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Abstract

We present BAYESUM (for “Bayesian
summarization”), a model for sentence ex-
traction in query-focused summarization.
BAYESUM leverages the common case in
which multiple documents are relevant to a
single query. Using these documents as re-
inforcement for query terms, BAYESUM is
not afflicted by the paucity of information
in short queries. We show that approxi-
mate inference in BAYESUM is possible
on large data sets and results in a state-
of-the-art summarization system. Further-
more, we show how BAYESUM can be
understood as a justified query expansion
technique in the language modeling for IR
framework.

1 Introduction

We describe BAYESUM, an algorithm for perform-
ing query-focused summarization in the common
case that there are many relevant documents for a
given query. Given a query and a collection of rel-
evant documents, our algorithm functions by ask-
ing itself the following question: what is it about
these relevant documents that differentiates them
from the non-relevant documents? BAYESUM can
be seen as providing a statistical formulation of
this exact question.

The key requirement of BAYESUM is that mul-
tiple relevant documents are known for the query
in question. This is not a severe limitation. In two
well-studied problems, it is the de-facto standard.
In standard multidocument summarization (with
or without a query), we have access to known rel-
evant documents for some user need. Similarly, in
the case of a web-search application, an underly-
ing IR engine will retrieve multiple (presumably)

relevant documents for a given query. For both of
these tasks, BAYESUM performs well, even when
the underlying retrieval model is noisy.

The idea of leveraging known relevant docu-
ments is known as query expansion in the informa-
tion retrieval community, where it has been shown
to be successful in ad hoc retrieval tasks. Viewed
from the perspective of IR, our work can be inter-
preted in two ways. First, it can be seen as an ap-
plication of query expansion to the summarization
task (or, in IR terminology, passage retrieval); see
(Liu and Croft, 2002; Murdock and Croft, 2005).
Second, and more importantly, it can be seen as a
method for query expansion in a non-ad-hoc man-
ner. That is, BAYESUM is a statistically justified
query expansion method in the language modeling
for IR framework (Ponte and Croft, 1998).

2 Bayesian Query-Focused
Summarization

In this section, we describe our Bayesian query-
focused summarization model (BAYESUM). This
task is very similar to the standard ad-hoc IR task,
with the important distinction that we are compar-
ing query models against sentence models, rather
than against document models. The shortness of
sentences means that one must do a good job of
creating the query models.

To maintain generality, so that our model is ap-
plicable to any problem for which multiple rele-
vant documents are known for a query, we formu-
late our model in terms of relevance judgments.
For a collection of D documents and Q queries,
we assume we have a D × Q binary matrix r,
where rdq = 1 if an only if document d is rele-
vant to query q. In multidocument summarization,
rdq will be 1 exactly when d is in the document set
corresponding to query q; in search-engine sum-
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marization, it will be 1 exactly when d is returned
by the search engine for query q.

2.1 Language Modeling for IR

BAYESUM is built on the concept of language
models for information retrieval. The idea behind
the language modeling techniques used in IR is
to represent either queries or documents (or both)
as probability distributions, and then use stan-
dard probabilistic techniques for comparing them.
These probability distributions are almost always
“bag of words” distributions that assign a proba-
bility to words from a fixed vocabulary V .

One approach is to build a probability distri-
bution for a given document, pd(·), and to look
at the probability of a query under that distribu-
tion: pd(q). Documents are ranked according to
how likely they make the query (Ponte and Croft,
1998). Other researchers have built probability
distributions over queries pq(·) and ranked doc-
uments according to how likely they look under
the query model: pq(d) (Lafferty and Zhai, 2001).
A third approach builds a probability distribution
pq(·) for the query, a probability distribution pd(·)
for the document and then measures the similarity
between these two distributions using KL diver-
gence (Lavrenko et al., 2002):

KL (pq || pd) =
∑

w∈V

pq(w) log
pq(w)

pd(w)
(1)

The KL divergence between two probability
distributions is zero when they are identical and
otherwise strictly positive. It implicitly assumes
that both distributions pq and pd have the same
support: they assign non-zero probability to ex-
actly the same subset of V; in order to account
for this, the distributions pq and pd are smoothed
against a background general English model. This
final mode—the KL model—is the one on which
BAYESUM is based.

2.2 Bayesian Statistical Model

In the language of information retrieval, the query-
focused sentence extraction task boils down to es-
timating a good query model, pq(·). Once we have
such a model, we could estimate sentence models
for each sentence in a relevant document, and rank
the sentences according to Eq (1).

