
Proceedings of the ACL Student Research Workshop, pages 97–102,
Ann Arbor, Michigan, June 2005.c©2005 Association for Computational Linguistics

Minimalist Parsing of Subjects Displaced from Embedded Clauses in Free
Word Order Languages

Asad B. Sayeed
Department of Computer Science

University of Maryland at College Park
A. V. Williams Building

MD 20742 USA
asayeed@mbl.ca

Abstract

In Sayeed and Szpakowicz (2004), we
proposed a parser inspired by some as-
pects of the Minimalist Program. This
incremental parser was designed specifi-
cally to handle discontinuous constituency
phenomena for NPs in Latin. We take a
look at the application of this parser to a
specific kind of apparent island violation
in Latin involving the extraction of con-
stituents, including subjects, from tensed
embedded clauses. We make use of ideas
about the left periphery from Rizzi (1997)
to modify our parser in order to handle ap-
parently violated subject islands and simi-
lar phenomena.

1 Introduction

In Sayeed and Szpakowicz (2004), we started by de-
scribing the difficulty of parsing sentences in lan-
guages with discontinuous constituency in a syntac-
tically robust and cognitively realistic manner. We
made the assumption that semantic links between
the words of a sentence are made as soon as they
arrive; we noted that this constrains the kinds of for-
malisms and algorithms that could be used to parse
human sentences. In the spirit of the Minimalist Pro-
gramme, we would like to produce the most eco-
nomical parsing process, where, potentially contro-
versially, we characterize economy as computational
complexity. Discontinuity of phrases (usually noun
phrases) in e.g. Latin provides a specific set of chal-
lenges in the development of a robust syntactic anal-
ysis; for instance, in the process of building parse
trees, nouns must often be committed to positions in
particular structures prior to the arrival of adjectives
in an incremental parsing environment.

Inspired by work such as Stabler (2001), we pro-
posed a formalism and algorithm1 that used fea-
ture set unification rather than feature cancellation,
which Stabler uses to implement basic Minimalist
operations such as MOVE and MERGE. We demon-
strated the workings of the algorithm given sim-
ple declarative sentences—in other words, within
a single, simple clause. What we wish to do now
is demonstrate that our algorithm parses Latin sen-
tences with embedded clauses, and in particular
those with constituents displaced beyond the bound-
aries of embedded clauses where this displacement
does not appear to be legitimate wh-movements;
these are, in a sense, another form of discontinuity.
In doing this, we hope to show that our formalism
works for a wider subset of the Latin language, and
that we have reduced the problem of developing a
grammar to one of choosing the correct features.

2 Background

Noun phrases in Latin can become discontinuous
within clauses. For instance, it is possible to place
a noun before a verb and an adjective that agrees
with the noun after the verb. However, for the most
part, the noun phrase components stay within CP.
Nevertheless, Kessler (1995) noted several instances
where, possibly for intonational effect, Latin prose
writers extracted items into matrix clauses from em-
bedded clauses and clauses embedded within those
embedded clauses. For example,

(1) Tametsi
Although

tu
you-NOM-SG

scio
know-IND-PRES-1SG

quam
how

1For the purpose of clarification, our algorithm can be found
at http://www.umiacs.umd.edu/∼asayeed/discont.pdf

97

sis
are-SUBJ-PRES-2SG

curiosus
interested-NOM-SG

‘Although I know how interested you are’
(Caelius at Cicero, Fam 8.1.1)

In this and other cases provided by Kessler, a word
is extracted from an embedded clause and moved
to the beginning of the matrix clause. (The itali-
cized words consist of the extracted element and the
clause from which it was extracted.) Note in particu-
lar that 1 involves the dislocation of the subject from
a tensed embedded clause, something that would or-
dinarily be a well-known island violation (Haege-
man, 1994).

According to Kessler, this situation is rare enough
that many contemporary accounts of Latin syntax
neglect discussion of this kind of device. It is likely
that Cicero occasionally wrote this way for prosodic
reasons; however, there is no reason why prosody
should not have syntactic consequences, and we at-
tempt to account for the parsing of such sentences in
this document.

