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Abstract 

This paper suggests refinements for the 
Distributional Similarity Hypothesis. Our 
proposed hypotheses relate the distribu-
tional behavior of pairs of words to lexical 
entailment – a tighter notion of semantic 
similarity that is required by many NLP 
applications. To automatically explore the 
validity of the defined hypotheses we de-
veloped an inclusion testing algorithm for 
characteristic features of two words, which 
incorporates corpus and web-based feature 
sampling to overcome data sparseness. The 
degree of hypotheses validity was then em-
pirically tested and manually analyzed with 
respect to the word sense level. In addition, 
the above testing algorithm was exploited 
to improve lexical entailment acquisition. 

1 Introduction 

Distributional Similarity between words has been 
an active research area for more than a decade. It is 
based on the general idea of Harris' Distributional 
Hypothesis, suggesting that words that occur 
within similar contexts are semantically similar 
(Harris, 1968). Concrete similarity measures com-
pare a pair of weighted context feature vectors that 
characterize two words (Church and Hanks, 1990; 
Ruge, 1992; Pereira et al., 1993; Grefenstette, 
1994; Lee, 1997; Lin, 1998; Pantel and Lin, 2002; 
Weeds and Weir, 2003). 
    As it turns out, distributional similarity captures 
a somewhat loose notion of semantic similarity 
(see Table 1). It does not ensure that the meaning 
of one word is preserved when replacing it with 
the other one in some context. 

However, many semantic information-oriented 
applications like Question Answering, Information 
Extraction and Paraphrase Acquisition require a 
tighter similarity criterion, as was also demon-
strated by papers at the recent PASCAL Challenge 
on Recognizing Textual Entailment (Dagan et al., 
2005). In particular, all these applications need to 
know when the meaning of one word can be in-
ferred (entailed) from another word, so that one 
word could substitute the other in some contexts. 
This relation corresponds to several lexical seman-
tic relations, such as synonymy, hyponymy and 
some cases of meronymy. For example, in Ques-
tion Answering, the word company in a question 
can be substituted in the text by firm (synonym), 
automaker (hyponym) or division (meronym). Un-
fortunately, existing manually constructed re-
sources of lexical semantic relations, such as 
WordNet, are not exhaustive and comprehensive 
enough for a variety of domains and thus are not 
sufficient as a sole resource for application needs1. 
    Most works that attempt to learn such concrete 
lexical semantic relations employ a co-occurrence 
pattern-based approach (Hearst, 1992; Ravi-
chandran and Hovy, 2002; Moldovan et al., 2004). 
Typically, they use a set of predefined lexico-
syntactic patterns that characterize specific seman-
tic relations. If a candidate word pair (like com-
pany-automaker) co-occurs within the same 
sentence satisfying a concrete pattern (like " 
…companies, such as automakers"), then it is ex-
pected that the corresponding semantic relation 
holds between these words (hypernym-hyponym in 
this example). 
    In recent work (Geffet and Dagan, 2004) we 
explored the correspondence between the distribu-
tional characterization of two words (which may 
hardly co-occur, as is usually the case for syno-

                                                           
1
We found that less than 20% of the lexical entailment relations extracted by our 

method appeared as direct or indirect WordNet relations (synonyms, hyponyms 
or meronyms). 
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nyms) and the kind of tight semantic relationship 
that might hold between them. We formulated a 
lexical entailment relation that corresponds to the 
above mentioned substitutability criterion, and is 
termed meaning entailing substitutability (which 
we term here for brevity as lexical entailment). 
Given a pair of words, this relation holds if there 
are some contexts in which one of the words can 
be substituted by the other, such that the meaning 
of the original word can be inferred from the new 
one. We then proposed a new feature weighting 
function (RFF) that yields more accurate distribu-
tional similarity lists, which better approximate the 
lexical entailment relation. Yet, this method still 
applies a standard measure for distributional vector 
similarity (over vectors with the improved feature 
weights), and thus produces many loose similari-
ties that do not correspond to entailment. 
    This paper explores more deeply the relationship 
between distributional characterization of words 
and lexical entailment, proposing two new hy-
potheses as a refinement of the distributional simi-
larity hypothesis. The main idea is that if one word 
entails the other then we would expect that virtu-
ally all the characteristic context features of the 
entailing word will actually occur also with the 
entailed word. 
     To test this idea we developed an automatic 
method for testing feature inclusion between a pair 
of words. This algorithm combines corpus statis-
tics with a web-based feature sampling technique. 
The web is utilized to overcome the data sparse-
ness problem, so that features which are not found 
with one of the two words can be considered as 
truly distinguishing evidence.  
    Using the above algorithm we first tested the 
empirical validity of the hypotheses. Then, we 
demonstrated how the hypotheses can be leveraged 
in practice to improve the precision of automatic 
acquisition of the entailment relation. 