The BAYESUM system is based on the follow-
ing model: we hypothesize that a sentence ap-
pears in a document because it is relevant to some

query, because it provides background informa-
tion about the document (but is not relevant to a
known query) or simply because it contains use-
less, general English filler. Similarly, we model
each word as appearing for one of those purposes.
More specifically, our model assumes that each
word can be assigned a discrete, exact source, such
as “this word is relevant to query q1” or “this word
is general English.” At the sentence level, how-
ever, sentences are assigned degrees: “this sen-
tence is 60% about query q1, 30% background
document information, and 10% general English.”

To model this, we define a general English
language model, pG(·) to capture the English
filler. Furthermore, for each document dk, we
define a background document language model,
pdk(·); similarly, for each query qj , we define
a query-specific language model pqj (·). Every
word in a document dk is modeled as being gen-
erated from a mixture of pG, pdk and {pqj :
query qj is relevant to document dk}. Supposing
there are J total queries and K total documents,
we say that the nth word from the sth sentence
in document d, wdsn, has a corresponding hidden
variable, zdsn that specifies exactly which of these
distributions is used to generate that one word. In
particular, zdsn is a vector of length 1 + J + K,
where exactly one element is 1 and the rest are 0.

At the sentence level, we introduce a second
layer of hidden variables. For the sth sentence in
document d, we let πds be a vector also of length
1 + J + K that represents our degree of belief
that this sentence came from any of the models.
The πdss lie in the J + K-dimensional simplex
∆J+K = {θ = 〈θ1, . . . , θJ+K+1〉 : (∀i) θi ≥
0,

∑

i θi = 1}. The interpretation of the π vari-
ables is that if the “general English” component of
π is 0.9, then 90% of the words in this sentence
will be general English. The π and z variables are
constrained so that a sentence cannot be generated
by a document language model other than its own
document and cannot be generated by a query lan-
guage model for a query to which it is not relevant.

Since the πs are unknown, and it is unlikely that
there is a “true” correct value, we place a corpus-
level prior on them. Since π is a multinomial dis-
tribution over its corresponding zs, it is natural to
use a Dirichlet distribution as a prior over π. A
Dirichlet distribution is parameterized by a vector
α of equal length to the corresponding multino-
mial parameter, again with the positivity restric-
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tion, but no longer required to sum to one. It
has continuous density over a variable θ1, . . . , θI

given by: Dir(θ | α) =
Γ(

∑

i αi)
∏

i Γ(αi)

∏

i θ
αi−1
i . The

first term is a normalization term that ensures that
∫

∆I dθ Dir(θ | α) = 1.

2.3 Generative Story

The generative story for our model defines a distri-
bution over a corpus of queries, {qj}1:J , and doc-
uments, {dk}1:K , as follows:

1. For each query j = 1 . . . J : Generate each
word qjn in qj by pqj (qjn)

2. For each document k = 1 . . .K and each
sentence s in document k:

(a) Select the current sentence degree πks

by Dir(πks | α)rk(πks)
(b) For each word wksn in sentence s:

• Select the word source zksn accord-
ing to Mult(z | πks)

• Generate the word wksn by






pG(wksn) if zksn = 0
pdk(wksn) if zksn = k + 1
pqj (wksn) if zksn = j + K + 1

We used r to denote relevance judgments:
rk(π) = 0 if any document component of π ex-
cept the one corresponding to k is non-zero, or if
any query component of π except those queries to
which document k is deemed relevant is non-zero
(this prevents a document using the “wrong” doc-
ument or query components). We have further as-
sumed that the z vector is laid out so that z0 cor-
responds to general English, zk+1 corresponds to
document dk for 0 ≤ j < J and that zj+K+1 cor-
responds to query qj for 0 ≤ k < K.

2.4 Graphical Model

The graphical model corresponding to this gener-
ative story is in Figure 1. This model depicts the
four known parameters in square boxes (α, pQ, pD

and pG) with the three observed random variables
in shaded circles (the queries q, the relevance judg-
ments r and the words w) and two unobserved ran-
dom variables in empty circles (the word-level in-
dicator variables z and the sentence level degrees
π). The rounded plates denote replication: there
are J queries and K documents, containing S sen-
tences in a given document and N words in a given
sentence. The joint probability over the observed
random variables is given in Eq (2):

w

z

rq

pQ

pG

pD

K

J

N

π

α

S

Figure 1: Graphical model for the Bayesian
Query-Focused Summarization Model.

