
Proceedings of the 43rd Annual Meeting of the ACL, pages 91–98,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Online Large-Margin Training of Dependency Parsers

Ryan McDonald Koby Crammer Fernando Pereira
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA

{ryantm,crammer,pereira}@cis.upenn.edu

Abstract

We present an effective training al-
gorithm for linearly-scored dependency
parsers that implements online large-
margin multi-class training (Crammer and
Singer, 2003; Crammer et al., 2003) on
top of efficient parsing techniques for de-
pendency trees (Eisner, 1996). The trained
parsers achieve a competitive dependency
accuracy for both English and Czech with
no language specific enhancements.

1 Introduction

Research on training parsers from annotated data
has for the most part focused on models and train-
ing algorithms for phrase structure parsing. The
best phrase-structure parsing models represent gen-
eratively the joint probabilityP (x,y) of sentence
x having the structurey (Collins, 1999; Charniak,
2000). Generative parsing models are very conve-
nient because training consists of computing proba-
bility estimates from counts of parsing events in the
training set. However, generative models make com-
plicated and poorly justified independence assump-
tions and estimations, so we might expect better per-
formance from discriminatively trained models, as
has been shown for other tasks like document classi-
fication (Joachims, 2002) and shallow parsing (Sha
and Pereira, 2003). Ratnaparkhi’s conditional max-
imum entropy model (Ratnaparkhi, 1999), trained
to maximize conditional likelihoodP (y|x) of the
training data, performed nearly as well as generative

models of the same vintage even though it scores
parsing decisions in isolation and thus may suffer
from the label bias problem (Lafferty et al., 2001).

Discriminatively trained parsers that score entire
trees for a given sentence have only recently been
investigated (Riezler et al., 2002; Clark and Curran,
2004; Collins and Roark, 2004; Taskar et al., 2004).
The most likely reason for this is that discrimina-
tive training requires repeatedly reparsing the train-
ing corpus with the current model to determine the
parameter updates that will improve the training cri-
terion. The reparsing cost is already quite high
for simple context-free models withO(n3) parsing
complexity, but it becomes prohibitive for lexical-
ized grammars withO(n5) parsing complexity.

Dependency trees are an alternative syntactic rep-
resentation with a long history (Hudson, 1984). De-
pendency trees capture important aspects of func-
tional relationships between words and have been
shown to be useful in many applications includ-
ing relation extraction (Culotta and Sorensen, 2004),
paraphrase acquisition (Shinyama et al., 2002) and
machine translation (Ding and Palmer, 2005). Yet,
they can be parsed inO(n3) time (Eisner, 1996).
Therefore, dependency parsing is a potential “sweet
spot” that deserves investigation. We focus here on
projective dependency trees in which a word is the
parent of all of its arguments, and dependencies are
non-crossing with respect to word order (see Fig-
ure 1). However, there are cases where crossing
dependencies may occur, as is the case for Czech
(Hajič, 1998). Edges in a dependency tree may be
typed (for instance to indicate grammatical func-
tion). Though we focus on the simpler non-typed

91



root John hit the ball with the bat

Figure 1: An example dependency tree.

case, all algorithms are easily extendible to typed
structures.

The following work on dependency parsing is
most relevant to our research. Eisner (1996) gave
a generative model with a cubic parsing algorithm
based on an edge factorization of trees. Yamada and
Matsumoto (2003) trained support vector machines
(SVM) to make parsing decisions in a shift-reduce
dependency parser. As in Ratnaparkhi’s parser, the
classifiers are trained on individual decisions rather
than on the overall quality of the parse. Nivre and
Scholz (2004) developed a history-based learning
model. Their parser uses a hybrid bottom-up/top-
down linear-time heuristic parser and the ability to
label edges with semantic types. The accuracy of
their parser is lower than that of Yamada and Mat-
sumoto (2003).

We present a new approach to training depen-
dency parsers, based on the online large-margin
learning algorithms of Crammer and Singer (2003)
and Crammer et al. (2003). Unlike the SVM
parser of Yamada and Matsumoto (2003) and Ratna-
parkhi’s parser, our parsers are trained to maximize
the accuracy of the overall tree.

