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Abstract

We discuss Feature Latent Semantic Analysis
(FLSA), an extension to Latent Semantic Analysis
(LSA). LSA is a statistical method that is ordinar-
ily trained on words only; FLSA adds to LSA the
richness of the many other linguistic features that
a corpus may be labeled with. We applied FLSA
to dialogue act classification with excellent results.
We report results on three corpora: CallHome Span-
ish, MapTask, and our own corpus of tutoring dia-
logues.

1 Introduction

In this paper, we propose Feature Latent Semantic
Analysis (FLSA) as an extension to Latent Seman-
tic Analysis (LSA). LSA can be thought as repre-
sentingthe meaning of a word as a kind of average
of the meanings of all the passages in which it ap-
pears, and the meaning of a passage as a kind of
average of the meaning of all the words it contains
(Landauer and Dumais, 1997). It builds a semantic
space where words and passages are represented as
vectors. LSA is based on Single Value Decompo-
sition (SVD), a mathematical technique thatcauses
the semantic space to be arranged so as to reflect
the major associative patterns in the data. LSA has
been successfully applied to many tasks, such as as-
sessing the quality of student essays (Foltz et al.,
1999) or interpreting the student’s input in an Intel-
ligent Tutoring system (Wiemer-Hastings, 2001).

A common criticism of LSA is that it uses only
words and ignores anything else, e.g. syntactic in-
formation: to LSA,man bites dogis identical todog
bites man. We suggest that an LSA semantic space
can be built from the co-occurrence of arbitrary tex-
tual features, not just words. We are calling LSA
augmented with features FLSA, for Feature LSA.
Relevant prior work on LSA only includes Struc-
tured Latent Semantic Analysis (Wiemer-Hastings,
2001), and the predication algorithm of (Kintsch,
2001). We will show that for our task, dialogue
act classification, syntactic features do not help, but

most dialogue related features do. Surprisingly, one
dialogue related feature that does not help is the di-
alogue act history.

We applied LSA / FLSA to dialogue act classi-
fication. Dialogue systems need to perform dia-
logue act classification, in order to understand the
role the user’s utterance plays in the dialogue (e.g.,
a question for information or a request to perform
an action). In recent years, a variety of empiri-
cal techniques have been used to train the dialogue
act classifier (Samuel et al., 1998; Stolcke et al.,
2000). A second contribution of our work is to
show that FLSA is successful at dialogue act classi-
fication, reaching comparable or better results than
other published methods. With respect to a baseline
of choosing the most frequent dialogue act (DA),
LSA reduces error rates between 33% and 52%, and
FLSA reduces error rates between 60% and 78%.

LSA is an attractive method for this task because
it is straightforward to train and use. More impor-
tantly, although it is a statistical theory, it has been
shown to mimic many aspects of human compe-
tence / performance (Landauer and Dumais, 1997).
Thus, it appears to capture important components
of meaning. Our results suggest that LSA / FLSA
do so also as concerns DA classification. On Map-
Task, our FLSA classifier agrees with human coders
to a satisfactory degree, and makes most of the same
mistakes.

2 Feature Latent Semantic Analysis

We will start by discussing LSA. The input to LSA
is a Word-Document matrix W with a row for each
word, and a column for eachdocument(for us, a
document is a unit, e.g. an utterance, tagged with a
DA). Cell c(i, j) contains the frequency with which
wordi appears indocumentj .1 Clearly, thisw × d
matrix W will be very sparse. Next, LSA applies

1Word frequencies are normally weighted according to spe-
cific functions, but we used raw frequencies because we wanted
to assess our extensions to LSA independently from any bias
introduced by the specific weighting technique.



to W Singular Value Decomposition (SVD), to de-
compose it into the product of three other matrices,
W = T0S0D

T
0 , so thatT0 andD0 have orthonormal

columns andS0 is diagonal. SVD then provides
a simple strategy for optimal approximate fit using
smaller matrices. If the singular values inS0 are or-
dered by size, the firstk largest may be kept and the
remaining smaller ones set to zero. The product of
the resulting matrices is a matrix̂W of rankk which
is approximately equal toW ; it is the matrix of rank
k with the best possible least-squares-fit toW .