 

2 Background  

2.1 Implementations of Distr ibu-
tional  Similar ity 

This subsection reviews the relevant details of ear-
lier methods that were utilized within this paper.  

In the computational setting contexts of words 
are represented by feature vectors. Each word w is 
represented by a feature vector, where an entry in 
the vector corresponds to a feature f. Each feature 
represents another word (or term) with which w co-
occurs, and possibly specifies also the syntactic 
relation between the two words as in (Grefenstette, 
1994; Lin, 1998; Weeds and Weir, 2003). Pado 
and Lapata (2003) demonstrated that using syntac-
tic dependency-based vector space models can help 
distinguish among classes of different lexical rela-
tions, which seems to be more difficult for tradi-
tional “bag of words” co-occurrence-based models. 

A syntactic feature is defined as a triple <term, 
syntactic_relation, relation_direction> (the direc-
tion is set to 1, if the feature is the word’s modifier 
and to 0 otherwise). For example, given the word 
“company” the feature <earnings_report, gen, 0>  
(genitive) corresponds to the phrase “company’s 
earnings report” , and <profit, pcomp, 0> (preposi-
tional complement) corresponds to “ the profit of 
the company” . Throughout this paper we used syn-
tactic features generated by the Minipar depend-
ency parser (Lin, 1993).  
    The value of each entry in the feature vector is 
determined by some weight function weight(w,f), 
which quantifies the degree of statistical associa-
tion between the feature and the corresponding 
word. The most widely used association weight 
function is (point-wise) Mutual Information (MI) 
(Church and Hanks, 1990; Lin, 1998; Dagan, 2000; 
Weeds et al., 2004). 

<=> element, component <=> gap, spread *       town, airpor t <=   loan, mor tgage 

=>   government, body *       warplane, bomb <=> program, plan *       tank, warplane 

*       match, winner  =>   bill, program <=   conflict, war  =>   town, location    

Table 1: Sample of the data set of top-40 distributionally similar word pairs produced by the RFF-
based method of (Geffet and Dagan, 2004). Entailment judgments are marked by the arrow direction, 
with '* ' denoting no entailment.  
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    Once feature vectors have been constructed, the 
similarity between two words is defined by some 
vector similarity metric. Different metrics have 
been used, such as weighted Jaccard (Grefenstette, 
1994; Dagan, 2000), cosine (Ruge, 1992), various 
information theoretic measures (Lee, 1997), and 
the widely cited and competitive (see (Weeds and 
Weir, 2003)) measure of Lin (1998) for similarity 
between two words, w and v, defined as follows: 
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where F(w) and F(v) are the active features of the 
two words (positive feature weight) and the weight 
function is defined as MI. As typical for vector 
similarity measures, it assigns high similarity 
scores if many of the two word’s features overlap, 
even though some prominent features might be 
disjoint. This is a major reason for getting such 
semantically loose similarities, like company - 
government and country - economy. 

Investigating the output of Lin’s (1998) similar-
ity measure with respect to the above criterion in 
(Geffet and Dagan, 2004), we discovered that the 
quality of similarity scores is often hurt by inaccu-
rate feature weights, which yield rather noisy fea-
ture vectors.  Hence, we tried to improve the 
feature weighting function to promote those fea-
tures that are most indicative of the word meaning. 
A new weighting scheme was defined for boot-
strapping feature weights, termed RFF (Relative 
Feature Focus). First, basic similarities are gener-
ated by Lin’s measure. Then, feature weights are 
recalculated, boosting the weights of features that 
characterize many of the words that are most simi-
lar to the given one2. As a result the most promi-
nent features of a word are concentrated within the 
top-100 entries of the vector. Finally, word simi-
larities are recalculated by Lin's metric over the 
vectors with the new RFF weights. 

    The lexical entailment prediction task of 
(Geffet and Dagan, 2004) measures how many of 
the top ranking similarity pairs produced by the 
                                                           
2 In concrete terms RFF is defined by: 

� ∩∈= ),()()(),( vwsimwNfWSvfwRFF ,  

where sim(w,v) is an initial approximation of the similarity space by Lin’s 
measure, WS(f) is a set of words co-occurring with feature f, and N(w) is the set 
of the most similar words of w by Lin’s measure. 