Our approach is related to those of Collins and
Roark (2004) and Taskar et al. (2004) for phrase
structure parsing. Collins and Roark (2004) pre-
sented a linear parsing model trained with an aver-
aged perceptron algorithm. However, to use parse
features with sufficient history, their parsing algo-
rithm must prune heuristically most of the possible
parses. Taskar et al. (2004) formulate the parsing
problem in the large-margin structured classification
setting (Taskar et al., 2003), but are limited to pars-
ing sentences of 15 words or less due to computation
time. Though these approaches represent good first
steps towards discriminatively-trained parsers, they
have not yet been able to display the benefits of dis-
criminative training that have been seen in named-
entity extraction and shallow parsing.

Besides simplicity, our method is efficient and ac-
curate, as we demonstrate experimentally on English

and Czech treebank data.

2 System Description

2.1 Definitions and Background

In what follows, the generic sentence is denoted by
x (possibly subscripted); theith word of x is de-
noted byxi. The generic dependency tree is denoted
by y. If y is a dependency tree for sentencex, we
write (i, j) ∈ y to indicate that there is a directed
edge from wordxi to wordxj in the tree, that is,xi

is the parent ofxj . T = {(xt,yt)}
T
t=1 denotes the

training data.
We follow the edge based factorization method of

Eisner (1996) and define the score of a dependency
tree as the sum of the score of all edges in the tree,

s(x,y) =
∑

(i,j)∈y

s(i, j) =
∑

(i,j)∈y

w · f(i, j)

where f(i, j) is a high-dimensional binary feature
representation of the edge fromxi to xj. For exam-
ple, in the dependency tree of Figure 1, the following
feature would have a value of1:

f(i, j) =

{

1 if xi=‘hit’ and xj=‘ball’
0 otherwise.

In general, any real-valued feature may be used, but
we use binary features for simplicity. The feature
weights in the weight vectorw are the parameters
that will be learned during training. Our training al-
gorithms are iterative. We denote byw(i) the weight
vector after theith training iteration.

Finally we define dt(x) as the set of possi-
ble dependency trees for the input sentencex and
bestk(x; w) as the set ofk dependency trees in dt(x)
that are given the highest scores by weight vectorw,
with ties resolved by an arbitrary but fixed rule.

Three basic questions must be answered for mod-
els of this form: how to find the dependency treey

with highest score for sentencex; how to learn an
appropriate weight vectorw from the training data;
and finally, what feature representationf(i, j) should
be used. The following sections address each of
these questions.

2.2 Parsing Algorithm

Given a feature representation for edges and a
weight vectorw, we seek the dependency tree or

92



h1 h1 h2 h2

⇒

s h1 h1 r r+1 h2 h2 t

h1

h1 h2 h2

⇒

s h1 h1 h2 h2 t

h1

h1

s h1 h1 t

Figure 2:O(n3) algorithm of Eisner (1996), needs to keep 3 indices at any given stage.

trees that maximize the score function,s(x,y). The
primary difficulty is that for a given sentence of
lengthn there are exponentially many possible de-
pendency trees. Using a slightly modified version of
a lexicalized CKY chart parsing algorithm, it is pos-
sible to generate and represent these sentences in a
forest that isO(n5) in size and takesO(n5) time to
create.

Eisner (1996) made the observation that if the
head of each chart item is on the left or right periph-
ery, then it is possible to parse inO(n3). The idea is
to parse the left and right dependents of a word inde-
pendently and combine them at a later stage. This re-
moves the need for the additional head indices of the
O(n5) algorithm and requires only two additional
binary variables that specify the direction of the item
(either gathering left dependents or gathering right
dependents) and whether an item is complete (avail-
able to gather more dependents). Figure 2 shows
the algorithm schematically. As with normal CKY
parsing, larger elements are created bottom-up from
pairs of smaller elements.

