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Abstract 

This paper presents a Chinese word segmen-
tation system which can adapt to different 
domains and standards. We first present a sta-
tistical framework where domain-specific 
words are identified in a unified approach to 
word segmentation based on linear models. 
We explore several features and describe how 
to create training data by sampling. We then 
describe a transformation-based learning 
method used to adapt our system to different 
word segmentation standards. Evaluation of 
the proposed system on five test sets with dif-
ferent standards shows that the system 
achieves state- of-the-art performance on all of 
them. 

1 Introduction 

Chinese word segmentation has been a long- 
standing research topic in Chinese language proc-
essing. Recent development in this field shows that, 
in addition to ambiguity resolution and unknown 
word detection, the usefulness of a Chinese word 
segmenter also depends crucially on its ability to 
adapt to different domains of texts and different 
segmentation standards.  

The need of adaptation involves two research 
issues that we will address in this paper. The first is 
new word detection. Different domains/applications 
may have different vocabularies which contain new 
words/terms that are not available in a general 
dictionary. In this paper, new words refer to OOV 
words other than named entities, factoids and mor-
phologically derived words. These words are 
mostly domain specific terms (e.g. 蜂窝式 ‘cellular’) 
and time-sensitive political, social or cultural terms 
(e.g. 三通‘Three Links’, 非典 ‘SARS’).  

The second issue concerns the customizable 
display of word segmentation. Different Chinese 

NLP-enabled applications may have different re-
quirements that call for different granularities of 
word segmentation. For example, speech recogni-
tion systems prefer “longer words” to achieve 
higher accuracy whereas information retrieval 
systems prefer “shorter words” to obtain higher 
recall rates, etc. (Wu, 2003). Given a word seg-
mentation specification (or standard) and/or some 
application data used as training data, a segmenter 
with customizable display should be able to provide 
alternative segmentation units according to the 
specification which is either pre-defined or implied 
in the data. 

In this paper, we first present a statistical 
framework for Chinese word segmentation, where 
various problems of word segmentation are solved 
simultaneously in a unified approach.  Our ap-
proach is based on linear models where component 
models are inspired by the source-channel models 
of Chinese sentence generation. We then describe in 
detail how the new word identification (NWI) 
problem is handled in this framework. We explore 
several features and describe how to create training 
data by sampling. We evaluate the performance of 
our segmentation system using an annotated test set, 
where new words are simulated by sampling. We 
then describe a transformation-based learning (TBL, 
Brill, 1995) method that is used to adapt our system 
to different segmentation standards. We compare 
the adaptive system to other state-of-the-art systems 
using four test sets in the SIGHAN’s First Interna-
tional Chinese Word Segmentation Bakeoff, each of 
which is constructed according to a different seg-
mentation standard. The performance of our system 
is comparable to the best systems reported on all 
four test sets. It demonstrates the possibility of 
having a single adaptive Chinese word segmenter 
that is capable of supporting multiple user applica-
tions. 



Word Class2 Model Feature Functions, f(S,W) 

Context Model Word class based trigram, P(W). -log(P(W)) 

Lexical Word (LW) --- 1 if S forms a word lexicon entry, 0 otherwise. 

Morphological Word (MW) --- 1 if S forms a morph lexicon entry, 0 otherwise. 

Named Entity (NE) Character/word bigram, P(S|NE). -log(P(S|NE)) 

Factoid (FT) --- 1 if S can be parsed using a factoid grammar, 0 otherwise 

New Word (NW) --- Score of SVM classifier 

Figure 1: Context model, word classes, and class models, and feature functions. 

                                                   
2 In our system, we define three types of named entity: person name (PN), location name (LN), organization (ON) and translit-
eration name (TN); ten types of factoid: date, time (TIME), percentage, money, number (NUM), measure, e-mail, phone number, 
and WWW; and five types of morphologically derived words (MDW): affixation, reduplication, merging, head particle and split. 