It is interesting to note how in these examples, the
displaced element moves somewhere near to the be-
ginning of the outer clause. Rizzi (1997) suggests a
structure for this “left periphery” based on observa-
tions from Italian:

(2) . . . Force . . . (Focus) . . . (Topic) . . .

Within Rizzi’s GB-based framework, this is sug-
gested to be the internal structure of CP. In X-bar
terms, it looks something like this:

(3) ForceP

XP Force’

Force FocusP

YP Focus’

Focus TopicP

ZP Topic’

Topic IP

Focus and Topic in most languages have prosodic
effects, so if words displaced from embedded
clauses for prosodic reasons happen to have been
raised to the beginning, it suggests that the word has
become part of some form of articulated CP struc-
ture.

Since our parsing algorithm is inspired by mini-
malism, we cannot make use of the full X-bar sys-

tem. Instead, we use Rizzi’s analysis to develop an
analysis based on features and checking.

3 The Parser in Action

3.1 A Run-through

Our parser (2004) is incremental, meaning that it
does not have access to the end of the sentence at
the beginning of a derivation. It is also “semanti-
cally greedy”, meaning that it attempts to satisfy the
semantic requirements (through checking) as soon
as possible. So each step in the derivation consists
of attempting to see whether or not checking can be
accomplished using the current items in the “pro-
cessing buffer” and those in the “input queue,” and
if not, shifting a word from the input queue onto the
processing buffer. The distinction is marked, in our
notation, by a |: the words and trees before | are in
the processing buffer, and those that are after | are in
the input queue.

The algorithm also prefers move before merge.
This also ensures that trees do not have multiple
pending resolvable semantic dependencies, which
can represent a state of ambiguity in determining
which dependency to resolve and how.

We will now present an example parse of the
above sentence. But we will first present the gen-
eral outline of the parse, rather than the full details
using the formal representation; after that, we will
demonstrate the formalism. We sketch the steps of
the parse first so that we can deduce what features
we would need to make it work with the system.

We first start with everything in the input queue,
after the |:

(4) |tametsi tu scio quam sis curiosus

Now we need to shift (hear) two words for any pars-
ing operations to be performed. So we shift tametsi
and tu. tametsi (“although”) consists of tamen, et,
and si: “nevertheless”, “and”, and “if.” These sug-
gest that tametsi is part of a CP, and, most likely,
Force. Since tu has been displaced from the embed-
ded clause, probably for prosodic reasons, it likely
has features that can be gleaned from the intonation
and the context, such as Focus. Since these are part
of our CP system, we merge them.

(5) tametsi

tametsi tu

scio quam sis curiosus

Now we have to shift scio. But the verb scio does not
have a complement and cannot merge with tametsi

98

until it is a complete VP. The same is true for quam
(“how”) and sis since sis (“you are”) needs a com-
plement: curiosus. So the system waits to shift ev-
erything and then merges sis and curiosus.

(6) tametsi

tametsi tu

scio quam sis

sis curiosus

Now we can merge sis and quam, since sis now has
a complement. Latin is a pro-drop language, so we
can perform the merge without having an explicit
subject, which is currently part of another tree.

(7) tametsi

tametsi tu

scio quam

quam sis

sis curiosus

quam has been given its complement. Now as a com-
plete CP, it is ready to be a complement of scio.

(8) tametsi

tametsi tu

scio

scio quam

quam sis

sis curiosus

We have a CP (the tametsi tree) and a VP (scio), and
we need to merge them to form one CP.

tametsi

(9) tametsi

tametsi tu

scio

scio quam

quam sis

sis curiosus

So this leaves us in the position of having a tu and sis
in one tree. However, we cannot bring them together.
In Sayeed and Szpakowicz (2004), we required (in
order to limit tree searches) that movement during
parsing be to positions that command the trace of
movement. Clearly, tu does not command sis. We
only permitted raising, so what should we raise? If
we raised the entire CP, we would get a tree in which
neither tu nor sis commands the other. We would
have to make another move to get sis to command
tu. So we take a simpler route and just move sis.

tametsi

(10) sisi

sis curiosus

tametsi

tametsi

tametsi tu

scio

scio quam

quam ti

Now sis commands tu. We can now move tu.

tametsi

sis

tuj(11) sisi

sis curiosus

tametsi

tametsi

tametsi tj

scio

scio quam

quam ti

Note that sis still projects after the merge, seeing that
sis holds the requirement for a subject—tu is now
in what would be known as a specifier position. It
does not matter that tu does not presently command
its trace; this is something in our account of pars-
ing that differs from GB and minimalist accounts of
movement in generation. Instead, the position with
which it must be merged after movement can be the
one that commands the original position. This allows
the target position to be the one that projects, as sis
has.

