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Abstract
We describe two probabilistic models for unsuper-
vised word-sense disambiguation using parallel cor-
pora. The first model, which we call the Sense
model, builds on the work of Diab and Resnik
(2002) that uses both parallel text and a sense in-
ventory for the target language, and recasts their ap-
proach in a probabilistic framework. The second
model, which we call the Concept model, is a hier-
archical model that uses a concept latent variable to
relate different language specific sense labels. We
show that both models improve performance on the
word sense disambiguation task over previous unsu-
pervised approaches, with the Concept model show-
ing the largest improvement. Furthermore, in learn-
ing the Concept model, as a by-product, we learn a
sense inventory for the parallel language.

1 Introduction
Word sense disambiguation (WSD) has been a cen-
tral question in the computational linguistics com-
munity since its inception. WSD is fundamental to
natural language understanding and is a useful in-
termediate step for many other language process-
ing tasks (Ide and Veronis, 1998). Many recent
approaches make use of ideas from statistical ma-
chine learning; the availability of shared sense defi-
nitions (e.g. WordNet (Fellbaum, 1998)) and recent
international competitions (Kilgarrif and Rosen-
zweig, 2000) have enabled researchers to compare
their results. Supervised approaches which make
use of a small hand-labeled training set (Bruce
and Wiebe, 1994; Yarowsky, 1993) typically out-
perform unsupervised approaches (Agirre et al.,
2000; Litkowski, 2000; Lin, 2000; Resnik, 1997;
Yarowsky, 1992; Yarowsky, 1995), but tend to be
tuned to a specific corpus and are constrained by
scarcity of labeled data.

In an effort to overcome the difficulty of find-
ing sense-labeled training data, researchers have be-
gun investigating unsupervised approaches to word-
sense disambiguation. For example, the use of par-

allel corpora for sense tagging can help with word
sense disambiguation (Brown et al., 1991; Dagan,
1991; Dagan and Itai, 1994; Ide, 2000; Resnik and
Yarowsky, 1999). As an illustration of sense disam-
biguation from translation data, when the English
word bank is translated to Spanish as orilla, it is
clear that we are referring to the shore sense of bank,
rather than the financial institution sense.

The main inspiration for our work is Diab and
Resnik (2002), who use translations and linguistic
knowledge for disambiguation and automatic sense
tagging. Bengio and Kermorvant (2003) present
a graphical model that is an attempt to formalize
probabilistically the main ideas in Diab and Resnik
(2002). They assume the same semantic hierarchy
(in particular, WordNet) for both the languages and
assign English words as well as their translations
to WordNet synsets. Here we present two variants
of the graphical model in Bengio and Kermorvant
(2003), along with a method to discover a cluster
structure for the Spanish senses. We also present
empirical word sense disambiguation results which
demonstrate the gain brought by this probabilistic
approach, even while only using the translated word
to provide disambiguation information.

Our first generative model, the Sense Model,
groups semantically related words from the two
languages into senses, and translations are gener-
ated by probabilistically choosing a sense and then
words from the sense. We show that this improves
on the results of Diab and Resnik (2002).

Our next model, which we call the Concept
Model, aims to improve on the above sense struc-
ture by modeling the senses of the two languages
separately and relating senses from both languages
through a higher-level, semantically less precise
concept. The intuition here is that not all of the
senses that are possible for a word will be relevant
for a concept. In other words, the distribution over
the senses of a word given a concept can be expected
to have a lower entropy than the distribution over
the senses of the word in the language as a whole.
In this paper, we look at translation data as a re-



source for identification of semantic concepts. Note
that actual translated word pairs are not always good
matches semantically, because the translation pro-
cess is not on a word by word basis. This intro-
duces a kind of noise in the translation, and an addi-
tional hidden variable to represent the shared mean-
ing helps to take it into account. Improved perfor-
mance over the Sense Model validates the use of
concepts in modeling translations.

An interesting by-product of the Concept Model
is a semantic structure for the secondary language.
This is automatically constructed using background
knowledge of the structure for the primary language
and the observed translation pairs. In the model,
words sharing the same sense are synonyms while
senses under the same concept are semantically re-
lated in the corpus. An investigation of the model
trained over real data reveals that it can indeed
group related words together.

It may be noted that predicting senses from trans-
lations need not necessarily be an end result in it-
self. As we have already mentioned, lack of labeled
data is a severe hindrance for supervised approaches
to word sense disambiguation. At the same time,
there is an abundance of bilingual documents and
many more can potentially be mined from the web.
It should be possible using our approach to (noisily)
assign sense tags to words in such documents, thus
providing huge resources of labeled data for super-
vised approaches to make use of.