2 Chinese Word Segmentation with 
Linear Models 

Let S be a Chinese sentence which is a character 
string. For all possible word segmentations W, we 
will choose the most likely one W* which achieves 
the highest conditional probability P(W|S): W* = 
argmaxw P(W|S). According to Bayes’ decision rule 
and dropping the constant denominator, we can 
equivalently perform the following maximization: 

)|()(maxarg* WSPWPW
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Equation (1) represents a source-channel approach 
to Chinese word segmentation. This approach 
models the generation process of a Chinese sen-
tence: first, the speaker selects a sequence of con-
cepts W to output, according to the probability 
distribution P(W); then he attempts to express each 
concept by choosing a sequence of characters, 
according to the probability distribution P(S|W).  

We define word class as a group of words that 
are supposed to be generated according to the same 
distribution (or in the same manner). For instance, 
all Chinese person names form a word class. We 
then have multiple channel models, each for one 
word class. Since a channel model estimates the 
likelihood that a character string is generated given 
a word class, it is also referred to as class model. 
Similarly, source model is referred to as context 
model because it indicates the likelihood that a word 
class occurs in a context. We have only one context 
model which is a word-class-based trigram model. 
Figure 1 shows word classes and class models that 
we used in our system. We notice that different 
class models are constructed in different ways (e.g. 
name entity models are n-gram models trained on 

corpora whereas factoid models use derivation rules 
and have binary values). The dynamic value ranges 
of different class models can be so different that it is 
improper to combine all models through simple 
multiplication as Equation (1). 

In this study we use linear models. The method 
is derived from linear discriminant functions widely 
used for pattern classification (Duda et al., 2001), 
and has been recently introduced into NLP tasks by 
Collins and Duffy (2001). It is also related to log- 
linear models for machine translation (Och, 2003).  

In this framework, we have a set of M+1 feature 
functions fi(S,W), i = 0,…,M. They are derived from 
the context model (i.e. f0(W)) and M class models, 
each for one word class, as shown in Figure 1: For 
probabilistic models such as the context model or 
person name model, the feature functions are de-
fined as the negative logarithm of the corresponding 
probabilistic models. For each feature function, 
there is a model parameter λi. The best word seg-
mentation W* is determined by the decision rule as 
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Below we describe how to optimize λs. Our 
method is a discriminative approach inspired by the 
Minimum Error Rate Training method proposed in 
Och (2003). Assume that we can measure the 
number of segmentation errors in W by comparing it 
with a reference segmentation R using a function 
Er(R,W). The training criterion is to minimize the 
count of errors over the training data as 
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where W is detected by Equation (2). However, we 
cannot apply standard gradient descent to optimize  



Initialization: λ0=α, λi=1, i = 1,…,M. 

For t = 1 … T,  j = 1 … N 

 Wj = argmax ∑ λi fi(Sj,W) 

 For i = 1… M 

  λi = λi + η(Score(λ,S,W)-Score(λ,S,R))(fi(R) - fi(W)),  

where λ={λ0, λ1,…,λM} and η =0.001. 
Figure 2: The training algorithm for model parameters 

model parameters according to Equation (3) be-
cause the gradient cannot be computed explicitly 
(i.e., Er is not differentiable), and there are many 
local minima in the error surface. We then use a 
variation called stochastic gradient descent (or 
unthresholded perceptron, Mitchell, 1997). As 
shown in Figure 2, the algorithm takes T passes over 
the training set (i.e. N sentences). All parameters are 
initially set to be 1, except for the context model 
parameter λ0 which is set to be a constant α during 
training, and is estimated separately on held-out 
data. Class model parameters are updated in a sim-
ple additive fashion. Notice that Score(λ,S,W) is not 
less than Score(λ,S,R). Intuitively the updated rule 
increases the parameter values for word classes 
whose models were “underestimated” (i.e. expected 
feature value f(W) is less than observed feature 
value f(R)), and decreases the parameter values 
whose models were “overestimated” (i.e. f(W) is 
larger than f(R)).  Although the method cannot 
guarantee a global optimal solution, it is chosen for 
our modeling because of its efficiency and the best 
results achieved in our experiments. 