3.2 Now with Features

Now all dependencies are satisfied, and we have a
complete tree. What we need to accomplish next is
an account of the features required for this parse un-
der the system in Sayeed and Szpakowicz (2004).
We add one extra characteristic to Sayeed and Sz-
pakowicz (2004) which we will explain in greater
detail in forthcoming work: optionally-checked fea-
tures; this is required primarily to avoid having to
imagine empty categories when parsing such phe-
nomena as dropped subjects, which exists in Latin.

First of all, let us account for the lexical entries of
the initial two words, tametsi and tu. We need fea-
tures that represent the discursive effect represented
by the displacement of tu. We shall assume that this
is Focus. Also, however, we need a feature that will
prepare tametsi to merge with scio. So we represent
these two as
(12) tametsi: {UNCH?(Disc:Focus), UNCH(Type:V)}

tu: {unch(Disc:Focus) → unch(Case:Nom, Pers:2, Num:Sg)}

Features are grouped together into feature bun-
dles, which allow simultaneous checking of features.
Note that the ? in one of the feature bundles of
tametsi means that it is optional; it does not have to
be checked with a focus feature on an adjacent con-
stituent if such a feature does not exist, but it must if
there is one.

For tu we are using feature paths as we defined in
Sayeed and Szpakowicz (2004); what is to the right
of a feature path cannot be checked before what is to

99

the left. In this case, we must check the focus feature
before we can check tu as a constituent of its proper
VP (headed by sis).

We express the trees using the same horizontal in-
dented representation as in Sayeed and Szpakowicz
(2004). We use this notation because the nodes of
this tree are too large for the “normal” tree represen-
tation used above. So we start with

(13) | tametsi tu scio quam sis curiosus

We need to shift two words before we can do any-
thing. We thus create nodes with the above features.

(14) [tametsi {UNCH(Disc:Focus), UNCH(Type:V)}]
[tu {unch(Disc:Focus) → unch(Case:Nom, Pers:2, Num:Sg)}]
| scio quam sis curiosus

The Focus features can be checked. Using our sys-
tem, unch and UNCH feature bundles are compati-
ble for checking, and the node with the UNCH fea-
ture projects. This form of merge among the items
already shifted can only be performed with the roots
of adjacent trees. We specified this to prevent long-
distance searches of the processing buffer.

(15) [tametsi {CH(Disc:Focus, Case:Nom, Pers:2, Num:Sg),
UNCH(Type:V)}]

tametsi
[tu {ch(Disc:Focus) → unch(Case:Nom, Pers:2, Num:Sg)}]

| scio quam sis curiosus

When UNCH and unch features bundles are
checked, their features are unified (and replaced with
the result of unification). UNCH and unch become
CH and ch. Meanwhile, tametsi has acquired the
features of tu in the CH bundle. The purpose of this
mechanism is to transfer information up the tree in
order to support incremental parsing of discontinu-
ous NP constituents, but we find an additional use
for this below.

We make one change here to the unification of
feature bundles as described by Sayeed and Sz-
pakowicz (2004): when we replace feature bundles
with the result of unification, we replace them with
the features of the entire path with which we are
checking. This ensures that in the process of check-
ing, we do not “hide” features that are further on
in the path. So tametsi also gains the gender, per-
son, and case features. This is actually quite a log-
ical extension of the idea we expressed in Sayeed
and Szpakowicz (2004) that a feature being checked
with a feature further down a path should be com-
patible with all the previous features on the path. In
both cases, the system should reflect the idea that
features further down a path are dependent on the

checking status of previous features. As with unifi-
cation in general, compatibility means lack of a con-
flict in τ : φ pairs (i.e., no case conflicts, and so on).