The number of dimensionsk retained by LSA is
an empirical question. However, cruciallyk is much
smaller than the dimension of the original space.
The results we will report later are for the bestk
we experimented with.

Figure 1 shows a hypothetical dialogue annotated
with MapTask style DAs. Table 1 shows the Word-
Document matrix W that LSA starts with – note that
as usual stop words such asa, the, youhave been
eliminated.2 Table 2 shows the approximate repre-
sentation of W in a much smaller space.

To choose the best tag for a document in the test
set, we first compute its vector representation in the
semantic space LSA computed, then we compare
the vector representing the new document with the
vector of each document in the training set. The
tag of the document which has the highest similarity
with our test vector is assigned to the new document
– it is customary to use the cosine between the two
vectors as a measure of similarity. In our case, the
new document is a unit (utterance) to be tagged with
a DA, and we assign to it the DA of the document in
the training set to which the new document is most
similar.

Feature LSA. In general, in FLSA we add extra
features to LSA by adding a new “word” for each
value that the feature of interest can take (in some
cases, e.g. when adding POS tags, we extend the
matrix in a different way — see Sec. 4). The only
assumption is that there are one or more non word
related features associated with each document that
can take a finite number of values. In the Word–
Document matrix, the word index is increased to in-
clude a new place holder for each possible value the
feature may take. When creating the matrix, a count
of one is placed in the rows related to the new in-
dexes if a particular feature applies to the document
under analysis. For instance, if we wish to include
the speaker identity as a new feature for the dialogue

2We use a very short list of stop words (< 50), as our experi-
ments revealed that for dialogue act annotation LSA is sensitive
to the most common words too. This is whyto is included in
Table 1.

in Figure 1, the initial Word–Document matrix will
be modified as in Table 3 (its first 14 rows are as in
Table 1).

This process is easily extended if more than one
non-word feature is desired per document, if more
than one feature value applies to a single document
or if a single feature appears more than once in a
document (Serafin, 2003).

3 Corpora

We report experiments on three corpora, Spanish
CallHome, MapTask, and DIAG-NLP.

The Spanish CallHome corpus (Levin et al.,
1998; Ries, 1999) comprises 120 unrestricted phone
calls in Spanish between family members and
friends, for a total of 12066 unique words and 44628
DAs. The Spanish CallHome corpus is annotated at
three levels: DAs, dialogue games and dialogue ac-
tivities. The DA annotation augments a basic tag
such asstatementalong several dimensions, such
as whether the statement describes a psychologi-
cal state of the speaker. This results in 232 differ-
ent DA tags, many with very low frequencies. In
this sort of situations, tag categories are often col-
lapsed when running experiments so as to get mean-
ingful frequencies (Stolcke et al., 2000). In Call-
Home37, we collapsed different types of statements
and backchannels, obtaining 37 different tags. Call-
Home37 maintains some subcategorizations, e.g.
whether a question is yes/no or rhetorical. In Call-
Home10, we further collapse these categories. Call-
Home10 is reduced to 8 DAs proper (e.g., state-
ment, question, answer) plus the two tags‘‘%’’
for abandoned sentences and‘‘x’’ for noise.
CallHome Spanish is further annotated for dialogue
games and activities. Dialogue game annotation is
based on the MapTask notion of a dialogue game,
a set of utterances starting with an initiation and
encompassing all utterances up until the purpose of
the game has been fulfilled (e.g., the requested infor-
mation has been transferred) or abandoned(Car-
letta et al., 1997). Moves are the components of
games, they correspond to a single or more DAs,
and each is tagged as Initiative, Response or Feed-
back. Each game is also given a label, such as
Info(rmation)or Direct(ive). Finally, activities per-
tain to the main goal of a certain discourse stretch,
such asgossipor argue.