Given the linear models, the procedure of word 
segmentation in our system is as follows: First, all 
word candidates (lexical words and OOV words of 
certain types) are generated, each with its word 
class tag and class model score. Second, Viterbi 
search is used to select the best W according to 
Equation (2). Since the resulting W* is a sequence of 
segmented words that are either lexical words or 
OOV words with certain types (e.g. person name, 
morphological words, new words) we then have a 
system that can perform word segmentation and 
OOV word detection simultaneously in a unified 
approach. Most previous works treat OOV word 
detection as a separate step after word segmentation. 
Compared to these approaches, our method avoids 
the error propagation problem and can incorporate a 
variety of knowledge to achieve a globally optimal 
solution. The superiority of the unified approach 
has been demonstrated empirically in Gao et al. 
(2003), and will also be discussed in Section 5. 

3 New Word Identification 

New words in this section refer to OOV words that 
are neither recognized as named entities or factoids 
nor derived by morphological rules. These words 
are mostly domain specific and/or time-sensitive. 
The identification of such new words has not been 
studied extensively before. It is an important issue 
that would have substantial impact on the per-
formance of word segmentation. For example, 
approximately 30% of OOV words in the 
SIGHAN’s PK corpus (see Table 1) are new words 
of this type. There has been previous work on de-
tecting Chinese new words from a large corpus in 
an off-line manner and updating the dictionary 
before word segmentation. However, our approach 
is able to detect new words on-line, i.e. to spot new 
words in a sentence on the fly during the process of 
word segmentation where widely-used statistical 
features such as mutual information or term fre-
quency are not available. 

For brevity of discussion, we will focus on the 
identification of 2-character new words, denoted as 
NW_11. Other types of new words such as NW_21 
(a 2-character word followed with a character) and 
NW_12 can be detected similarly (e.g. by viewing 
the 2-character word as an inseparable unit, like a 
character). Below, we shall describe the class model 
and context model for NWI, and the creation of 
training data by sampling. 

3.1 Class Model 

We use a classifier (SVM in our experiments) to 
estimate the likelihood of two adjacent characters to 
form a new word. Of the great number of features 
we experimented, three linguistically-motivated 
features are chosen due to their effectiveness and 
availability for on-line detection. They are Inde-
pendent Word Probability (IWP), Anti-Word Pair 
(AWP), and Word Formation Analogy (WFA). 
Below we describe each feature in turn. In Section 
3.2, we shall describe the way the training data (new 
word list) for the classifier is created by sampling. 

IWP is a real valued feature. Most Chinese 
characters can be used either as independent words 
or component parts of multi-character words, or 
both. The IWP of a single character is the likelihood 
for this character to appear as an independent word 
in texts (Wu and Jiang, 2000): 
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where C(x, W) is the number of occurrences of the 
character x as an independent word in training data, 
and C(x) is the total number of x in training data. We 
assume that the IWP of a character string is the 
product of the IWPs of the component characters. 
Intuitively, the lower the IWP value, the more likely 
the character string forms a new word. In our im-
plementation, the training data is word-segmented. 

AWP is a binary feature derived from IWP. For 
example, the value of AWP of an NW_11 candidate 
ab is defined as: AWP(ab)=1 if IWP(a)>θ or IWP(b) 
>θ, 0 otherwise. θ ∈ [0, 1] is a pre-set threshold. 
Intuitively, if one of the component characters is 
very likely to be an independent word, it is unlikely 
to be able to form a word with any other characters. 
While IWP considers all component characters in a 
new word candidate, AWP only considers the one 
with the maximal IWP value. 

WFA is a binary feature. Given a character pair 
(x, y), a character (or a multi-character string) z is 
called the common stem of (x, y) if at least one of the 
following two conditions hold: (1) character strings 
xz and yz are lexical words (i.e. x and y as prefixes); 
and (2) character strings zx and zy are lexical words 
(i.e. x and y as suffixes). We then collect a list of 
such character pairs, called affix pairs, of which the 
number of common stems is larger than a pre-set 
threshold. The value of WFA for a given NW_11 
candidate ab is defined as: WFA(ab) = 1 if there 
exist an affix pair (a, x) (or (b, x)) and the string xb 
(or ax) is a lexical word, 0 otherwise. For example, 
given an NW_11 candidate 下岗 (xia4-gang3, ‘out of 
work’), we have WFA(下岗) = 1 because (上, 下) is 
an affix pair (they have 32 common stems such as _
任,  游,  台,  车,  面,  午,  班) and 上岗 

(shang4-gang3, ‘take over a shift’) is a lexical word. 