p (q1:J , r, d1:K) =

[

∏

j

∏

n

pqj (qjn)

]

× (2)

[

∏

k

∏

s

∫

∆
dπks p (πks | α, r)

∏

n

∑

zksn

p (zksn | πks) p (wksn | zksn)

]

This expression computes the probability of the
data by integrating out the unknown variables. In
the case of the π variables, this is accomplished
by integrating over ∆, the multinomial simplex,
according to the prior distribution given by α. In
the case of the z variables, this is accomplished by
summing over all possible (discrete) values. The
final word probability is conditioned on the z value
by selecting the appropriate distribution from pG,
pD and pQ. Computing this expression and finding
optimal model parameters is intractable due to the
coupling of the variables under the integral.

3 Statistical Inference in BAYESUM

Bayesian inference problems often give rise to in-
tractable integrals, and a large variety of tech-
niques have been proposed to deal with this. The
most popular are Markov Chain Monte Carlo
(MCMC), the Laplace (or saddle-point) approxi-
mation and the variational approximation. A third,
less common, but very effective technique, espe-
cially for dealing with mixture models, is expec-
tation propagation (Minka, 2001). In this paper,
we will focus on expectation propagation; exper-
iments not reported here have shown variational
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EM to perform comparably but take roughly 50%
longer to converge.

Expectation propagation (EP) is an inference
technique introduced by Minka (2001) as a gener-
alization of both belief propagation and assumed
density filtering. In his thesis, Minka showed
that EP is very effective in mixture modeling
problems, and later demonstrated its superiority
to variational techniques in the Generative As-
pect Model (Minka and Lafferty, 2003). The key
idea is to compute an integral of a product of
terms by iteratively applying a sequence of “dele-
tion/inclusion” steps. Given an integral of the
form:

∫

∆ dπ p(π)
∏

n tn(π), EP approximates
each term tn by a simpler term t̃n, giving Eq (3).

∫

∆
dπ q(π) q(π) = p(π)

∏

n

t̃n(π) (3)

In each deletion/inclusion step, one of the ap-
proximate terms is deleted from q(·), leaving
q−n(·) = q(·)/t̃n(·). A new approximation for
tn(·) is computed so that tn(·)q−n(·) has the same
integral, mean and variance as t̃n(·)q−n(·). This
new approximation, t̃n(·) is then included back
into the full expression for q(·) and the process re-
peats. This algorithm always has a fixed point and
there are methods for ensuring that the approxi-
mation remains in a location where the integral is
well-defined. Unlike variational EM, the approx-
imation given by EP is global, and often leads to
much more reliable estimates of the true integral.

In the case of our model, we follow Minka and
Lafferty (2003), who adapts latent Dirichlet allo-
cation of Blei et al. (2003) to EP. Due to space
constraints, we omit the inference algorithms and
instead direct the interested reader to the descrip-
tion given by Minka and Lafferty (2003).

4 Search-Engine Experiments

The first experiments we run are for query-focused
single document summarization, where relevant
documents are returned from a search engine, and
a short summary is desired of each document.

4.1 Data

The data we use to train and test BAYESUM

is drawn from the Text REtrieval Conference
(TREC) competitions. This data set consists of
queries, documents and relevance judgments, ex-
actly as required by our model. The queries are

typically broken down into four fields of increas-
ing length: the title (3-4 words), the summary (1
sentence), the narrative (2-4 sentences) and the
concepts (a list of keywords). Obviously, one
would expect that the longer the query, the better
a model would be able to do, and this is borne out
experimentally (Section 4.5).

Of the TREC data, we have trained our model
on 350 queries (queries numbered 51-350 and
401-450) and all corresponding relevant docu-
ments. This amounts to roughly 43k documents,
2.1m sentences and 65.8m words. The mean
number of relevant documents per query is 137
and the median is 81 (the most prolific query has
968 relevant documents). On the other hand, each
document is relevant to, on average, 1.11 queries
(the median is 5.5 and the most generally relevant
document is relevant to 20 different queries). In all
cases, we apply stemming using the Porter stem-
mer; for all other models, we remove stop words.

In order to evaluate our model, we had
seven human judges manually perform the query-
focused sentence extraction task. The judges were
supplied with the full TREC query and a single
document relevant to that query, and were asked to
select up to four sentences from the document that
best met the needs given by the query. Each judge
annotated 25 queries with some overlap to allow
for an evaluation of inter-annotator agreement,
yielding annotations for a total of 166 unique
query/document pairs. On the doubly annotated
data, we computed the inter-annotator agreement
using the kappa measure. The kappa value found
was 0.58, which is low, but not abysmal (also,
keep in mind that this is computed over only 25
of the 166 examples).