Eisner showed that his algorithm is sufficient for
both searching the space of dependency parses and,
with slight modification, finding the highest scoring
tree y for a given sentencex under the edge fac-
torization assumption. Eisner and Satta (1999) give
a cubic algorithm for lexicalized phrase structures.
However, it only works for a limited class of lan-
guages in which tree spines are regular. Further-
more, there is a large grammar constant, which is
typically in the thousands for treebank parsers.

2.3 Online Learning

Figure 3 gives pseudo-code for the generic online
learning setting. A single training instance is con-
sidered on each iteration, and parameters updated
by applying an algorithm-specific update rule to the
instance under consideration. The algorithm in Fig-
ure 3 returns anaveraged weight vector: an auxil-
iary weight vectorv is maintained that accumulates

Training data:T = {(xt, yt)}
T

t=1

1. w0 = 0; v = 0; i = 0

2. for n : 1..N

3. for t : 1..T

4. w(i+1) = updatew(i) according to instance(xt, yt)

5. v = v + w(i+1)

6. i = i + 1

7. w = v/(N ∗ T )

Figure 3: Generic online learning algorithm.

the values ofw after each iteration, and the returned
weight vector is the average of all the weight vec-
tors throughout training. Averaging has been shown
to help reduce overfitting (Collins, 2002).

2.3.1 MIRA

Crammer and Singer (2001) developed a natural
method for large-margin multi-class classification,
which was later extended by Taskar et al. (2003) to
structured classification:

min ‖w‖
s.t. s(x,y) − s(x,y′) ≥ L(y,y′)
∀(x,y) ∈ T , y

′ ∈ dt(x)

whereL(y,y′) is a real-valued loss for the treey′

relative to the correct treey. We define the loss of
a dependency tree as the number of words that have
the incorrect parent. Thus, the largest loss a depen-
dency tree can have is the length of the sentence.

Informally, this update looks to create a margin
between the correct dependency tree and each incor-
rect dependency tree at least as large as the loss of
the incorrect tree. The more errors a tree has, the
farther away its score will be from the score of the
correct tree. In order to avoid a blow-up in the norm
of the weight vector we minimize it subject to con-
straints that enforce the desired margin between the
correct and incorrect trees1.

1The constraints may be unsatisfiable, in which case we can
relax them with slack variables as in SVM training.

93



The Margin Infused Relaxed Algorithm
(MIRA) (Crammer and Singer, 2003; Cram-
mer et al., 2003) employs this optimization directly
within the online framework. On each update,
MIRA attempts to keep the norm of the change to
the parameter vector as small as possible, subject to
correctly classifying the instance under considera-
tion with a margin at least as large as the loss of the
incorrect classifications. This can be formalized by
substituting the following update into line4 of the
generic online algorithm,

min
∥

∥w(i+1) − w(i)
∥

∥

s.t. s(xt,yt)− s(xt,y
′) ≥ L(yt,y

′)
∀y

′ ∈ dt(xt)

(1)

This is a standard quadratic programming prob-
lem that can be easily solved using Hildreth’s al-
gorithm (Censor and Zenios, 1997). Crammer and
Singer (2003) and Crammer et al. (2003) provide
an analysis of both the online generalization error
and convergence properties of MIRA. In equation
(1), s(x,y) is calculated with respect to the weight
vector after optimization,w(i+1).

To apply MIRA to dependency parsing, we can
simply see parsing as a multi-class classification
problem in which each dependency tree is one of
many possible classes for a sentence. However, that
interpretation fails computationally because a gen-
eral sentence has exponentially many possible de-
pendency trees and thus exponentially many margin
constraints.

To circumvent this problem we make the assump-
tion that the constraints that matter for large margin
optimization are those involving the incorrect trees
y
′ with the highest scoress(x,y′). The resulting

optimization made by MIRA (see Figure 3, line 4)
would then be:

min
∥

∥w(i+1) − w(i)
∥

∥

s.t. s(xt,yt) − s(xt,y
′) ≥ L(yt,y

′)

∀y
′ ∈ bestk(xt; w(i))

reducing the number of constraints to the constantk.
We tested various values ofk on a development data
set and found that small values ofk are sufficient to
achieve close to best performance, justifying our as-
sumption. In fact, ask grew we began to observe a
slight degradation of performance, indicating some

overfitting to the training data. All the experiments
presented here usek = 5. The Eisner (1996) algo-
rithm can be modified to find thek-best trees while
only adding an additionalO(k log k) factor to the
runtime (Huang and Chiang, 2005).