The HCRC MapTask corpus is a collection of di-
alogues regarding a “Map Task” experiment. Two
participants sit opposite one another and each of
them receives a map, but the two maps differ. The
instruction giver (G)’s map has a route indicated
while instruction follower (F)’s map does not in-



(Doc 1) G: Do you see the lake with the black swan? Query–yn

(Doc 2) F: Yes, I do Reply–y

(Doc 3) G: Ok, Ready

(Doc 4) G: draw a line straight to it Instruct

(Doc 5) F: straight to the lake? Check

(Doc 6) G: yes, that’s right Reply–y

(Doc 7) F: Ok, I’ll do it Acknowledge

Figure 1: A hypothetical dialogue annotated with MapTask tags

(Doc 1) (Doc 2) (Doc 3) (Doc 4) (Doc 5) (Doc 6) (Doc 7)
do 1 1 0 0 0 0 1
see 1 0 0 0 0 0 0
lake 1 0 0 0 1 0 0
black 1 0 0 0 0 0 0
swan 1 0 0 0 0 0 0
yes 0 1 0 0 0 1 0
ok 0 0 1 0 0 0 1
draw 0 0 0 1 0 0 0
line 0 0 0 1 0 0 0
straight 0 0 0 1 1 0 0
to 0 0 0 1 1 0 0
it 0 0 0 1 0 0 1
that 0 0 0 0 0 1 0
right 0 0 0 0 0 1 0

Table 1: The14-dimensional word-document matrixW

clude the drawing of the route. The task is for G
to give directions to F, so that, at the end, F is able
to reproduce G’s route on her map. The MapTask
corpus is composed of 128 dialogues, for a total of
1,835 unique words and 27,084 DAs. It has been
tagged at various levels, from POS to disfluencies,
from syntax to DAs. The MapTask coding scheme
uses 13 DAs (called moves), that include:Instruct
(a request that the partner carry out an action),Ex-
plain (one of the partners states some information
that was not explicitly elicited by the other),Query-
yn/-w, Acknowledge, Reply-y/-n/-wand others. The
MapTask corpus is also tagged for games as defined
above, but differently from CallHome, 6 DAs are
identified as potential initiators of games (of course
not every initiator DA initiates a game). Finally,
transactions provide the subdialogue structure of a
dialogue; each is built of several dialogue games
and corresponds to one step of the task.

DIAG-NLP is a corpus of computer mediated tu-
toring dialogues between a tutor and a student who
is diagnosing a fault in a mechanical system with a

tutoring system built with the DIAG authoring tool
(Towne, 1997). The student’s input is via menu, the
tutor is in a different room and answers via a text
window. The DIAG-NLP corpus comprises 23 ’dia-
logues’ for a total of 607 unique words and 660 DAs
(it is thus much smaller than the other two). It has
been annotated for a variety of features, including
four DAs3 (Glass et al., 2002):problem solving, the
tutor gives problem solving directions;judgment,
the tutor evaluates the student’s actions or diagno-
sis; domain knowledge, the tutor imparts domain
knowledge; andother, when none of the previous
three applies. Other features encode domain objects
and their properties, andConsult Type, the type of
student query.

4 Results
Table 4 reports the results we obtained for each cor-
pus and method (to train and evaluate each method,
we used 5-fold cross-validation). We include the
baseline, computed as picking the most frequent DA

3They should be more appropriately termedtutor moves.



(Doc 1) (Doc 2) (Doc 3) (Doc 4) (Doc 5) (Doc 6) (Doc 7)
Dim. 1 1.3076 0.4717 0.1529 1.6668 1.1737 0.1193 0.9101
Dim. 2 1.5991 0.6797 0.0958 -1.3697 -0.4771 0.2844 0.4205

Table 2: The reduced2-dimensional matrixŴ

(Doc 1) (Doc 2) (Doc 3) (Doc 4) (Doc 5) (Doc 6) (Doc 7)
do 1 1 0 0 0 0 1
...

...
...

...
...

...
...