3.2 Context Model 

The motivations of using context model for NWI 
are two-fold. The first is to capture useful contex-
tual information. For example, new words are more 
likely to be nouns than pronouns, and the POS 
tagging is context-sensitive. The second is more 
important. As described in Section 2, with a context 
model, NWI can be performed simultaneously with 
other word segmentation tasks (e.g.: word break, 
named entity recognition and morphological analy-
sis) in a unified approach. 

However, it is difficult to develop a training 
corpus where new words are annotated because “we 

usually do not know what we don’t know”. Our 
solution is Monte Carlo simulation. We sample a set 
of new words from our dictionary according to the 
distribution – the probability that any lexical word 
w would be a new word P(NW|w). We then generate 
a new-word-annotated corpus from a word-seg-
mented text corpus.  

Now we describe the way P(NW|w) is estimated. 
It is reasonable to assume that new words are those 
words whose probability to appear in a new docu-
ment is lower than general lexical words. Let Pi(k) 
be the probability of word wi that occurs k times in a 
document. In our experiments, we assume that 
P(NW|wi) can be approximated by the probability of 
wi occurring less than K times in a new document:  
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where the constant K is dependent on the size of the 
document: The larger the document, the larger the 
value. Pi(k) can be estimated using several term 
distribution models (see Chapter 15.3 in Manning 
and Schütze, 1999). Following the empirical study 
in (Gao and Lee, 2000), we use K-Mixture (Katz, 
1996) which estimate Pi(k) as 
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where δk,0=1 if  k=0, 0 otherwise. α and β are pa-
rameters that can be fit using the observed mean λ 
and the observed inverse document frequency IDF 
as follow: 
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where cf is the total number of occurrence of word 
wi in training data, df is the number of documents in 
training data that wi occurs in, and N is the total 
number of documents. In our implementation, the 
training data contain approximately 40 thousand 
documents that have been balanced among domain, 
style and time. 

4 Adaptation to Different Standards 

The word segmentation standard (or standard for 
brevity) varies from system to system because there 
is no commonly accepted definition of Chinese



   

Condition: ‘Affixation’ Condition: ‘Date’ Condition: ‘PersonName’ 

Actions: Insert a boundary 
between ‘Prefix’ and ‘Stem’… 

Actions: Insert a boundary between 
‘Year’ and ‘Mon’ … 

Actions: Insert a boundary be-
tween ‘FamilyName’ and ‘Given-
Name’… 

Figure 3: Word internal structure and class-type transformation templates. 

words and different applications may have different 
requirements that call for different granularities of 
word segmentation. 

It is ideal to develop a single word segmentation 
system that is able to adapt to different standards. 
We consider the following standard adaptation 
paradigm. Suppose we have a ‘general’ standard 
pre-defined by ourselves. We have also created a 
large amount of training data which are segmented 
according to this general standard. We then develop 
a generic word segmenter, i.e. the system described 
in Sections 2 and 3. Whenever we deploy the seg-
menter for any application, we need to customize 
the output of the segmenter according to an appli-
cation-specific standard, which is not always ex-
plicitly defined. However, it is often implicitly 
defined in a given amount of application data 
(called adaptation data) from which the specific 
standard can be partially learned. 

In our system, the standard adaptation is con-
ducted by a postprocessor which performs an or-
dered list of transformations on the output of the 
generic segmenter – removing extraneous word 
boundaries, and inserting new boundaries – to 
obtain a word segmentation that meets a different 
standard. 

The method we use is transformation-based 
learning (Brill, 1995), which requires an initial 
segmentation, a goal segmentation into which we 
wish to transform the initial segmentation and a 
space of allowable transformations (i.e. transfor-
mation templates). Under the abovementioned 
adaptation paradigm, the initial segmentation is the 
output of the generic segmenter. The goal segmen-
tation is adaptation data. The transformation tem-
plates can make reference to words (i.e. lexicalized 
templates) as well as some pre-defined types (i.e. 
class-type based templates), as described below. 