A more common approach is to factor the struc-
ture of the output space to yield a polynomial set of
local constraints (Taskar et al., 2003; Taskar et al.,
2004). One such factorization for dependency trees
is

min
∥

∥w(i+1) − w(i)
∥

∥

s.t. s(l, j) − s(k, j) ≥ 1
∀(l, j) ∈ yt, (k, j) /∈ yt

It is trivial to show that if theseO(n2) constraints
are satisfied, then so are those in (1). We imple-
mented this model, but found that the required train-
ing time was much larger than thek-best formu-
lation and typically did not improve performance.
Furthermore, thek-best formulation is more flexi-
ble with respect to the loss function since it does not
assume the loss function can be factored into a sum
of terms for each dependency.

2.4 Feature Set

Finally, we need a suitable feature representation
f(i, j) for each dependency. The basic features in
our model are outlined in Table 1a and b. All fea-
tures are conjoined with the direction of attachment
as well as the distance between the two words being
attached. These features represent a system of back-
off from very specific features over words and part-
of-speech tags to less sparse features over just part-
of-speech tags. These features are added for both the
entire words as well as the5-gram prefix if the word
is longer than5 characters.

Using just features over the parent-child node
pairs in the tree was not enough for high accuracy,
because all attachment decisions were made outside
of the context in which the words occurred. To solve
this problem, we added two other types of features,
which can be seen in Table 1c. Features of the first
type look at words that occur between a child and
its parent. These features take the form of a POS
trigram: the POS of the parent, of the child, and of
a word in between, for all words linearly between
the parent and the child. This feature was particu-
larly helpful for nouns identifying their parent, since

94



a)
Basic Uni-gram Features
p-word, p-pos
p-word
p-pos
c-word, c-pos
c-word
c-pos

b)

Basic Big-ram Features
p-word, p-pos, c-word, c-pos
p-pos, c-word, c-pos
p-word, c-word, c-pos
p-word, p-pos, c-pos
p-word, p-pos, c-word
p-word, c-word
p-pos, c-pos

c)

In Between POS Features
p-pos, b-pos, c-pos
Surrounding Word POS Features
p-pos, p-pos+1, c-pos-1, c-pos
p-pos-1, p-pos, c-pos-1, c-pos
p-pos, p-pos+1, c-pos, c-pos+1
p-pos-1, p-pos, c-pos, c-pos+1

Table 1: Features used by system. p-word: word of parent nodein dependency tree. c-word: word of child
node. p-pos: POS of parent node. c-pos: POS of child node. p-pos+1: POS to the right of parent in sentence.
p-pos-1: POS to the left of parent. c-pos+1: POS to the right of child. c-pos-1: POS to the left of child.
b-pos: POS of a word in between parent and child nodes.

it would typically rule out situations when a noun
attached to another noun with a verb in between,
which is a very uncommon phenomenon.

The second type of feature provides the local con-
text of the attachment, that is, the words before and
after the parent-child pair. This feature took the form
of a POS4-gram: The POS of the parent, child,
word before/after parent and word before/after child.
The system also used back-off features to various tri-
grams where one of the local context POS tags was
removed. Adding these two features resulted in a
large improvement in performance and brought the
system to state-of-the-art accuracy.

2.5 System Summary

Besides performance (see Section 3), the approach
to dependency parsing we described has several
other advantages. The system is very general and
contains no language specific enhancements. In fact,
the results we report for English and Czech use iden-
tical features, though are obviously trained on differ-
ent data. The online learning algorithms themselves
are intuitive and easy to implement.