4.2 Evaluation Criteria

Since there are differing numbers of sentences se-
lected per document by the human judges, one
cannot compute precision and recall; instead, we
opt for other standard IR performance measures.
We consider three related criteria: mean average
precision (MAP), mean reciprocal rank (MRR)
and precision at 2 (P@2). MAP is computed by
calculating precision at every sentence as ordered
by the system up until all relevant sentences are se-
lected and averaged. MRR is the reciprocal of the
rank of the first relevant sentence. P@2 is the pre-
cision computed at the first point that two relevant
sentences have been selected (in the rare case that
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humans selected only one sentence, we use P@1).

4.3 Baseline Models

As baselines, we consider four strawman models
and two state-of-the-art information retrieval mod-
els. The first strawman, RANDOM ranks sentences
randomly. The second strawman, POSITION,
ranks sentences according to their absolute posi-
tion (in the context of non-query-focused summa-
rization, this is an incredibly powerful baseline).
The third and fourth models are based on the vec-
tor space interpretation of IR. The third model,
JACCARD, uses standard Jaccard distance score
(intersection over union) between each sentence
and the query to rank sentences. The fourth, CO-
SINE, uses TF-IDF weighted cosine similarity.

The two state-of-the-art IR models used as com-
parative systems are based on the language mod-
eling framework described in Section 2.1. These
systems compute a language model for each query
and for each sentence in a document. Sentences
are then ranked according to the KL divergence
between the query model and the sentence model,
smoothed against a general model estimated from
the entire collection, as described in the case of
document retrieval by Lavrenko et al. (2002). This
is the first system we compare against, called KL.

The second true system, KL+REL is based on
augmenting the KL system with blind relevance
feedback (query expansion). Specifically, we first
run each query against the document set returned
by the relevance judgments and retrieve the top n
sentences. We then expand the query by interpo-
lating the original query model with a query model
estimated on these sentences. This serves as a
method of query expansion. We ran experiments
ranging n in {5, 10, 25, 50, 100} and the interpo-
lation parameter λ in {0.2, 0.4, 0.6, 0.8} and used
oracle selection (on MRR) to choose the values
that performed best (the results are thus overly op-
timistic). These values were n = 25 and λ = 0.4.

Of all the systems compared, only BAYESUM

and the KL+REL model use the relevance judg-
ments; however, they both have access to exactly
the same information. The other models only run
on the subset of the data used for evaluation (the
corpus language model for the KL system and the
IDF values for the COSINE model are computed
on the full data set). EP ran for 2.5 hours.

MAP MRR P@2
RANDOM 19.9 37.3 16.6
POSITION 24.8 41.6 19.9
JACCARD 17.9 29.3 16.7
COSINE 29.6 50.3 23.7
KL 36.6 64.1 27.6
KL+REL 36.3 62.9 29.2
BAYESUM 44.1 70.8 33.6

Table 1: Empirical results for the baseline models
as well as BAYESUM, when all query fields are
used.

4.4 Performance on all Query Fields

Our first evaluation compares results when all
query fields are used (title, summary, description
and concepts1). These results are shown in Ta-
ble 1. As we can see from these results, the JAC-
CARD system alone is not sufficient to beat the
position-based baseline. The COSINE does beat
the position baseline by a bit of a margin (5 points
better in MAP, 9 points in MRR and 4 points in
P@2), and is in turn beaten by the KL system
(which is 7 points, 14 points and 4 points better
in MAP, MRR and P@2, respectively). Blind rel-
evance feedback (parameters of which were cho-
sen by an oracle to maximize the P@2 metric) ac-
tually hurts MAP and MRR performance by 0.3
and 1.2, respectively, and increases P@2 by 1.5.
Over the best performing baseline system (either
KL or KL+REL), BAYESUM wins by a margin of
7.5 points in MAP, 6.7 for MRR and 4.4 for P@2.