...
right 0 0 0 0 0 1 0
<Giver> 1 0 1 1 0 1 0
<Follower> 0 1 0 0 1 0 1

Table 3: Word-document matrixW augmented with speaker identity

in each corpus;4 the accuracy for LSA; the best ac-
curacy for FLSA, and with what combination of
features it was obtained; the best published result,
taken from (Ries, 1999) and from (Lager and Zi-
novjeva, 1999) respectively for CallHome and for
MapTask. Finally, for both LSA and FLSA, Table 4
includes, in parenthesis, the dimensionk of the re-
duced semantic space. For each LSA method and
corpus, we experimented with values ofk between
25 and 350. The values ofk that give us the best re-
suls for each method were thus selected empirically.

In all cases, we can see that LSA performs
much better than baseline. Moreover, we can see
that FLSA further improves performance, dramati-
cally in the case of MapTask. FLSA reduces error
rates between 60% and 78%, for all corpora other
than DIAG-NLP (all differences in performance be-
tween LSA and FLSA are significant, other than for
DIAG-NLP). DIAG-NLP may be too small a cor-
pus to train FLSA; orConsult Typemay not be ef-
fective, but it was the only feature appropriate for
FLSA (Sec. 5 discusses how we chose appropriate
features). Another extension to LSA we developed,
Clustered LSA, did give an improvement in perfor-
mance for DIAG (79.24%) — please see (Serafin,
2003).

As regards comparable approaches, the perfor-
mance of FLSA is as good or better. For Span-
ish CallHome, (Ries, 1999) reports 76.2% accu-
racy with a hybrid approach that couples Neural
Networks and ngram backoff modeling; the former
uses prosodic features and POS tags, and interest-
ingly works best with unigram backoff modeling,
i.e., without taking into account the DA history – see
our discussion of the ineffectiveness of the DA his-
tory below. However, (Ries, 1999) does not mention

4The baselines for CallHome37 and CallHome10 are the
same because in bothstatementis the most frequent DA.

his target classification, and the reported baseline of
picking the most frequent DA appears compatible
with both CallHome37 and CallHome10.5 Thus,
our results with FLSA are slightly worse (- 1.33%)
or better (+ 2.68%) than Ries’, depending on the
target classification. On MapTask, (Lager and Zi-
novjeva, 1999) achieves 62.1% with Transformation
Based Learning using single words, bigrams, word
position within the utterance, previous DA, speaker
and change of speaker. We achieve much better per-
formance on MapTask with a number of our FLSA
models.

As regards results on DA classification for other
corpora, the best performances obtained are up to
75% for task-oriented dialogues such as Verbmobil
(Samuel et al., 1998). (Stolcke et al., 2000) reports
an impressive 71% accuracy on transcribed Switch-
board dialogues, using a tag set of 42 DAs. These
are unrestricted English telephone conversations be-
tween two strangers that discuss a general interest
topic. The DA classification task appears more diffi-
cult for corpora such as Switchboard and CallHome
Spanish, that cannot benefit from the regularities
imposed on the dialogue by a specific task. (Stolcke
et al., 2000) employs a combination of HMM, neu-
ral networks and decision trees trained on all avail-
able features (words, prosody, sequence of DAs and
speaker identity).

Table 5 reports a breakdown of the experimental
results obtained with FLSA for the three tasks for
which it was successful (Table 5 does not include
k, which is always 25 for CallHome37 and Call-
Home10, and varies between 25 and 75 for Map-
Task). For each corpus, under the line we find re-
sults that are significantly better than those obtained
with LSA. For MapTask, the first 4 results that are

5An inquiry to clarify this issue went unanswered.



Corpus Baseline LSA FLSA Features Best known result
CallHome37 42.68% 65.36% (k = 50) 74.87% (k = 25) Game + Initiative 76.20%
CallHome10 42.68% 68.91% (k = 25) 78.88% (k = 25) Game + Initiative 76.20%
MapTask 20.69% 42.77% (k = 75) 73.91% (k = 25) Game + Speaker 62.10%
DIAG-NLP 43.64% 75.73% (k = 50) 74.81% (k = 50) Consult Type n.a.