RFF-based metric hold the entailment relation, in 
at least one direction. To this end a data set of 
1,200 pairs was created, consisting of top-N 
(N=40) similar words of 30 randomly selected 
nouns, which were manually judged by the lexical 
entailment criterion. Quite high Kappa agreement 
values of 0.75 and 0.83 were reported, indicating 
that the entailment judgment task was reasonably 
well defined. A subset of the data set is demon-
strated in Table 1.     

The RFF weighting produced 10% precision 
improvement over Lin’s original use of MI, sug-
gesting the RFF capability to promote semantically 
meaningful features. However, over 47% of the 
word pairs in the top-40 similarities are not related 
by entailment, which calls for further improve-
ment. In this paper we use the same data set 3 and 
the RFF metric as a basis for our experiments. 

2.2 Predicting  Semantic Inclusion 

Weeds et al. (2004) attempted to refine the distri-
butional similarity goal to predict whether one 
term is a generalization/specification of the other. 
They present a distributional generality concept 
and expect it to correlate with semantic generality. 
Their conjecture is that the majority of the features 
of the more specific word are included in the fea-
tures of the more general one. They define the fea-
ture recall of w with respect to v as the weighted 
proportion of features of v that also appear in the 
vector of w. Then, they suggest that a hypernym 
would have a higher feature recall for its hypo-
nyms (specifications), than vice versa.  
    However, their results in predicting the hy-
ponymy-hyperonymy direction (71% precision) are 
comparable to the naïve baseline (70% precision) 
that simply assumes that general words are more 
frequent than specific ones. Possible sources of 
noise in their experiment could be ignoring word 
polysemy and data sparseness of word-feature co-
occurrence in the corpus. 

3 The Distr ibutional Inclusion Hy-
potheses 

In this paper we suggest refined versions of the 
distributional similarity hypothesis which relate 
distributional behavior with lexical entailment. 

                                                           
3 Since the original data set did not include the direction of entailment, we have 
enriched it by adding the judgments of entailment direction. 
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     Extending the rationale of Weeds et al., we 
suggest that if the meaning of a word v entails an-
other word w then it is expected that all the typical 
contexts (features) of v will occur also with w. That 
is, the characteristic contexts of v are expected to 
be included within all w's contexts (but not neces-
sarily amongst the most characteristic ones for w). 
Conversely, we might expect that if v's characteris-
tic contexts are included within all w's contexts 
then it is likely that the meaning of  v does entail 
w. Taking both directions together, lexical entail-
ment is expected to highly correlate with character-
istic feature inclusion. 
     Two additional observations are needed before 
concretely formulating these hypotheses. As ex-
plained in Section 2, word contexts should be rep-
resented by syntactic features, which are more 
restrictive and thus better reflect the restrained se-
mantic meaning of the word (it is difficult to tie 
entailment to looser context representations, such 
as co-occurrence in a text window). We also notice 
that distributional similarity principles are intended 
to hold at the sense level rather than the word 
level, since different senses have different charac-
teristic contexts (even though computational com-
mon practice is to work at the word level, due to 
the lack of robust sense annotation). 
    We can now define the two distributional inclu-
sion hypotheses, which correspond to the two di-
rections of inference relating distributional feature 
inclusion and lexical entailment. Let vi and wj be 
two word senses of the words w and v, correspond-
ingly, and let vi => wj denote the (directional) en-
tailment relation between these senses. Assume 
further that we have a measure that determines the 
set of characteristic features for the meaning of 
each word sense. Then we would hypothesize: 

Hypothesis I : 

If vi => wj then all the characteristic (syntactic-
based) features of vi are expected to appear with wj.  

Hypothesis I I : 

If all the characteristic (syntactic-based) features of 
vi appear with wj then we expect that vi => wj. 

4 Word Level Testing of Feature In-
clusion  

To check the validity of the hypotheses we need to 
test feature inclusion. In this section we present an 
automated word-level feature inclusion testing 
method, termed ITA (Inclusion Testing Algorithm). 
To overcome the data sparseness problem we in-
corporated web-based feature sampling. Given a 
test pair of words, three main steps are performed, 
as detailed in the following subsections:  
Step 1: Computing the set of characteristic features 
for each word. 
Step 2: Testing feature inclusion for each pair, in 
both directions, within the given corpus data.  
Step 3: Complementary testing of feature inclusion 
for each pair in the web. 