4.5 Varying Query Fields

Our next experimental comparison has to do with
reducing the amount of information given in the
query. In Table 2, we show the performance
of the KL, KL-REL and BAYESUM systems, as
we use different query fields. There are several
things to notice in these results. First, the stan-
dard KL model without blind relevance feedback
performs worse than the position-based model
when only the 3-4 word title is available. Sec-
ond, BAYESUM using only the title outperform
the KL model with relevance feedback using all
fields. In fact, one can apply BAYESUM without
using any of the query fields; in this case, only the
relevance judgments are available to make sense

1A reviewer pointed out that concepts were later removed
from TREC because they were “too good.” Section 4.5 con-
siders the case without the concepts field.
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MAP MRR P@2
POSITION 24.8 41.6 19.9
Title KL 19.9 32.6 17.8

KL-Rel 31.9 53.8 26.1
BAYESUM 41.1 65.7 31.6

+Description KL 31.5 58.3 24.1
KL-Rel 32.6 55.0 26.2
BAYESUM 40.9 66.9 31.0

+Summary KL 31.6 56.9 23.8
KL-Rel 34.2 48.5 27.0
BAYESUM 42.0 67.8 31.8

+Concepts KL 36.7 64.2 27.6
KL-Rel 36.3 62.9 29.2
BAYESUM 44.1 70.8 33.6

No Query BAYESUM 39.4 64.7 30.4

Table 2: Empirical results for the position-based
model, the KL-based models and BAYESUM, with
different inputs.

of what the query might be. Even in this cir-
cumstance, BAYESUM achieves a MAP of 39.4,
an MRR of 64.7 and a P@2 of 30.4, still bet-
ter across the board than KL-REL with all query
fields. While initially this seems counterintuitive,
it is actually not so unreasonable: there is signifi-
cantly more information available in several hun-
dred positive relevance judgments than in a few
sentences. However, the simple blind relevance
feedback mechanism so popular in IR is unable to
adequately model this.

With the exception of the KL model without rel-
evance feedback, adding the description on top of
the title does not seem to make any difference for
any of the models (and, in fact, occasionally hurts
according to some metrics). Adding the summary
improves performance in most cases, but not sig-
nificantly. Adding concepts tends to improve re-
sults slightly more substantially than any other.

4.6 Noisy Relevance Judgments

Our model hinges on the assumption that, for a
given query, we have access to a collection of
known relevant documents. In most real-world
cases, this assumption is violated. Even in multi-
document summarization as run in the DUC com-
petitions, the assumption of access to a collection
of documents all relevant to a user need is unreal-
istic. In the real world, we will have to deal with
document collections that “accidentally” contain
irrelevant documents. The experiments in this sec-
tion show that BAYESUM is comparatively robust.

For this experiment, we use the IR engine that
performed best in the TREC 1 evaluation: In-
query (Callan et al., 1992). We used the offi-
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Figure 2: Performance with noisy relevance judg-
ments. The X-axis is the R-precision of the IR
engine and the Y-axis is the summarization per-
formance in MAP. Solid lines are BAYESUM, dot-
ted lines are KL-Rel. Blue/stars indicate title only,
red/circles indicated title+description+summary
and black/pluses indicate all fields.

cial TREC results of Inquery on the subset of
the TREC corpus we consider. The Inquery R-
precision on this task is 0.39 using title only, and
0.51 using all fields. In order to obtain curves
as the IR engine improves, we have linearly in-
terpolated the Inquery rankings with the true rel-
evance judgments. By tweaking the interpolation
parameter, we obtain an IR engine with improv-
ing performance, but with a reasonable bias. We
have run both BAYESUM and KL-Rel on the rel-
evance judgments obtained by this method for six
values of the interpolation parameter. The results
are shown in Figure 2.

As we can observe from the figure, the solid
lines (BAYESUM) are always above the dotted
lines (KL-Rel). Considering the KL-Rel results
alone, we can see that for a non-perfect IR engine,
it makes little difference what query fields we use
for the summarization task: they all obtain roughly
equal scores. This is because the performance in
KL-Rel is dominated by the performance of the IR
engine. Looking only at the BAYESUM results, we
can see a much stronger, and perhaps surprising
difference. For an imperfect IR system, it is better
to use only the title than to use the title, description
and summary for the summarization component.
We believe this is because the title is more on topic
than the other fields, which contain terms like “A
relevant document should describe . . . .” Never-
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theless, BAYESUM has a more upward trend than
KL-Rel, which indicates that improved IR will re-
sult in improved summarization for BAYESUM but
not for KL-Rel.

5 Multidocument Experiments

We present two results using BAYESUM in the
multidocument summarization settings, based on
the official results from the Multilingual Summa-
rization Evaluation (MSE) and Document Under-
standing Conference (DUC) competitions in 2005.