We notice that most variability in word seg-
mentation across different standards comes from 
those words that are not typically stored in the 
dictionary. Those words are dynamic in nature and 
are usually formed through productive morpho-
logical processes. In this study, we focus on three 
categories: morphologically derived words (MDW), 
named entities (NE) and factoids. 

For each word class that belongs to these cate-
gories2, we define an internal structure similar to 
(Wu, 2003). The structure is a tree with ‘word class’ 
as the root, and ‘component types’ as the other 
nodes. There are 30 component types. As shown in 
Figure 3, the word class Affixation has three 
component types: Prefix, Stem and Suffix. 
Similarly, PersonName has two component types 
and Date has nine – 3 as non-terminals and 6 as 
terminals. These internal structures are assigned to 
words by the generic segmenter at run time. 

The transformation templates for words of the 
above three categories are of the form: 

Condition: word class 
Actions:  

 Insert – place a new boundary 
between two component types. 

 Delete – remove an existing 
boundary between two component 
types. 

Since the application of the transformations de-
rived from the above templates are conditioned on 
word class and make reference to component types, 
we call the templates class-type transformation 
templates. Some examples are shown in Figure 3. 

In addition, we also use lexicalized transforma-
tion templates as: 

 Insert – place a new boundary 
between two lemmas. 

Mon Day

Pre_Y Pre_MDig_M Dig_D

Year 

Date

PersonName 

FamilyName GivenName

Affixation 

Prefix Stem Suffix

Pre_DDig_Y 



 Delete – remove an existing 
boundary between two lemmas. 

Here, lemmas refer to those basic lexical words 
that cannot be formed by any productive morpho-
logical process. They are mostly single characters, 
bi-character words, and 4-character idioms. 

In short, our adaptive Chinese word segmenter 
consists of two components: (1) a generic seg-
menter that is capable of adapting to the vocabu-
laries of different domains and (2) a set of output 
adaptors, learned from application data, for adapt-
ing to different “application-specific” standards  

5 Evaluation 

We evaluated the proposed adaptive word seg-
mentation system (henceforth AWS) using five 
different standards. The training and test corpora of 
these standards are detailed in Table 1, where MSR 
is defined by ourselves, and the other four are stan-
dards used in SIGHAN’s First International Chi-
nese Word Segmentation Bakeoff (Bakeoff test sets 
for brevity, see Sproat and Emperson (2003) for 
details). 

Corpus Abbrev. # Tr. Word # Te. Word 
‘General’ standard  MSR 20M 226K 
Beijing University PK 1.1M 17K 
U. Penn Chinese 
Treebank 

CTB 250K 40K 

Hong Kong City U. HK 240K 35K 
Academia Sinica AS 5.8M 12K 

Table 1: standards and corpora. 

MSR is used as the general standard in our ex-
periments, on the basis of which the generic seg-
menter has been developed. The training and test 
corpora were annotated manually, where there is 
only one allowable word segmentation for each 
sentence. The training corpus contains approxi-
mately 35 million Chinese characters from various 
domains of text such as newspapers, novels, maga-
zines etc. 90% of the training corpus are used for 
context model training, and 10% are held-out data 
for model parameter training as shown in Figure 2. 
The NE class models, as shown in Figure 1, were 
trained on the corresponding NE lists that were 
collected separately. The test set contains a total of 
225,734 tokens, including 205,162 lexi-
con/morph-lexicon words, 3,703 PNs, 5,287 LNs, 
3,822 ONs, and 4,152 factoids. In Section 5.1, we 
will describe some simulated test sets that are de-

rived from the MSR test set by sampling NWs from 
a 98,686-entry dictionary. 

The four Bakeoff standards are used as ‘specific’ 
standards into which we wish to adapt the general 
standard. We notice in Table 1 that the sizes of 
adaptation data sets (i.e. training corpora of the four 
Bakeoff standards) are much smaller than that of the 
MSR training set. The experimental setting turns 
out to be a good simulation of the adaptation para-
digm described in Section 4. 