For the rest of this paper, for simplicity we will
refer to the primary language of the parallel docu-
ment as English and to the secondary as Spanish.
The paper is organized as follows. We begin by for-
mally describing the models in Section 2. We de-
scribe our approach for constructing the senses and
concepts in Section 3. Our algorithm for learning
the model parameters is described in Section 4. We
present experimental results in Section 5 and our
analysis in Section 6. We conclude in Section 7.

2 Probabilistic Models for Parallel
Corpora

We motivate the use of a probabilistic model by il-
lustrating that disambiguation using translations is
possible even when a word has a unique transla-
tion. For example, according to WordNet, the word
prevention has two senses in English, which may
be abbreviated as hindrance (the act of hindering
or obstruction) and control (by prevention, e.g. the
control of a disease). It has a single translation in
our corpus, that being prevención. The first En-
glish sense, hindrance, also has other words like
bar that occur in the corpus and all of these other

words are observed to be translated in Spanish as
the word obstrucción. In addition, none of these
other words translate to prevención. So it is not
unreasonable to suppose that the intended sense for
prevention when translated as prevención is differ-
ent from that of bar. Therefore, the intended sense
is most likely to be control. At the very heart of
the reasoning is probabilistic analysis and indepen-
dence assumptions. We are assuming that senses
and words have certain occurrence probabilities and
that the choice of the word can be made indepen-
dently once the sense has been decided. This is the
flavor that we look to add to modeling parallel doc-
uments for sense disambiguation. We formally de-
scribe the two generative models that use these ideas
in Subsections 2.2 and 2.3.
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Figure 1: Graphical Representations of the a) Sense
Model and the b) Concept Model

2.1 Notation
Throughout, we use uppercase letters to denote ran-
dom variables and lowercase letters to denote spe-
cific instances of the random variables. A transla-
tion pair is (

���
,

���
) where the subscript � and �

indicate the primary language (English) and the sec-
ondary language (Spanish).

� ���	��
���
�����������
������
and

��� ����
 ��
 ����������
 ��� �
. We use the shorthand��� 
 ���

for
��� �!�#" 
 �$�

.

2.2 The Sense Model
The Sense Model makes the assumption, inspired
by ideas in Diab and Resnik (2002) and Ben-
gio and Kermorvant (2003), that the English word�!�

and the Spanish word
�%�

in a translation pair
share the same precise sense. In other words, the
set of sense labels for the words in the two lan-
guages is the same and may be collapsed into one
set of senses that is responsible for both English
and Spanish words and the single latent variable
in the model is the sense label & �'��(�)��������*��(�+,�
for both words

���
and

�-�
. We also make the as-

sumption that the words in both languages are con-
ditionally independent given the sense label. The
generative parameters .0/ for the model are the prior



probability
��� ( �

of each sense
(

and the conditional
probabilities

��� 
 �21 ( �
and

�3� 
 �*1 ( �
of each word


 �
and


 �
in the two languages given the sense. The

generation of a translation pair by this model may
be viewed as a two-step process that first selects
a sense according to the priors on the senses and
then selects a word from each language using the
conditional probabilities for that sense. This may
be imagined as a factoring of the joint distribution:��� � ��� � ��� & �4"5��� & ����� � � 1 & ����� � � 1 & �

. Note
that in the absence of labeled training data, two
of the random variables

�-�
and

���
are observed,

while the sense variable & is not. However, we can
derive the possible values for our sense labels from
WordNet, which gives us the possible senses for
each English word

�-�
. The Sense model is shown

in Figure 1(a).

2.3 The Concept Model

The assumption of a one-to-one association be-
tween sense labels made in the Sense Model may be
too simplistic to hold for arbitrary languages. In par-
ticular, it does not take into account that translation
is from sentence to sentence (with a shared mean-
ing), while the data we are modeling are aligned
single-word translations

� �%� � �-�6�
, in which the in-

tended meaning of
�-�

does not always match per-
fectly with the intended meaning of

�7�
. Generally,

a set of 8 related senses in one language may be
translated by one of 9 related senses in the other.
This many-to-many mapping is captured in our al-
ternative model using a second level hidden vari-
able called a concept. Thus we have three hid-
den variables in the Concept Model — the English
sense & �

, the Spanish sense & �
and the concept : ,

where & �;" ��( �<
 �������*��( �>= �
, & �?" ��( �<
 �������*��( �A@ �

and
: " ��B�)��������*�<B�CD�

.
We make the assumption that the senses & �

and
& �

are independent of each other given the shared
concept : . The generative parameters . / in the
model are the prior probabilities

��� B �
over the

concepts, the conditional probabilities
��� ( �E1 B �

and��� ( �*1 B �
for the English and Spanish senses given the

concept, and the conditional probabilities
��� 
 �F1 ( �$�

and
��� 
 �21 ( �$�

for the words

 �

and

 �

in each
language given their senses. We can now imag-
ine the generative process of a translation pair by
the Concept Model as first selecting a concept ac-
cording to the priors, then a sense for each lan-
guage given the concept, and finally a word for
each sense using the conditional probabilities of the
words. As in Bengio and Kermorvant (2003), this
generative procedure may be captured by factor-
ing the joint distribution using the conditional inde-

pendence assumptions as
�3� �-� � �-� � & � � & � � : ��"

��� : ����� & �F1 : ���3� �!�21 & �$����� & �E1 : ����� ���21 & �$�
. The

Concept model is shown in Figure 1(b).