5.1 Performance at MSE 2005

We participated in the Multilingual Summariza-
tion Evaluation (MSE) workshop with a system
based on BAYESUM. The task for this competi-
tion was generic (no query) multidocument sum-
marization. Fortunately, not having a query is
not a hindrance to our model. To account for the
redundancy present in document collections, we
applied a greedy selection technique that selects
sentences central to the document cluster but far
from previously selected sentences (Daumé III and
Marcu, 2005a). In MSE, our system performed
very well. According to the human “pyramid”
evaluation, our system came first with a score of
0.529; the next best score was 0.489. In the au-
tomatic “Basic Element” evaluation, our system
scored 0.0704 (with a 95% confidence interval of
[0.0429, 0.1057]), which was the third best score
on a site basis (out of 10 sites), and was not statis-
tically significantly different from the best system,
which scored 0.0981.

5.2 Performance at DUC 2005

We also participated in the Document Understand-
ing Conference (DUC) competition. The chosen
task for DUC was query-focused multidocument
summarization. We entered a nearly identical sys-
tem to DUC as to MSE, with an additional rule-
based sentence compression component (Daumé
III and Marcu, 2005b). Human evaluators consid-
ered both responsiveness (how well did the sum-
mary answer the query) and linguistic quality. Our
system achieved the highest responsiveness score
in the competition. We scored more poorly on the
linguistic quality evaluation, which (only 5 out of
about 30 systems performed worse); this is likely
due to the sentence compression we performed on
top of BAYESUM. On the automatic Rouge-based
evaluations, our system performed between third

and sixth (depending on the Rouge parameters),
but was never statistically significantly worse than
the best performing systems.

6 Discussion and Future Work

In this paper we have described a model for au-
tomatically generating a query-focused summary,
when one has access to multiple relevance judg-
ments. Our Bayesian Query-Focused Summariza-
tion model (BAYESUM) consistently outperforms
contending, state of the art information retrieval
models, even when it is forced to work with sig-
nificantly less information (either in the complex-
ity of the query terms or the quality of relevance
judgments documents). When we applied our sys-
tem as a stand-alone summarization model in the
2005 MSE and DUC tasks, we achieved among
the highest scores in the evaluation metrics. The
primary weakness of the model is that it currently
only operates in a purely extractive setting.

One question that arises is: why does
BAYESUM so strongly outperform KL-Rel, given
that BAYESUM can be seen as Bayesian formalism
for relevance feedback (query expansion)? Both
models have access to exactly the same informa-
tion: the queries and the true relevance judgments.
This is especially interesting due to the fact that
the two relevance feedback parameters for KL-
Rel were chosen optimally in our experiments, yet
BAYESUM consistently won out. One explanation
for this performance win is that BAYESUM pro-
vides a separate weight for each word, for each
query. This gives it significantly more flexibility.
Doing something similar with ad-hoc query ex-
pansion techniques is difficult due to the enormous
number of parameters; see, for instance, (Buckley
and Salton, 1995).

One significant advantage of working in the
Bayesian statistical framework is that it gives us
a straightforward way to integrate other sources of
knowledge into our model in a coherent manner.
One could consider, for instance, to extend this
model to the multi-document setting, where one
would need to explicitly model redundancy across
documents. Alternatively, one could include user
models to account for novelty or user preferences
along the lines of Zhang et al. (2002).

Our model is similar in spirit to the random-
walk summarization model (Otterbacher et al.,
2005). However, our model has several advan-
tages over this technique. First, our model has
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no tunable parameters: the random-walk method
has many (graph connectivity, various thresholds,
choice of similarity metrics, etc.). Moreover, since
our model is properly Bayesian, it is straightfor-
ward to extend it to model other aspects of the
problem, or to related problems. Doing so in a non
ad-hoc manner in the random-walk model would
be nearly impossible.

Another interesting avenue of future work is to
relax the bag-of-words assumption. Recent work
has shown, in related models, how this can be done
for moving from bag-of-words models to bag-of-
ngram models (Wallach, 2006); more interesting
than moving to ngrams would be to move to de-
pendency parse trees, which could likely be ac-
counted for in a similar fashion. One could also
potentially relax the assumption that the relevance
judgments are known, and attempt to integrate
them out as well, essentially simultaneously per-
forming IR and summarization.
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Hal Daumé III and Daniel Marcu. 2005a. Bayesian
multi-document summarization at MSE. In ACL
2005 Workshop on Intrinsic and Extrinsic Evalua-
tion Measures.
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