Now, as per 6, we need to shift all the remaining
words into the buffer before we get a compatible set.
So we need to determine lexical entries for all of the
remaining words. First, scio:

(16) scio: {UNCH?(Case:Nom, Pers:1, Num:Sg),
UNCH(Wh:0) → unch(Type:V)}

We once again use a feature path. In this case, it
means that scio (“know”) must have a wh-phrase
complement2 before it is ready to be checked by
something that takes a VP complement (such as a
complementizer). So this leads us to an entry for
quam:

(17) quam: {UNCH?(Disc:Focus), UNCH(Type:V) → unch(Wh:0)}

For quam, we also have an optional Focus feature,
because it is the head of a CP as tametsi is above.
(We might have other optional discourse features
there, but they would be superfluous for this discus-
sion.) And, like tametsi, it has a feature that allows
it to take a VP complement. Checking this feature
releases the wh-feature that allows it to become the
complement of scio.

Now we only need entries for sis and curiosus

(18) sis: {UNCH?(Case:Nom, Pers:2, Num:Sg),
UNCH(Case:Acc) → unch(Type:V)}

curiosus: unch(Case:Acc, Gen:Masc, Num:Sg)

We use an optional feature for the requirement of
a nominative subject on sis, subjects being optional
in Latin. However, we do require it to take an ac-
cusative object. We are able to shift everything as
we did prior to 6.

(19) [tametsi {CH(Disc:Focus, Case:Nom, Pers:2, Num:Sg),
UNCH(Type:V)}]

tametsi
[tu {ch(Disc:Focus) → unch(Case:Nom, Pers:2, Num:Sg)}]

[scio {UNCH?(Case:Nom, Pers:1, Num:Sg),
UNCH(Wh:0) → unch(Type:V)}]

[quam {UNCH?(Disc:Focus), UNCH(Type:V) → unch(Wh:0)}]
[sis {UNCH?(Case:Nom, Pers:2, Num:Sg),

UNCH(Case:Acc) → unch(Type:V)}]
[curiosus unch(Case:Acc, Gen:Masc, Num:Sg)] |

Now sis and curiosus can merge. The resulting
merger between compatible unch and UNCH fea-
tures, by Sayeed and Szpakowicz (2004), also causes
the contents of those feature bundles to be unified.

(20) [tametsi {CH(Disc:Focus, Case:Nom, Pers:2, Num:Sg),
UNCH(Type:V)}]

tametsi
[tu {ch(Disc:Focus) → unch(Case:Nom, Pers:2, Num:Sg)}]

2The 0 is just a placeholder meaning that the Wh is a single-
ton, not a pair like many of the other features.

100

[scio {UNCH?(Case:Nom, Pers:1, Num:Sg),
UNCH(Wh:0) → unch(Type:V)]

[quam {UNCH?(Disc:Focus), UNCH(Type:V) → unch(Wh:0)}]
[sis {UNCH?(Case:Nom, Pers:2, Num:Sg),

CH(Case:Acc, Gen:Masc, NumSg) → unch(Type:V)}]
sis
[curiosus ch(Case:Acc, Gen:Masc, Num:Sg)] |

Now that the left feature on the feature path on sis
is checked, the verb type feature is free. It can check
with the corresponding feature on quam.

(21) [tametsi {CH(Disc:Focus, Case:Nom, Pers:2, Num:Sg),
UNCH(Type:V)}]

tametsi
[tu {ch(Disc:Focus) → unch(Case:Nom, Pers:2, Num:Sg)}]

[scio {UNCH?(Case:Nom, Pers:1, Num:Sg),
UNCH(Wh:0) → unch(Type:V)]

[quam {UNCH?(Disc:Focus), CH(Type:V) → unch(Wh:0)}]
quam
[sis {UNCH?(Case:Nom, Pers:2, Num:Sg),

CH(Case:Acc, Gen:Masc, NumSg) → ch(Type:V)}]
sis
[curiosus ch(Case:Acc, Gen:Masc, Num:Sg)] |

Feature paths allow quam to merge with scio as in 8.