Table 4: Accuracy for LSA and FLSA

Corpus accuracy Features
CallHome37 62.58% Previous DA
CallHome37 71.08% Initiative
CallHome37 72.69% Game
CallHome37 74.87% Game+Initiative
CallHome10 68.32% Previous DA
CallHome10 73.97% Initiative
CallHome10 76.52% Game
CallHome10 78.88% Game+Initiative
MapTask 41.84% SRule
MapTask 43.28% POS
MapTask 43.59% Duration
MapTask 46.91% Speaker
MapTask 47.09% Previous DA
MapTask 66.00% Game
MapTask 69.37% Game+Prev. DA
MapTask 73.25% Game+Speaker+Prev. DA
MapTask 73.91% Game+Speaker

Table 5: FLSA Accuracy

better than LSA (from POS to Previous DA) are still
pretty low; there is a difference of 19% in perfor-
mance for FLSA whenPrevious DAis added and
whenGameis added.

Analysis. A few general conclusions can be
drawn from Table 5, as they apply in all three cases.
First, using the previous DA does not help, either
at all (CallHome37 and CallHome10), or very lit-
tle (MapTask). Increasing the length of the dialogue
history does not improve performance. In other ex-
periments, we increased the length up ton = 4:
we found that the highern, the worse the perfor-
mance. As we will see in Section 5, introducing
any new feature results in a larger and sparser initial
matrix, which makes the task harder for FLSA; to
be effective, the amount of information provided by
the new feature must be sufficient to overcome this
handicap. It is clear that, the longer the dialogue his-
tory, the sparser the initial matrix becomes, which
explains why performance decreases. However, this
does not explain why using even only the previous
DA does not help. This implies that the previous
DA does not provide a lot of information, as in fact
is shown numerically in Section 5. This is surpris-
ing because the DA history is usually considered an
important determinant of the current DA (but (Ries,

1999) observed the same).
Second, the notion ofGameappears to be really

powerful, as it vastly improves performance on two
very different corpora such as CallHome and Map-
Task.6 We will come back to discussing the usage
of Gamein a real dialogue system in Section 6.

Third, the syntactic features we had access to do
not seem to improve performance (they were avail-
able only for MapTask). In MapTaskSRuleindi-
cates the main structure of the utterance, such as
Declarativeor Wh-question. It is not surprising that
SRuledid not help, since it is well known that syn-
tactic form is not predictive of DAs, especially those
of indirect speech actflavor (Searle, 1975). POS
tags don’t help LSA either, as has already been ob-
served by (Wiemer-Hastings, 2001; Kanejiya et al.,
2003) for other tasks. The likely reason is that it is
necessary to add a different ’word’ for each distinct
pair word-POS, e.g.,route becomes split asroute-
NN androute-VB. This makes the Word-Document
matrix much sparser: for MapTask, the number of
rows increases from 1,835 for plain LSA to 2,324
for FLSA.

These negative results on adding syntactic infor-
mation to LSA may just reinforce one of the claims
of the LSA proponents, that structural information
is irrelevant for determining meaning (Landauer and
Dumais, 1997). Alternatively, syntactic information
may need to be added to LSA in different ways.
(Wiemer-Hastings, 2001) discusses applying LSA
to each syntactic component of the sentence (sub-
ject, verb, rest of sentence), and averaging out those
three measures to obtain a final similarity measure.
The results are better than with plain LSA. (Kintsch,
2001) proposes an algorithm that successfully dif-
ferentiates the senses of predicates on the basis on
their arguments, in whichitems of the semantic
neighborhood of a predicate that are relevant to an
argument are combined with the [LSA] predicate
vector ... through a spreading activation process.