The efficientO(n3) parsing algorithm of Eisner
allows the system to search the entire space of de-
pendency trees while parsing thousands of sentences
in a few minutes, which is crucial for discriminative
training. We compare the speed of our model to a
standard lexicalized phrase structure parser in Sec-
tion 3.1 and show a significant improvement in pars-
ing times on the testing data.

The major limiting factor of the system is its re-
striction to features over single dependency attach-
ments. Often, when determining the next depen-

dent for a word, it would be useful to know previ-
ous attachment decisions and incorporate these into
the features. It is fairly straightforward to modify
the parsing algorithm to store previous attachments.
However, any modification would result in an as-
ymptotic increase in parsing complexity.

3 Experiments

We tested our methods experimentally on the Eng-
lish Penn Treebank (Marcus et al., 1993) and on the
Czech Prague Dependency Treebank (Hajič, 1998).
All experiments were run on a dual 64-bit AMD
Opteron 2.4GHz processor.

To create dependency structures from the Penn
Treebank, we used the extraction rules of Yamada
and Matsumoto (2003), which are an approximation
to the lexicalization rules of Collins (1999). We split
the data into three parts: sections 02-21 for train-
ing, section 22 for development and section 23 for
evaluation. Currently the system has6, 998, 447 fea-
tures. Each instance only uses a tiny fraction of these
features making sparse vector calculations possible.
Our system assumes POS tags as input and uses the
tagger of Ratnaparkhi (1996) to provide tags for the
development and evaluation sets.

Table 2 shows the performance of the systems
that were compared. Y&M2003 is the SVM-shift-
reduce parsing model of Yamada and Matsumoto
(2003), N&S2004 is the memory-based learner of
Nivre and Scholz (2004) and MIRA is the the sys-
tem we have described. We also implemented an av-
eraged perceptron system (Collins, 2002) (another
online learning algorithm) for comparison. This ta-
ble compares onlypure dependency parsers that do

95



English Czech
Accuracy Root Complete Accuracy Root Complete

Y&M2003 90.3 91.6 38.4 - - -
N&S2004 87.3 84.3 30.4 - - -

Avg. Perceptron 90.6 94.0 36.5 82.9 88.0 30.3
MIRA 90.9 94.2 37.5 83.3 88.6 31.3

Table 2: Dependency parsing results for English and Czech.Accuracy is the number of words that correctly
identified their parent in the tree.Root is the number of trees in which the root word was correctly identified.
For Czech this is f-measure since a sentence may have multiple roots.Complete is the number of sentences
for which the entire dependency tree was correct.

not exploit phrase structure. We ensured that the
gold standard dependencies of all systems compared
were identical.

Table 2 shows that the model described here per-
forms as well or better than previous comparable
systems, including that of Yamada and Matsumoto
(2003). Their method has the potential advantage
that SVM batch training takes into account all of
the constraints from all training instances in the op-
timization, whereas online training only considers
constraints from one instance at a time. However,
they are fundamentally limited by their approximate
search algorithm. In contrast, our system searches
the entire space of dependency trees and most likely
benefits greatly from this. This difference is am-
plified when looking at the percentage of trees that
correctly identify the root word. The models that
search the entire space will not suffer from bad ap-
proximations made early in the search and thus are
more likely to identify the correct root, whereas the
approximate algorithms are prone to error propaga-
tion, which culminates with attachment decisions at
the top of the tree. When comparing the two online
learning models, it can be seen that MIRA outper-
forms the averaged perceptron method. This differ-
ence is statistically significant,p < 0.005 (McNe-
mar test on head selection accuracy).

In our Czech experiments, we used the depen-
dency trees annotated in the Prague Treebank, and
the predefined training, development and evaluation
sections of this data. The number of sentences in
this data set is nearly twice that of the English tree-
bank, leading to a very large number of features —
13, 450, 672. But again, each instance uses just a
handful of these features. For POS tags we used the
automatically generated tags in the data set. Though
we made no language specific model changes, we

did need to make some data specific changes. In par-
ticular, we used the method of Collins et al. (1999) to
simplify part-of-speech tags since the rich tags used
by Czech would have led to a large but rarely seen
set of POS features.