(22) [tametsi {CH(Disc:Focus, Case:Nom, Pers:2, Num:Sg),
UNCH(Type:V)}]

tametsi
[tu {ch(Disc:Focus) → unch(Case:Nom, Pers:2, Num:Sg)}]

[scio {UNCH?(Case:Nom, Pers:1, Num:Sg),
CH(Wh:0) → unch(Type:V)]

scio
[quam {UNCH?(Disc:Focus), CH(Type:V) → ch(Wh:0)}]

quam
[sis {UNCH?(Case:Nom, Pers:2, Num:Sg),

CH(Case:Acc, Gen:Masc, NumSg) → ch(Type:V)}]
sis
[curiosus ch(Case:Acc, Gen:Masc, Num:Sg)] |

And, lastly, scio merges with the CP headed by
tametsi.

(23) [tametsi {CH(Disc:Focus, Case:Nom, Pers:2, Num:Sg),
CH(Type:V)}]

tametsi
tametsi
[tu {ch(Disc:Focus)

→ unch(Case:Nom, Pers:2, Num:Sg)}]
[scio {UNCH?(Case:Nom, Pers:1, Num:Sg),

CH(Wh:0) → ch(Type:V)]
scio
[quam {UNCH?(Disc:Focus), CH(Type:V) → ch(Wh:0)}]

quam
[sis {UNCH?(Case:Nom, Pers:2, Num:Sg),

CH(Case:Acc, Gen:Masc, NumSg)
→ ch(Type:V)}]

sis
[curiosus ch(Case:Acc, Gen:Masc, Num:Sg)] |

We now have a single tree, but we are in the predica-
ment of 9. We need to be able to move sis to a posi-
tion where it commands tu. And that means moving
it to join with tametsi.

In Sayeed and Szpakowicz (2004), we proposed
a mechanism by which adjuncts displaced from dis-
continuous NPs could reunite with their NPs even if
the NP had already been merged as a constituent of
a verb. This was by allowing adjuncts to merge with
the verb if the verb had a compatible CH feature

(without actually checking the adjunct feature bun-
dle). A CH feature advertises that the verb had pre-
viously merged with a compatible noun, since uni-
fication would have given the noun’s features to the
CH feature bundle.

In this case, tametsi does have a CH feature bun-
dle that appears compatible with sis, but UNCH fea-
tures are not features that cause adjunctions in our
system. We propose a minimal stipulation that will
solve this problem:

(24) UNCH features (i.e., features that indicate a
requirement for a constituent) can be moved
or merged to meet compatible CH features.

The main problem with 24 is the possibility that
unnecessary movements caused by UNCH features
may occur in such a way that the UNCH feature
would be moved out of the way of compatible unch
features.

But this is likely not a problem. Our system
prefers to exhaust all possible movements before
mergers in parsing. So, if an UNCH feature had been
in the tree, and an unch feature is introduced later
at the root (as specified in Sayeed and Szpakow-
icz (2004)), the constituent containing the UNCH
feature would immediately have moved to claim it.
Then if a compatible CH feature arrived, it would
not matter, since the UNCH feature would itself
have been checked. But if a compatible CH feature
had been in the tree before the compatible unch fea-
ture had joined, what then? The constituent contain-
ing the UNCH feature would move to join it. Then
the unch feature would join the tree. It would still
command the UNCH feature, which would move to
claim it.

There is only one unsafe case: if the CH feature
arrives before the unch feature, and it is part of a
head whose constituents contain a compatible unch
feature on the wrong constituent, then the UNCH
feature would be checked with the wrong constituent
according to the mechanism above. After all, the
UNCH feature would command the incorrect unch
feature. This possibility, however, can only exist if
there is another displaced item in the tree containing
the original CH that is compatible with the UNCH
feature but displaced from some other phrase. This
requires further investigation into Latin grammar, as
it seems unlikely that such constructions exist, given
the rarity of displacement in the first place.

101

So let us implement our solution:

(25) [tametsi {CH(Disc:Focus, Case:Nom, Pers:2, Num:Sg),
CH(Type:V)}]

[sis {UNCH?(Case:Nom, Pers:2, Num:Sg),
CH(Case:Acc, Gen:Masc, NumSg) → ch(Type:V)}]

sis
[curiosus ch(Case:Acc, Gen:Masc, Num:Sg)] |

tametsi
tametsi

tametsi
[tu {ch(Disc:Focus)

→ unch(Case:Nom, Pers:2, Num:Sg)}]
[scio {UNCH?(Case:Nom, Pers:1, Num:Sg),

CH(Wh:0) → ch(Type:V)]
scio
[quam {UNCH?(Disc:Focus), CH(Type:V) → ch(Wh:0)}]

quam
<sis>

Note that the maximal projections move, not the
heads of constituent trees. The maximal projections
are the highest node containing the features, and we
always take the highest node according to Sayeed
and Szpakowicz (2004). Now sis commands tu. We
can move tu.