6Using Game in MapTask does not introduce circularity,
even if a game is identified by its initiating DA. We checked
the matching rates for initiating and non initiating DAs with
the FLSA model which employsGame+ Speaker: they are
78.12% and 71.67% respectively. Hence, even ifGamemakes
initiating moves easier to classify, it is highly beneficial for the
classification of non initiating moves as well.



5 How to select features for FLSA

An important issue is how to select features for
FLSA. One possible answer is to exhaustively train
every FLSA model that corresponds to one possible
feature combination. The problem is that training
LSA models is in general time consuming. For ex-
ample, training each FLSA model on CallHome37
takes about 35 minutes of CPU time, and on Map-
Task 17 minutes, on computers with one Pentium
1.7Ghz processor and 1Gb of memory. Thus, it
would be better to focus only on the most promis-
ing models, especially when the number of features
is high, because of the exponential number of com-
binations. In this work, we trained FLSA on each
individual feature. Then, we trained FLSA on each
feature combinations that we expected to be effec-
tive, either because of the good performances of
each individual feature, or because they include fea-
tures that are deemed predictive of DAs, such as the
previous DA(s), even if they did not perform well
individually.

After we ran our experiments, we performed a
post hoc analysis based on the notion ofInforma-
tion Gain(IG) from decision tree learning (Quinlan,
1993). One approach to choosing the next feature
to add to the tree at each iteration is to pick the one
with the highest IG. Suppose the data setS is classi-
fied usingn categoriesv1...vn, each with probabil-
ity pi. S’s entropyH can be seen as an indicator of
how uncertain the outcome of the classification is,
and is given by:

H(S) = −
n∑

i=1

pilog2(pi) (1)

If featureF dividesS into k subsetsS1...Sk, then
IG is the expected reduction in entropy caused by
partitioning the data according to the values ofF :

IG(S, A) = H(S)−
k∑

i=1

|Si|
|S|

H(Si) (2)

In our case, we first computed the entropy of the
corpora with respect to the classification induced
by the DA tags (see Table 6, which also includes
the LSA accuracy for convenience). Then, we com-
puted the IG of the features or feature combinations
we used in the FLSA experiments.

Table 7 reports the IG for most of the features
from Table 5; it is ordered by FLSA performance.
On the whole, IG appears to be a reasonably accu-
rate predictor of performance. When a feature or
feature combination has a high IG, e.g. over 1, there

Corpus Entropy LSA
CallHome37 3.004 65.36%
CallHome10 2.51 68.91%
MapTask 3.38 42.77%

Table 6: Entropy measures

Corpus Features IG FLSA
CallHome37 Previous DA 0.21 62.58%
CallHome37 Initiative 0.69 71.08%
CallHome37 Game 0.59 72.69%
CallHome37 Game+Initiative 1.09 74.87%

CallHome10 Previous DA 0.13 68.32%
CallHome10 Initiative 0.53 73.97%
CallHome10 Game 0.53 76.52%
CallHome10 Game+Initiative 1.01 78.88%

MapTask Duration 0.54 43.59%
MapTask Speaker 0.31 46.91%
MapTask Prev. DA 0.58 47.09%
MapTask Game 1.21 66.00%
MapTask Game+Speaker+Prev. DA2.04 73.25%
MapTask Game+Speaker 1.62 73.91%

Table 7: Information gain for FLSA

is also a high performance improvement. Occasion-
ally, if the IG is small this does not hold. For exam-
ple, using the previous DA reduces the entropy by
0.21 for CallHome37, but performance actually de-
creases. Most likely, the amount of new information
introduced is rather low and it is overcome by hav-
ing a larger and sparser initial matrix, which makes
the task harder for FLSA. Also, when performance
improves it does not necessarily increase linearly
with IG (see e.g.Game + Speaker + Previous DA
andGame + Speakerfor MapTask). Nevertheless,
IG can be effectively used to weed out unpromising
features, or to rank feature combinations so that the
most promising FLSA models can be trained first.