The model based on MIRA also performs well on
Czech, again slightly outperforming averaged per-
ceptron. Unfortunately, we do not know of any other
parsing systems tested on the same data set. The
Czech parser of Collins et al. (1999) was run on a
different data set and most other dependency parsers
are evaluated using English. Learning a model from
the Czech training data is somewhat problematic
since it contains some crossing dependencies which
cannot be parsed by the Eisner algorithm. One trick
is to rearrange the words in the training set so that
all trees are nested. This at least allows the train-
ing algorithm to obtain reasonably low error on the
training set. We found that this did improve perfor-
mance slightly to83.6% accuracy.

3.1 Lexicalized Phrase Structure Parsers

It is well known that dependency trees extracted
from lexicalized phrase structure parsers (Collins,
1999; Charniak, 2000) typically are more accurate
than those produced by pure dependency parsers
(Yamada and Matsumoto, 2003). We compared
our system to the Bikel re-implementation of the
Collins parser (Bikel, 2004; Collins, 1999) trained
with the same head rules of our system. There are
two ways to extract dependencies from lexicalized
phrase structure. The first is to use the automatically
generated dependencies that are explicit in the lex-
icalization of the trees, we call this systemCollins-
auto. The second is to take just the phrase structure
output of the parser and run the automatic head rules
over it to extract the dependencies, we call this sys-

96



English
Accuracy Root Complete Complexity Time

Collins-auto 88.2 92.3 36.1 O(n5) 98m 21s
Collins-rules 91.4 95.1 42.6 O(n5) 98m 21s

MIRA-Normal 90.9 94.2 37.5 O(n3) 5m 52s
MIRA-Collins 92.2 95.8 42.9 O(n5) 105m 08s

Table 3: Results comparing our system to those based on the Collins parser. Complexity represents the
computational complexity of each parser andTime the CPU time to parse sec. 23 of the Penn Treebank.

temCollins-rules. Table 3 shows the results compar-
ing our system,MIRA-Normal, to the Collins parser
for English. All systems are implemented in Java
and run on the same machine.

Interestingly, the dependencies that are automati-
cally produced by the Collins parser are worse than
those extracted statically using the head rules. Ar-
guably, this displays the artificialness of English de-
pendency parsing using dependencies automatically
extracted from treebank phrase-structure trees. Our
system falls in-between, better than the automati-
cally generated dependency trees and worse than the
head-rule extracted trees.

Since the dependencies returned from our system
are better than those actually learnt by the Collins
parser, one could argue that our model is actu-
ally learning to parse dependencies more accurately.
However, phrase structure parsers are built to max-
imize the accuracy of the phrase structure and use
lexicalization as just an additional source of infor-
mation. Thus it is not too surprising that the de-
pendencies output by the Collins parser are not as
accurate as our system, which is trained and built to
maximize accuracy on dependency trees. In com-
plexity and run-time, our system is a huge improve-
ment over the Collins parser.

The final system in Table 3 takes the output of
Collins-rules and adds a feature toMIRA-Normal
that indicates for given edge, whether the Collins
parser believed this dependency actually exists, we
call this systemMIRA-Collins. This is a well known
discriminative training trick — using the sugges-
tions of a generative system to influence decisions.
This system can essentially be considered a correc-
tor of the Collins parser and represents a significant
improvement over it. However, there is an added
complexity with such a model as it requires the out-
put of theO(n5) Collins parser.

k=1 k=2 k=5 k=10 k=20
Accuracy 90.73 90.82 90.88 90.92 90.91

Train Time 183m 235m 627m 1372m 2491m

Table 4: Evaluation ofk-best MIRA approximation.

3.2 k-best MIRA Approximation

One question that can be asked is how justifiable is
the k-best MIRA approximation. Table 4 indicates
the accuracy on testing and the time it took to train
models withk = 1, 2, 5, 10, 20 for the English data
set. Even though the parsing algorithm is propor-
tional to O(k log k), empirically, the training times
scale linearly withk. Peak performance is achieved
very early with a slight degradation aroundk=20.
The most likely reason for this phenomenon is that
the model is overfitting by ensuring that even un-
likely trees are separated from the correct tree pro-
portional to their loss.