(26) [tametsi {CH(Disc:Focus, Case:Nom, Pers:2, Num:Sg),
CH(Type:V)}]

[sis {CH(Case:Nom, Pers:2, Num:Sg),
CH(Case:Acc, Gen:Masc, NumSg) → ch(Type:V)}]

[tu {ch(Disc:Focus) → ch(Case:Nom, Pers:2, Num:Sg)}]
sis

sis
[curiosus ch(Case:Acc, Gen:Masc, Num:Sg)] |

tametsi
tametsi

tametsi
<tu>

[scio {UNCH?(Case:Nom, Pers:1, Num:Sg),
CH(Wh:0) → ch(Type:V)]

scio
[quam {UNCH?(Disc:Focus), CH(Type:V)

→ ch(Wh:0)}]
quam
<sis>

All optional unchecked features have been elimi-
nated, and the derivation is complete.

4 Conclusions and Future Work

Using the system of Sayeed and Szpakowicz (2004),
we have demonstrated a means to parse sentences
with constituents extracted from embedded clauses
for prosodic reasons in Latin—constituents that ap-
pear to be able to escape even subject islands. We
were able to maintain the adjacency requirement of
our system by making use of discourse features in-
spired by Rizzi’s analysis of the left periphery in
Italian in a GB framework. Thus, this highly con-
strained incremental system was able to parse a sen-
tence with a long-distance displacement.

In order to do it, though, we had to add a stip-
ulation to the system to allow the constituent that
required the displaced one to move to a command-
ing position. We also took no heed to cyclicity in

this system, which given the apparent island viola-
tion permitted by these constructions, may not seem
so bad, especially since the displaced constituent
only moves over one CP in the examples we gave.
But Kessler finds that there are rare examples where
it moves over two CPs. Of course, these cases are
even more rare than displacement over a single CP.
It could be that the difficulty in violating subjacency
is what makes these cases rare, but the checking of
the discourse feature that causes the displacement is
more important.

One characteristic of our solution and, indeed,
Sayeed and Szpakowicz (2004) in general is that
in order to maintain incrementality, we do not at-
tempt to return items displaced during generation to
their original positions. We still perform only rais-
ing, just as in most GB and minimalist accounts of
movement. This means that if the constituent of a
phrase is higher than its rightful parent in the tree,
the lower subtree raises to claim it. In this case, we
had to stipulate that constituent subtrees searching
for their own constituents could move to interme-
diate locations as adjuncts, something that Sayeed
and Szpakowicz (2004) did not specify. However,
we still maintain an essential property of our system:
movement happens as soon as possible. This means
that the first available compatible intermediate lo-
cation is sought. It becomes an empirical question,
then, whether an intermediate position could ever be
a wrong position.

References
Liliane Haegeman. 1994. Introduction to Government

and Binding Theory. Blackwell, Oxford, 2nd edition.

Brett Kessler. 1995. Discontinuous constituents in latin.
http://www.artsci.wustl.edu/∼bkessler/

latin-discontinuity/discontinuity.ps.

Luigi Rizzi. 1997. The fine structure of the left periph-
ery. In L. Haegeman, editor, Elements of Grammar,
pages 281–337. Kluwer, Dordrecht.

Asad Sayeed and Stan Szpakowicz. 2004. Develop-
ing a minimalist parser for free word order languages
with discontinuous constituency. In José Luis Vicedo,
Patricio Martı́nez-Barco, Rafael Muñoz, and Maxim-
iliano Saiz, editors, EsTAL—España for Natural Lan-
guage Processing. Springer-Verlag.

Edward P. Stabler. 2001. Minimalist grammars and
recognition. In Christian Rohrer, Antje Roßdeutscher,
and Hans Kamp, editors, Linguistic Form and its Com-
putation. CSLI Publications, Stanford.

102