The performance of word segmentation is 
measured through test precision (P), test recall (R), 
F score (which is defined as 2PR/(P+R)), the OOV 
rate for the test corpus (on Bakeoff corpora, OOV is 
defined as the set of words in the test corpus not 
occurring in the training corpus.), the recall on 
OOV words (Roov), and the recall on in-vocabulary 
(Riv) words. We also tested the statistical signifi-
cance of results, using the criterion proposed by 
Sproat and Emperson (2003), and all results re-
ported in this section are significantly different 
from each other. 

5.1 NWI Results 

This section discusses two factors that we believe 
have the most impact on the performance of NWI. 
First, we compare methods where we use the NWI 
component (i.e. an SVM classifier) as a post- 
processor versus as a feature function in the linear 
models of Equation (2). Second, we compare dif-
ferent sampling methods of creating simulated 
training data for context model. Which sampling 
method is best depends on the nature of P(NW|w). 
As described in Section 3.2, P(NW|w) is unknown 
and has to be approximated by Pi(k) in our study, so 
it is expected that the closer P(NW|w) and Pi(k) are, 
the better the resulting context model. We compare 
three estimates of Pi(k) in Equation (5) using term 
models based on Uniform, Possion, and K- Mixture 
distributions, respectively. 

Table 2 shows the results of the generic seg-
menter on three test sets that are derived from the 
MSR test set using the above three different sam-
pling methods, respectively. For all three distribu-
tions, unified approaches (i.e. using NWI compo-
nent as a feature function) outperform consecutive 
approaches (i.e. using NWI component as a post- 
processor). This demonstrates empirically the 
benefits of using context model for NWI and the 
unified approach to Chinese word segmentation, as 
described in 3.2. We also perform NWI on Bakeoff 



AWS w/o NW AWS w/ NW (post-processor) AWS w/ NW (unified approach) 
word segmentation word segmentation NW word segmentation NW  # of NW 

P% R% P% R% P% R% P% R% P% R% 
Uniform 5,682 92.6 94.5 94.7 95.2 64.1 66.8 95.1 95.5 68.1 78.4 
Poisson 3,862 93.4 95.6 94.5 95.9 61.4 45.6 95.0 95.7 57.2 60.6 
K-Mixture 2,915 94.7 96.4 95.1 96.2 44.1 41.5 95.6 96.2 46.2 60.4 

Table 2: NWI results on MSR test set, NWI as post-processor versus unified approach 
PK CTB  

P R F OOV Roov Riv P R F OOV Roov Riv 
1. AWS w/o adaptation .824 .854 .839 .069 .320 .861 .799 .818 .809 .181 .624 .861 
2. AWS .952 .959 .955 .069 .781 .972 .895 .914 .904 .181 .746 .950 
3. AWS w/o NWI .949 .963 .956 .069 .741 .980 .875 .910 .892 .181 .690 .959 
4. FMM w/ adaptation .913 .946 .929 .069 .524 .977 .805 .874 .838 .181 .521 .952 
5. Rank 1 in Bakeoff .956 .963 .959 .069 .799 .975 .907 .916 .912 .181 .766 .949 
6. Rank 2 in Bakeoff .943 .963 .953 .069 .743 .980 .891 .911 .901 .181 .736 .949 

Table 3: Comparison scores for PK open and CTB open. 
HK AS 

 
P R F OOV Roov Riv P R F OOV Roov Riv 

1. AWS w/o adaptation .819 .822 .820 .071 .593 .840 .832 .838 .835 .021 .405 .847 
2. AWS .948 .960 .954 .071 .746 .977 .955 .961 .958 .021 .584 .969 
3. AWS w/o NWI .937 .958 .947 .071 .694 .978 .958 .943 .951 .021 .436 .969 
4. FMM w/ adaptation .818 .823 .821 .071 .591 .841 .930 .947 .939 .021 .160 .964 
5. Rank 1 in Bakeoff .954 .958 .956 .071 .788 .971 .894 .915 .904 .021 .426 .926 
6. Rank 2 in Bakeoff .863 .909 .886 .071 .579 .935 .853 .892 .872 .021 .236 .906 

Table 4: Comparison scores for HK open and AS open. 

test sets. As shown in Tables 3 and 4 (Rows 2 and 3), 
the use of NW functions (via the unified approach) 
substantially improves the word segmentation per-
formance. 