6 Discussion and future work
In this paper, we have presented a novel extension
to LSA, that we have called Feature LSA. Our work
is the first to show that FLSA is more effective than
LSA, at least for the specific task we worked on, DA
classification. In parallel, we have shown that FLSA
can be effectively used to train a DA classifier. We
have reached performances comparable to or better
than published results on DA classification, and we
have used an easily trainable method.

FLSA also highlights the effectiveness of other
dialogue related features, such asGame, to classify
DAs. The drawback of features such asGameis that



Corpus FLSA
CallHome37 0.676
CallHome10 0.721
MapTask 0.740

Table 8:κ measures of agreement

a dialogue system may not have them at its disposal
when doing DA classification in real time. How-
ever, this problem may be circumvented. The num-
ber of different games is in general rather low (8 in
CallHome Spanish, 6 in MapTask), and the game
label is constant across DAs belonging to the same
game. Each DA can be classified by augmenting it
with each possible game label, and by choosing the
most accurate match among those returned by each
of these classification attempts. Further, if the sys-
tem can reliably recognize the end of a game, the
method just described needs to be used only for the
first DA of each game. Then, the game label that
gives the best result becomes the game label used
for the next few DAs, until the end of the current
game is detected.

Another reason why we advocate FLSA over
other approaches is that it appears to be close to hu-
man performance for DA classification, in the same
way that LSA approximates well many aspects of
human competence / performance (Landauer and
Dumais, 1997).

To support this claim, first, we used theκ coef-
ficient (Krippendorff, 1980; Carletta, 1996) to as-
sess the agreement between the classification made
by FLSA and the classification from the corpora —
see Table 8. A general rule of thumb on how to
interpret the values ofκ (Krippendorff, 1980) is to
require a value ofκ ≥ 0.8, with 0.67 < κ < 0.8
allowing tentative conclusions to be drawn. As a
whole, Table 8 shows that FLSA achieves a satis-
fying level of agreement with human coders. To
put Table 8 in perspective, note that expert human
coders achievedκ = 0.83 on DA classification for
MapTask, but also had available the speech source
(Carletta et al., 1997).

We also compared the confusion matrix from
(Carletta et al., 1997) with the confusion matrix
we obtained for our best result on MapTask (FLSA
using Game+ Speaker). For humans, the largest
sources of confusion are between:checkandquery-
yn; instruct andclarify; andacknowledge, reply-y
andready. Likewise, our FLSA method makes the
most mistakes when distinguishing betweeninstruct
and clarify; and acknowledge, reply-y, and ready.
Instead it performs better than humans on distin-
guishing checkand query-yn. Thus, most of the

sources of confusion for humans are the same as for
FLSA.

Future work includes further investigating how to
select promising feature combinations, e.g. by using
logical regression.

We are also exploring whether FLSA can be used
as the basis for semi-automatic annotation of dia-
logue acts, to be incorporated into MUP, an annota-
tion tool we have developed (Glass and Di Eugenio,
2002). The problem is that large corpora are nec-
essary to train methods based on LSA. This would
seem to defeat the purpose of using FLSA as the ba-
sis for semi-automatic dialogue annotation, since, to
train FLSA in a new domain, we would need a large
hand annotated corpus to start with.Co-training
(Blum and Mitchell, 1998) may offer a solution to
this problem. In co-training, two different classi-
fiers are initially trained on a small set of annotated
data, by using different features. Afterwards, each
classifier is allowed to label some unlabelled data,
and picks its most confidently predicted positive and
negative examples; this data is added to the anno-
tated data. The process repeats until the desired per-
fomance is achieved. In our scenario, we will ex-
periment with training two different FLSA models,
or one FLSA model and a different classifier, such
as a naive Bayes classifier, on a small portion of an-
notated data that includes features like DAs, Game,
etc. We will then proceed as described on the unla-
belled data.

Finally, we have started applying FLSA to a dif-
ferent problem, that of judging the coherence of
texts. Whereas LSA has been already successfully
applied to this task (Foltz et al., 1998), the issue is
whether FLSA could perform better by also taking
into account those features of a text that enhance
its coherence for humans, such as appropriate cue
words.
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