF, report) produces 70 sense pairs since 
study has 10 senses and report has 7 senses. As-
suming τ2=1, the instance sense (survey#1, PART-
OF, report#1) has the following set of candidate 
conceptual instances: 

 
Cxy nx ny r(c)
(survey#1, PART-OF,report#1) 0 0 1
(survey#1, PART-OF,document#1) 0 1 0.5
(examination#1, PART-OF,report#1) 1 0 0.5
(examination#1, PART-OF,document#1) 1 1 0.25

 
Finally, each candidate conceptual instance c 

forms a cluster of all instances (x, r, y) that have 
some sense pair sx and sy as hyponyms of c. Note 
also that candidate conceptual instances may be 
subsumed by other candidate conceptual in-
stances. Let Gc refer to the set of all candidate 
conceptual instances subsumed by candidate 
conceptual instance c. 

Intuitively, better candidate conceptual in-
stances are those that subsume both many in-
stances and other candidate conceptual instances, 
but at the same time that have the least distance 
from subsumed instances. We capture this intui-
tion with the following score of c: 

 cc
c

Gg GI
G
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cscore c loglog
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where Ic is the set of instances subsumed by c. 
We experimented with different variations of this 
score and found that it is important to put more 
weight on the distance between subsumed con-
ceptual instances than the actual number of sub-
sumed instances. Without the log terms, the 
highest scoring conceptual instances are too ge-
neric (i.e., they are too high up in the ontology). 

Phase 2: Attachment Points Selection 

In this phase, we utilize the conceptual instances 
of the previous phase to attach each instance  
(x, r, y) into WordNet. 

At the end of Phase 1, an instance can be clus-
tered in different conceptual instances. In order 
to select an attachment, the algorithm selects the 
sense pair of x and y that is subsumed by the 
highest scoring candidate conceptual instance. It 
and all other sense pairs that are subsumed by 
this conceptual instance are then retained as the 
final attachment points. 

As a side effect, a final set of conceptual in-
stances is obtained by deleting from each candi-
date those instances that are subsumed by a 
higher scoring conceptual instance. Remaining 
conceptual instances are then re-scored using 
score(c). The final set of conceptual instances 
thus contains unambiguous sense pairs. 

4 Experimental Results 

In this section we provide an empirical evalua-
tion of our two algorithms. 

4.1 Experimental Setup 

Researchers have developed many algorithms for 
harvesting semantic relations from corpora and 
the Web. For the purposes of this paper, we may 
choose any one of them and manually validate its 
mined relations. We choose Espresso4, a general-
purpose, broad, and accurate corpus harvesting 
algorithm requiring minimal supervision. Adopt-

                                                      
4 Reference suppressed – the paper introducing Espresso 
has also been submitted to COLING/ACL 2006. 
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ing a bootstrapping approach, Espresso takes as 
input a few seed instances of a particular relation 
and iteratively learns surface patterns to extract 
more instances. 

Test Sets 

We experiment with two relations: part-of and 
causation. The causation relation occurs when an 
entity produces an effect or is responsible for 
events or results, for example (virus, CAUSE, in-
fluenza) and (burning fuel, CAUSE, pollution). We 
manually built five seed relation instances for 
both relations and apply Espresso to a dataset 
consisting of a sample of articles from the 
Aquaint (TREC-9) newswire text collection. The 
sample consists of 55.7 million words extracted 
from the Los Angeles Times data files. Espresso 
extracted 1,468 part-of instances and 1,129 cau-
sation instances. We manually validated the out-
put and randomly selected 200 correct relation 
instances of each relation for ontologizing into 
WordNet 2.0. 

Gold Standard 

We manually built a gold standard of all correct 
attachments of the test sets in WordNet. For each 
relation instance (x, r, y), two human annotators 
selected from all sense permutations of x and y 
the correct attachment points in WordNet. For 
example, for (synthetic material, PART-OF, filter), 
the judges selected the following attachment 
points: (synthetic material#1, PART-OF, filter#1) 
and (synthetic material#1, PART-OF, filter#2). The 
kappa statistic (Siegel and Castellan Jr. 1988) on 
the two relations together was Κ = 0.73. 

Systems 

The following three systems are evaluated: 
• BL: the baseline system that attaches each rela-

tion instance to the first (most common) 
WordNet sense of both terms; 

• AN: the anchor approach described in Section 
3.1. 