4.1 Step 1: Corpus-based generation 
of character istic features 

To implement the first step of the algorithm, the 
RFF weighting function is exploited and its top-
100 weighted features are taken as most character-
istic for each word. As mentioned in Section 2, 
(Geffet and Dagan, 2004) shows that RFF yields 
high concentration of good features at the top of 
the vector. 

4.2 Step 2: Corpus-based feature 
inclusion test 

We first check feature inclusion in the corpus that 
was used to generate the characteristic feature sets.  
For each word pair (w, v) we first determine which 
features of w do co-occur with v in the corpus. The 
same is done to identify features of v that co-occur 
with w in the corpus. 

4.3 Step 3: Complementary Web-
based Inclusion Test 

This step is most important to avoid inclusion 
misses due to the data sparseness of the corpus. A 
few recent works (Ravichandran and Hovy, 2002; 
Keller et al., 2002; Chklovski and Pantel, 2004) 
used the web to collect statistics on word co-
occurrences. In a similar spirit, our inclusion test is 
completed by searching the web for the missing 
(non-included) features on both sides. We call this 
web-based technique mutual web-sampling. The 
web results are further parsed to verify matching of 
the feature's syntactic relationship. 
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     We denote the subset of w's features that are 
missing for v as M(w, v) (and equivalently M(v, 
w)). Since web sampling is time consuming we 
randomly sample a subset of k features (k=20 in 
our experiments), denoted as M(v,w,k).  

Mutual Web-sampling Procedure: 

For each pair (w, v) and their k-subsets  
M(w, v, k) and M(v, w, k) execute: 

 
1.  Syntactic Filtering of “Bag-of-Words”  Search: 
 
Search the web for sentences including v and a fea-
ture f from M(w, v, k) as “bag of words” , i. e. sen-
tences where w and f appear in any distance and in 
either order. Then filter out the sentences that do 
not match the defined syntactic relation between f 
and v (based on parsing). Features that co-occur 
with w in the correct syntactic relation are removed 
from M(w, v, k). Do the same search and filtering 
for w and features from M(v, w, k). 

2.   Syntactic Filtering of “Exact String” Matching: 

On the missing features on both sides (which are 
left in M(w, v, k) and M(v, w, k) after stage 1), ap-
ply “exact string”  search of the web. For this, con-
vert the tuple (v, f) to a string by adding 
prepositions and articles where needed. For exam-
ple, for (element, <project, pcomp_of, 1>) gener-
ate the corresponding string “element of the 
project”  and search the web for exact matches of 
the string. Then validate the syntactic relationship 
of f and v in the extracted sentences. Remove the 
found features from M(w, v, k) and M(v, w, k), re-
spectively. 

3.   Missing Features Validation:  

Since some of the features may be too infrequent 
or corpus-biased, check whether the remaining 
missing features do co-occur on the web with their 
original target words (with which they did occur in 
the corpus data). Otherwise, they should not be 
considered as valid misses and are also removed 
from M(w, v, k) and M(v, w, k).  
Output: Inclusion in either direction holds if the 
corresponding set of missing features is now 
empty. 

We also experimented with features consisting of 
words without syntactic relations. For example, 
exact string, or bag-of-words match. However, al-

most all the words (also non-entailing) were found 
with all the features of each other, even for seman-
tically implausible combinations (e.g. a word and a 
feature appear next to each other but belong to dif-
ferent clauses of the sentence). Therefore we con-
clude that syntactic relation validation is very 
important, especially on the web, in order to avoid 
coincidental co-occurrences.  

5 Empir ical Results 

To test the validity of the distributional inclusion 
hypotheses we performed an empirical analysis on 
a selected test sample using our automated testing 
procedure. 

5.1 Data and setting 

We experimented with a randomly picked test 
sample of about 200 noun pairs of 1,200 pairs pro-
duced by RFF (for details see Geffet and Dagan, 
2004) under Lin’s similarity scheme (Lin, 1998). 
The words were judged by the lexical entailment 
criterion (as described in Section 2). The original 
percentage of correct (52%) and incorrect (48%) 
entailments was preserved. 
    To estimate the degree of validity of the distri-
butional inclusion hypotheses we decomposed 
each word pair of the sample (w, v) to two direc-
tional pairs ordered by potential entailment direc-
tion: (w, v) and (v, w). The 400 resulting ordered 
pairs are used as a test set in Sections 5.2 and 5.3.   
    Features were computed from co-occurrences in 
a subset of the Reuters corpus of about 18 million 
words. For the web feature sampling the maximal 
number of web samples for each query (word - 
feature) was set to 3,000 sentences. 