We find in our experiments that NWs sampled 
by Possion and K-Mixture are mostly specific and 
time-sensitive terms, in agreement with our intui-
tion, while NWs sampled by Uniform include more 
common words and lemmas that are easier to detect. 
Consequently, by Uniform sampling, the P/R of 
NWI is the highest but the P/R of the overall word 
segmentation is the lowest, as shown in Table 2. 
Notice that the three sampling methods are not 
comparable in terms of P/R of NWI in Table 2 
because of different sampling result in different sets 
of new words in the test set. We then perform NWI 
on Bakeoff test sets where the sets of new words are 
less dependent on specific sampling methods. The 
results however do not give a clear indication which 
sampling method is the best because the test sets are 
too small to show the difference. We then leave it to 
future work a thorough empirical comparison 
among different sampling methods. 

5.2 Standard Adaptation Results 

The results of standard adaptation on four Bakeoff 
test sets are shown in Tables 3 and 4. A set of 
transformations for each standard is learnt using 

TBL from the corresponding Bakeoff training set. 
For each test set, we report results using our system 
with and without standard adaptation (Rows 1 and 
2). It turns out that performance improves dra-
matically across the board in all four test sets. 

For comparison, we also include in each table 
the results of using the forward maximum matching 
(FMM) greedy segmenter as a generic segmenter 
(Row 4), and the top 2 scores (sorted by F) that are 
reported in SIGHAN’s First International Chinese 
Word Segmentation Bakeoff (Rows 5 and 6). We 
can see that with adaptation, our generic segmenter 
can achieve state-of-the-art performance on dif-
ferent standards, showing its superiority over other 
systems. For example, there is no single segmenter 
in SIGHAN’s Bakeoff, which achieved top-2 ranks 
in all four test sets (Sproat and Emperson, 2003). 

We notice in Table 3 and 4 that the quality of 
adaptation seems to depend largely upon the size of 
adaptation data: we outperformed the best bakeoff 
systems in the AS set because the size of the adap-
tation data is big while we are worse in the CTB set 
because of the small size of the adaptation data. To 
verify our speculation, we evaluated the adaptation 
results using subsets of the AS training set of dif-
ferent sizes, and observed the same trend. However, 
even with a much smaller adaptation data set (e.g. 
250K), we still outperform the best bakeoff results. 



6 Related Work 

Many methods of Chinese word segmentation have 
been proposed (See Wu and Tseng, 1993; Sproat 
and Shih, 2001 for reviews). However, it is difficult 
to compare systems due to the fact that there is no 
widely accepted standard. There has been less work 
on dealing with NWI and standard adaptation. 

All feature functions in Figure 1, except the NW 
function, are derived from models presented in 
(Gao et al., 2003). The linear models are similar to 
what was presented in Collins and Duffy (2001). An 
alternative to linear models is the log-linear models 
suggested by Och (2003). See Collins (2002) for a 
comparison of these approaches. 

The features for NWI were studied in Wu & 
Jiang (2000) and Li et al. (2004). The use of sam-
pling was proposed in Della Pietra et al. (1997) and 
Rosenfeld et al. (2001). There is also a related work 
on this line in Japanese (Uchimoto et al., 2001). 

A detailed discussion on differences among the 
four Bakeoff standards is presented in Wu (2003), 
which also proposes an adaptive system where the 
display of the output can be customized by users. 
The method described in Section 4 can be viewed as 
an improved version in that the transformations are 
learnt automatically from adaptation data. The use 
of TBL for Chinese word segmentation was first 
suggested in Palmer (1997). 

7 Conclusion 

This paper presents a statistical approach to adap-
tive Chinese word segmentation based on linear 
models and TBL. The system has two components: 
A generic segmenter that can adapt to the vocabu-
laries of different domains, and a set of output 
adaptors, learned from application data, for adapt-
ing to different “application-specific” standards. 
We evaluate our system on five test sets, each cor-
responding to a different standard. We achieve 
state-of-the-art performance on all test sets. 
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