• CL: the clustering approach described in Sec-
tion 3.2. 

4.2 Precision, Recall and F-score 

For both the part-of and causation relations, we 
apply the three systems described above and 
compare their attachment performance using pre-
cision, recall, and F-score. Using the manually 
built gold standard, the precision of a system on a 
given relation instance is measured as the per-
centage of correct attachments and recall is 
measured as the percentage of correct attach-
ments retrieved by the system. Overall system 
precision and recall are then computed by aver-
aging the precision and recall of each relation 
instance. 

Table 1 and Table 2 report the results on the 
part-of and causation relations. We experimen-
tally set the CL generalization parameter τ2 to 5 
and the τ1 parameter for AN to 0.02. 

4.3 Discussion 

For both relations, CL and AN outperform the 
baseline in overall F-score. For part-of, Table 1 
shows that CL outperforms BL by 13.6% in F-
score and AN by 9.4%. For causation, Table 2 
shows that AN outperforms BL by 4.4% on F-
score and CL by 0.6%. 

The good results of the CL method on the 
part-of relation suggest that instances of this rela-
tion are particularly amenable to be clustered. 
The generality of the part-of relation in fact al-
lows the creation of fairly natural clusters, corre-
sponding to different sub-types of part-of, as 
those proposed in (Winston 1983). The causation 
relation, however, being more difficult to define 
at a semantic level (Girju 2003), is less easy to 
cluster and thus to disambiguate. 

Both CL and AN have better recall than BL, 
but precision results vary with CL beating BL 
only on the part-of relation. Overall, the system 
performances suggest that ontologizing semantic 
relations into WordNet is in general not easy. 

The better results of CL and AN with respect 
to BL suggest that the use of comparative seman-
tic analysis among corpus instances is a good 
way to carry out disambiguation. Yet, the BL 

SYSTEM PRECISION RECALL F-SCORE 

BL 45.0% 25.0% 32.1% 

AN 41.7% 32.4% 36.5% 

CL 40.0% 32.6% 35.9% 

Table 2. System precision, recall and F-score on 
the causation relation. 
 

SYSTEM PRECISION RECALL F-SCORE 

BL 54.0% 31.3% 39.6% 

AN 40.7% 47.3% 43.8% 

CL 57.4% 49.6% 53.2% 

Table 1. System precision, recall and F-score on 
the part-of relation. 
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method shows surprisingly good results. This 
indicates that also a simple method based on 
word sense usage in language can be valuable. 
An interesting avenue of future work is to better 
combine these two different views in a single 
system. 

The low recall results for CL are mostly at-
tributed to the fact that in Phase 2 only the best 
scoring cluster is retained for each instance. This 
means that instances with multiple senses that do 
not have a common generalization are not cap-
tured. For example the part-of instance (wings, 
PART-OF, chicken) should cluster both in 
[body_part#1, PART-OF, animal#1] and 
[body_part#1, PART-OF, food#2], but only the 
best scoring one is retained. 

5 Conceptual Instances: Other Uses 

Our clustering approach from Section 3.2 is en-
abled by learning conceptual instances – relations 
between mid-level ontological concepts. Beyond 
the ontologizing task, conceptual instances may 
be useful for several other tasks. In this section, 
we discuss some of these opportunities and pre-
sent small qualitative evaluations. 

Conceptual instances represent common se-
mantic generalizations of a particular relation. 
For example, below are two possible conceptual 
instances for the part-of relation: 
 [person#1, PART-OF, organization#1] 
 [act#1, PART-OF, plan#1] 

The first conceptual instance in the example sub-
sumes all the part-of instances in which one or 
more persons are part of an organization, such as: 
 (president Brown, PART-OF, executive council) 
 (representatives, PART-OF, organization) 
 (students, PART-OF, orchestra) 
 (players, PART-OF, Metro League) 

Below, we present three possible ways of ex-
ploiting these conceptual instances. 

Support to Relation Extraction Tools 

Conceptual instances may be used to support re-
lation extraction algorithms such as Espresso. 