5.2 Automatic Testing the Validity 
of the Hypotheses at the  Word 
Level  

The test set of 400 ordered pairs was examined in 
terms of entailment (according to the manual 
judgment) and feature inclusion (according to the 
ITA algorithm), as shown in Table 2. 
    According to Hypothesis I we expect that a pair 
(w, v) that satisfies entailment will also preserve 
feature inclusion. On the other hand, by Hypothe-
sis II if all the features of w are included by v then 
we expect that w entails v.  

111



    We observed that Hypothesis I is better attested 
by our data than the second hypothesis. Thus 86% 
(97 out of 113) of the entailing pairs fulfilled the 
inclusion condition. Hypothesis II holds for ap-
proximately 70% (97 of 139) of the pairs for which 
feature inclusion holds. In the next section we ana-
lyze the cases of violation of both hypotheses and 
find that the first hypothesis held to an almost per-
fect extent with respect to word senses.  
    It is also interesting to note that thanks to the 
web-sampling procedure over 90% of the non-
included features in the corpus were found on the 
web, while most of the missing features (in the 
web) are indeed semantically implausible. 

5.3 Manual Sense Level Testing of 
Hypotheses Validity  

Since our data was not sense tagged, the automatic 
validation procedure could only test the hypotheses 
at the word level. In this section our goal is to ana-

lyze the findings of our empirical test at the word 
sense level as our hypotheses were defined for 
senses.  Basically, two cases of hypotheses invalid-
ity were detected: 

Case 1: Entailments with non-included features 
(violation of Hypothesis I); 

Case 2: Feature Inclusion for non-entailments 
(violation of Hypothesis II).     

    At the word level we observed 14% invalid pairs 
of the first case and 30% of the second case. How-
ever, our manual analysis shows, that over 90% of 
the first case pairs were due to a different sense of 
one of the entailing word, e.g. capital - town (capi-
tal as money) and spread - gap (spread as distribu-
tion) (Table 3). Note that ambiguity of the entailed 
word does not cause errors (like town – area, area 
as domain) (Table 3). Thus the first hypothesis 
holds at the sense level for over 98% of the cases 
(Table 4). 
    Two remaining invalid instances of the first case 
were due to the web sampling method limitations 
and syntactic parsing filtering mistakes, especially 
for some less characteristic and infrequent features 
captured by RFF. Thus, in virtually all the exam-
ples tested in our experiment Hypothesis I was 
valid. 
   We also explored the second case of invalid 
pairs: non-entailing words that pass the feature in-
clusion test. After sense based analysis their per-
centage was reduced slightly to 27.4%. Three 
possible reasons were discovered. First, there are 
words with features typical to the general meaning 
of the domain, which tend to be included by many 
other words of this domain, like valley – town. The 
features of valley (“eastern valley” , “central val-
ley” , “attack in valley” , “ industry of the valley” ) 
are not discriminative enough to be distinguished 
from town, as they are all characteristic to any geo-
graphic location.  

             Inclusion 
Entailment 

       +     - 
 

              +      97       16 
               -      42           245 
Table 2: Distribution of 400 entailing/non-
entailing ordered pairs that hold/do not hold 
feature inclusion at the word level.  

           Inclusion 
Entailment 

        +     - 
 

             +        111       2 
              -        42       245 
Table 4: Distribution of the entailing/non-
entailing ordered pairs that hold/do not hold 
feature inclusion at the sense level.  

spread – gap (mutually entail each other ) 
<weapon, pcomp_of> 
The Committee was discussing the Pro-
gramme of the “Big Eight,”  aimed against 
spread of weapon of mass destruction. 

town – area (“ town”  entails “ area” ) 
<cooperation, pcomp_for> 
This is a promising area for  cooperation and 
exchange of experiences.  

capital – town (“ capital”  entails “ town” ) 
<flow, nn> 
Offshore financial centers affect cross-border 
capital flow in China. 

Table 3: Examples of ambiguity of entailment-
related words, where the disjoint features be-
long to a different sense of the word. 
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    The second group consists of words that can be 
entailing, but only in a context-dependent (ana-
phoric) manner rather than ontologically. For ex-
ample, government and neighbour, while 
neighbour is used in the meaning of “ neighbouring 
(country) government” . Finally, sometimes one or 
both of the words are abstract and general enough 
and also highly ambiguous to appear with a wide 
range of features on the web, like element (vio-
lence – element, with all the tested features of vio-
lence included by element). 