4 Summary

We described a successful new method for training
dependency parsers. We use simple linear parsing
models trained with margin-sensitive online training
algorithms, achieving state-of-the-art performance
with relatively modest training times and no need
for pruning heuristics. We evaluated the system on
both English and Czech data to display state-of-the-
art performance without any language specific en-
hancements. Furthermore, the model can be aug-
mented to include features over lexicalized phrase
structure parsing decisions to increase dependency
accuracy over those parsers.

We plan on extending our parser in two ways.
First, we would add labels to dependencies to rep-
resent grammatical roles. Those labels are very im-
portant for using parser output in tasks like infor-
mation extraction or machine translation. Second,

97



we are looking at model extensions to allow non-
projective dependencies, which occur in languages
such as Czech, German and Dutch.

Acknowledgments: We thank Jan Hajič for an-
swering queries on the Prague treebank, and Joakim
Nivre for providing the Yamada and Matsumoto
(2003) head rules for English that allowed for a di-
rect comparison with our systems. This work was
supported by NSF ITR grants 0205456, 0205448,
and 0428193.

References

D.M. Bikel. 2004. Intricacies of Collins parsing model.
Computational Linguistics.

Y. Censor and S.A. Zenios. 1997.Parallel optimization :
theory, algorithms, and applications. Oxford Univer-
sity Press.

E. Charniak. 2000. A maximum-entropy-inspired parser.
In Proc. NAACL.

S. Clark and J.R. Curran. 2004. Parsing the WSJ using
CCG and log-linear models. InProc. ACL.

M. Collins and B. Roark. 2004. Incremental parsing with
the perceptron algorithm. InProc. ACL.

M. Collins, J. Hajič, L. Ramshaw, and C. Tillmann. 1999.
A statistical parser for Czech. InProc. ACL.

M. Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University
of Pennsylvania.

M. Collins. 2002. Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithms. InProc. EMNLP.

K. Crammer and Y. Singer. 2001. On the algorithmic
implementation of multiclass kernel based vector ma-
chines.JMLR.

K. Crammer and Y. Singer. 2003. Ultraconservative on-
line algorithms for multiclass problems.JMLR.

K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer.
2003. Online passive aggressive algorithms. InProc.
NIPS.

A. Culotta and J. Sorensen. 2004. Dependency tree ker-
nels for relation extraction. InProc. ACL.

Y. Ding and M. Palmer. 2005. Machine translation using
probabilistic synchronous dependency insertion gram-
mars. InProc. ACL.

J. Eisner and G. Satta. 1999. Efficient parsing for bilexi-
cal context-free grammars and head-automaton gram-
mars. InProc. ACL.

J. Eisner. 1996. Three new probabilistic models for de-
pendency parsing: An exploration. InProc. COLING.

J. Hajič. 1998. Building a syntactically annotated cor-
pus: The Prague dependency treebank.Issues of Va-
lency and Meaning.

L. Huang and D. Chiang. 2005. Betterk-best parsing.
Technical Report MS-CIS-05-08, University of Penn-
sylvania.

Richard Hudson. 1984.Word Grammar. Blackwell.

T. Joachims. 2002.Learning to Classify Text using Sup-
port Vector Machines. Kluwer.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. InProc. ICML.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of english: the penn
treebank.Computational Linguistics.

J. Nivre and M. Scholz. 2004. Deterministic dependency
parsing of english text. InProc. COLING.

A. Ratnaparkhi. 1996. A maximum entropy model for
part-of-speech tagging. InProc. EMNLP.

A. Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models.Machine
Learning.

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
and M. Johnson. 2002. Parsing the Wall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. InProc. ACL.

F. Sha and F. Pereira. 2003. Shallow parsing with condi-
tional random fields. InProc. HLT-NAACL.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. InProc. HLT.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. InProc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. InProc. EMNLP.

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. InProc.
IWPT.

98