Most minimally supervised harvesting algo-
rithm do not exploit generic patterns, i.e. those 
patterns with high recall but low precision, since 
they cannot separate correct and incorrect rela-
tion instances. For example, the pattern “X of Y” 
extracts many correct relation instances like 
“wheel of the car” but also many incorrect ones 
like “house of representatives”. 

Girju et al. (2003) described a highly super-
vised algorithm for learning semantic constraints 

on generic patterns, leading to a very significant 
increase in system recall without deteriorating 
precision. Conceptual instances can be used to 
automatically learn such semantic constraints by 
acting as a filter for generic patterns, retaining 
only those instances that are subsumed by high 
scoring conceptual instances. Effectively, con-
ceptual instances are used as selectional restric-
tions for the relation. For example, our system 
discards the following incorrect instances: 
 (week, CAUSE, coalition) 
 (demeanor, CAUSE, vacuum) 

as they are both part of the very low scoring con-
ceptual instance [abstraction#6, CAUSE, state#1]. 

Ontology Learning from Text 

Each conceptual instance can be viewed as a 
formal specification of the relation at hand. For 
example, Winston (1983) manually identified six 
sub-types of the part-of relation: member-
collection, component-integral object, portion-
mass, stuff-object, feature-activity and place-
area. Such classifications are useful in applica-
tions and tasks where a semantically rich organi-
zation of knowledge is required. Conceptual 
instances can be viewed as an automatic deriva-
tion of such a classification based on corpus us-
age. Moreover, conceptual instances can be used 
to improve the ontology learning process itself. 
For example, our clustering approach can be 
seen as an inductive step producing conceptual 
instances that are then used in a deductive step to 
learn new instances. An algorithm could iterate 
between the induction/deduction cycle until no 
new relation instances and conceptual instances 
can be inferred. 

Word Sense Disambiguation 

Word Sense Disambiguation (WSD) systems can 
exploit the selectional restrictions identified by 
conceptual instances to disambiguate ambiguous 
terms occurring in particular contexts. For exam-
ple, given the sentence: 
“the board is composed by members of different countries” 

and a harvesting algorithm that extracts the part-
of relation (members, PART-OF, board), the sys-
tem could infer the correct senses for board and 
members by looking at their closest conceptual 
instance. In our system, we would infer the at-
tachment (member#1, PART-OF, board#1) since it 
is part of the highest scoring conceptual instance 
[person#1, PART-OF, organization#1]. 
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5.1 Qualitative Evaluation 

Table 3 and Table 4 list samples of the highest 
ranking conceptual instances obtained by our 
system for the part-of and causation relations. 
Below we provide a small evaluation to verify: 
• the correctness of the conceptual instances. 

Incorrect conceptual instances such as [attrib-
ute#2, CAUSE, state#4], discovered by our sys-
tem, can impede WSD and extraction tools 
where precise selectional restrictions are 
needed; and 

• the accuracy of the conceptual instances. 
Sometimes, an instance is incorrectly attached 
to a correct conceptual instance. For example, 
the instance (air mass, PART-OF, cold front) is 
incorrectly clustered in [group#1, PART-OF, 
multitude#3] since mass and front both have a 
sense that is descendant of group#1 and multi-
tude#3. However, these are not the correct 
senses of mass and front for which the part-of 
relation holds. 
For evaluating correctness, we manually ver-

ify how many correct conceptual instances are 
produced by Phase 2 of the clustering approach 
described in Section 3.2. The claim is that a cor-
rect conceptual instance is one for which the re-
lation holds for all possible subsumed senses. For 
example, the conceptual instance [group#1, 
PART-OF, multitude#3] is correct, as the relation 
holds for every semantic subsumption of the two 
senses. An example of an incorrect conceptual 
instance is [state#4, CAUSE, abstraction#6] since 
it subsumes the incorrect instance (audience, 
CAUSE, new context). A manual evaluation of the 
highest scoring 200 conceptual instances, gener-
ated on our test sets described in Section 4.1, 

showed 82% correctness for the part-of relation 
and 86% for causation. 

For estimating the overall clustering accuracy, 
we evaluated the number of correctly clustered 
instances in each conceptual instance. For exam-
ple, the instance (business people, PART-OF, 
committee) is correctly clustered in [multitude#3, 
PART-OF, group#1] and the instance (law, PART-
OF, constitutional pitfalls) is incorrectly clustered 
in [group#1, PART-OF, artifact#1]. We estimated 
the overall accuracy by manually judging the 
instances attached to 10 randomly sampled con-
ceptual instances. The accuracy for part-of is 
84% and for causation it is 76.6%. 