To prevent occurrences of the second case more 
characteristic and discriminative features should be 
provided. For this purpose features extracted from 
the web, which are not domain-biased (like fea-
tures from the corpus) and multi-word features 
may be helpful. Overall, though, there might be 
inherent cases that invalidate Hypothesis II. 

6 Improving Lexical Entailment Pre-
diction by ITA (Inclusion Testing 
Algor ithm) 

In this section we show that ITA can be practically 
used to improve the (non-directional) lexical en-
tailment prediction task described in Section 2. 
Given the output of the distributional similarity 
method, we employ ITA at the word level to filter 
out non-entailing pairs. Word pairs that satisfy fea-
ture inclusion of all k features (at least in one direc-
tion) are claimed as entailing.  

 The same test sample of 200 word pairs men-
tioned in Section 5.1 was used in this experiment. 
The results were compared to RFF under Lin’s 
similarity scheme (RFF-top-40 in Table 5).  

 Precision was significantly improved, filtering 
out 60% of the incorrect pairs. On the other hand, 
the relative recall (considering RFF recall as 
100%) was only reduced by 13%, consequently 

leading to a better relative F1, when considering 
the RFF-top-40 output as 100% recall (Table 5). 

 Since our method removes about 35% of the 
original top-40 RFF output, it was interesting to 
compare our results to simply cutting off the 35% 
of the lowest ranked RFF words (top-26). The 
comparison to the baseline (RFF-top-26 in Table 
5) showed that ITA filters the output much better 
than just cutting off the lowest ranking similarities.  

 We also tried a couple of variations on feature 
sampling for the web-based procedure. In one of 
our preliminary experiments we used the top-k 
RFF features instead of random selection. But we 
observed that top ranked RFF features are less dis-
criminative than the random ones due to the nature 
of the RFF weighting strategy, which promotes 
features shared by many similar words. Then, we 
attempted doubling the sampling to 40 random fea-
tures. As expected the recall was slightly de-
creased, while precision was increased by over 5%. 
In summary, the behavior of ITA sampling of 
k=20 and k=40 features is closely comparable 
(ITA-20 and ITA-40 in Table 5, respectively)4.     

7 Conclusions and Future Work 

The main contributions of this paper were: 
1.  We defined two Distributional Inclusion Hy-
potheses that associate feature inclusion with lexi-
cal entailment at the word sense level. The 
Hypotheses were proposed as a refinement for 
Harris’  Distributional hypothesis and as an exten-
sion to the classic distributional similarity scheme. 
2.   To estimate the empirical validity of the de-
fined hypotheses we developed an automatic inclu-
sion testing algorithm (ITA). The core of the 
algorithm is a web-based feature inclusion testing 
procedure, which helped significantly to compen-
sate for data sparseness. 
3.    Then a thorough analysis of the data behavior 
with respect to the proposed hypotheses was con-
ducted. The first hypothesis was almost fully at-
tested by the data, particularly at the sense level, 
while the second hypothesis did not fully hold.  
4.   Motivated by the empirical analysis we pro-
posed to employ ITA for the practical task of im-
proving lexical entailment acquisition. The 
algorithm was applied as a filtering technique on 
the distributional similarity (RFF) output. We ob-

                                                           
4 The ITA-40 sampling f its the analysis from section 5.2 and 5.3 as well. 

Method Precision Recall F1 
ITA-20 0.700 0.875 0.777 
ITA-40 0.740 0.846 0.789 
RFF-top-40 0.520 1.000 0.684 
RFF-top-26 0.561 0.701 0.624 
Table 5: Comparative results of using the 
filter, with 20 and 40 feature sampling, com-
pared to RFF top-40 and RFF top-26 simi-
larities. ITA-20 and ITA-40 denote the web-
sampling method with 20 and random 40 
features, respectively. 
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tained 17% increase of precision and succeeded to 
improve relative F1 by 15% over the baseline.      
    Although the results were encouraging our man-
ual data analysis shows that we still have to handle 
word ambiguity. In particular, this is important in 
order to be able to learn the direction of entailment.  
     To achieve better precision we need to increase 
feature discriminativeness. To this end syntactic 
features may be extended to contain more than one 
word, and ways for automatic extraction of fea-
tures from the web (rather than from a corpus) may 
be developed. Finally, further investigation of 
combining the distributional and the co-occurrence 
pattern-based approaches over the web is desired. 
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