6 Conclusions 

In this paper, we proposed two algorithms for 
automatically ontologizing binary semantic rela-
tions into WordNet: an anchoring approach and 
a clustering approach. Experiments on the part-
of and causation relations showed promising re-
sults. Both algorithms outperformed the baseline 
on F-score. Our best results were on the part-of 
relation where the clustering approach achieved 
13.6% higher F-score than the baseline. 

The induction of conceptual instances has 
opened the way for many avenues of future 
work. We intend to pursue the ideas presented in 
Section 5 for using conceptual instances to:  
i) support knowledge acquisition tools by learn-
ing semantic constraints on extracting patterns; 
ii) support ontology learning from text; and iii) 
improve word sense disambiguation through se-
lectional restrictions. Also, we will try different 
similarity score functions for both the clustering 
and the anchor approaches, as those surveyed in 
Corley and Mihalcea (2005). 

CONCEPTUAL INSTANCE SCORE # INSTANCES INSTANCES 

[multitude#3, PART-OF, group#1] 2.04 10 
(ordinary people, PART-OF, Democratic Revolutionary Party) 
(unlicensed people, PART-OF, underground economy) 
(young people, PART-OF, commission) 
(air mass, PART-OF, cold front) 

[person#1, PART-OF, organization#1] 1.71 43 
(foreign ministers, PART-OF, council) 
(students, PART-OF, orchestra) 
(socialists, PART-OF, Iraqi National Joint Action Committee) 
(players, PART-OF, Metro League) 

[act#2, PART-OF, plan#1] 1.60 16 
(major concessions, PART-OF, new plan) 
(attacks, PART-OF, coordinated terrorist plan) 
(visit, PART-OF, exchange program) 
(survey, PART-OF, project) 

[communication#2, PART-OF, book#1] 1.14 10 
(hints, PART-OF, booklet) 
(soup recipes, PART-OF, book) 
(information, PART-OF, instruction manual) 
(extensive expert analysis, PART-OF, book) 

[compound#2, PART-OF, waste#1] 0.57 3 
(salts, PART-OF, powdery white waste) 
(lime, PART-OF, powdery white waste) 
(resin, PART-OF, waste) 

Table 3. Sample of the highest scoring conceptual instances learned for the part-of relation. For each 
conceptual instance, we report the score(c), the number of instances, and some example instances. 
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The algorithms described in this paper may be 
applied to ontologize many lexical resources of 
semantic relations, no matter the harvesting algo-
rithm used to mine them. In doing so, we have 
the potential to quickly enrich our ontologies, 
like WordNet, thus reducing the knowledge ac-
quisition bottleneck. It is our hope that we will be 
able to leverage these enriched resources, albeit 
with some noisy additions, to improve perform-
ance on knowledge-rich problems such as ques-
tion answering and textual entailment. 
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CONCEPTUAL INSTANCE SCORE # INSTANCES INSTANCES 

[change#3, CAUSE, state#4] 1.49 17 
(separation, CAUSE, anxiety) 
(demotion, CAUSE, roster vacancy) 
(budget cuts, CAUSE, enrollment declines) 
(reduced flow, CAUSE, vacuum) 

[act#2, CAUSE, state#3] 0.81 20 
(oil drilling, CAUSE, air pollution) 
(workplace exposure, CAUSE, genetic injury) 
(industrial emissions, CAUSE, air pollution) 
(long recovery, CAUSE, great stress) 

[person#1, CAUSE, act#2] 0.64 12 
(homeowners, CAUSE, water waste) 
(needlelike puncture, CAUSE, physician) 
(group member, CAUSE, controversy) 
(children, CAUSE, property damage) 

[organism#1, CAUSE, disease#1] 0.03 4 
(parasites, CAUSE, pneumonia) 
(virus, CAUSE, influenza) 
(chemical agents, CAUSE, pneumonia) 
(genetic mutation, CAUSE, Dwarfism) 

Table 4. Sample of the highest scoring conceptual instances learned for the causation relation. For 
each conceptual instance, we report score(c) , the number of instances, and some example instances. 
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