3 Constructing the Senses and Concepts
Building the structure of the model is crucial for
our task. Choosing the dimensionality of the hidden
variables by selecting the number of senses and con-
cepts, as well as taking advantage of prior knowl-
edge to impose constraints, are very important as-
pects of building the structure.

If certain words are not possible for a given sense,
or certain senses are not possible for a given con-
cept, their corresponding parameters should be 0.
For instance, for all words


 �
that do not belong to a

sense
( �

, the corresponding parameter .EGIH$J KLH would
be permanently set to 0. Only the remaining param-
eters need to be modeled explicitly.

While model selection is an extremely difficult
problem in general, an important and interesting op-
tion is the use of world knowledge. Semantic hi-
erarchies for some languages have been built. We
should be able to make use of these known tax-
onomies in constructing our model. We make heavy
use of the WordNet ontology to assign structure to
both our models, as we discuss in the following sub-
sections. There are two major tasks in building the
structure — determining the possible sense labels
for each word, both English and Spanish, and con-
structing the concepts, which involves choosing the
number of concepts and the probable senses for each
concept.

3.1 Building the Sense Model
Each word in WordNet can belong to multiple
synsets in the hierarchy, which are its possible
senses. In both of our models, we directly use the
WordNet senses as the English sense labels. All
WordNet senses for which a word has been ob-
served in the corpus form our set of English sense
labels. The Sense Model holds that the sense labels
for the two domains are the same. So we must use
the same WordNet labels for the Spanish words as
well. We include a Spanish word


 �
for a sense

(
if
 �

is the translation of any English word

 �

in
(
.

3.2 Building the Concept Model
Unlike the Sense Model, the Concept Model does
not constrain the Spanish senses to be the same as
the English ones. So the two major tasks in build-
ing the Concept Model are constructing the Spanish
senses and then clustering the English and Spanish
senses to build the concepts.



Concept Model

te2 ts1te1

barprevention

c6118

ts2

c20

prevencio’n obstruccio’n

Sense Model

bar prevention

te1 te2

prevencio’nobstruccio’n

Figure 2: The Sense and Concept models for prevention, bar, prevención and obstrucción

For each Spanish word

M�

, we have its set of En-
glish translations

��
N��
�����������
���=O�
. One possibility is

to group Spanish words looking at their translations.
However, a more robust approach is to consider the
relevant English senses for


 �
. Each English trans-

lation for

 �

has its set of English sense labels P GIHDQ
drawn from WordNet. So the relevant English sense
labels for


 �
may be defined as P GSR "UTNV P GIH Q .

We call this the English sense map or �2W�X�Y for
 �
. We use the �2W�X�Y s to define the Spanish senses.

We may imagine each Spanish word to come from
one or more Spanish senses. If each word has a
single sense, then we add a Spanish sense

( �
for

each �*WZX�Y and all Spanish words that share that
�2W�X�Y belong to that sense. Otherwise, the �*WZX�Y s
have to be split into frequently occurring subgroups.
Frequently co-occurring subsets of �2W�X�Y s can de-
fine more refined Spanish senses. We identify these
subsets by looking at pairs of �2WZX�Y s and comput-
ing their intersections. An intersection is consid-
ered to be a Spanish sense if it occurs for a signifi-
cant number of pairs of �2W�X�Y s. We consider both
ways of building Spanish senses. In either case, a
constructed Spanish sense

( �
comes with its rele-

vant set
��( � Q � of English senses, which we denote

as �2WZX�Y � (�� �
.

Once we have the Spanish senses, we cluster
them to form concepts. We use the �*WZX�Y corre-
sponding to each Spanish sense to define a measure
of similarity for a pair of Spanish senses. There
are many options to choose from here. We use a
simple measure that counts the number of common
items in the two �*WZX�Y s.1 The similarity measure is
now used to cluster the Spanish senses

( �
. Since

this measure is not transitive, it does not directly
define equivalence classes over

(6�
. Instead, we get

a similarity graph where the vertices are the Span-
ish senses and we add an edge between two senses
if their similarity is above a threshold. We now
pick each connected component from this graph as
a cluster of similar Spanish senses.

1Another option would be to use a measure of similarity for
English senses, proposed in Resnik (1995) for two synsets in
a concept hierarchy like WordNet. Our initial results with this
measure were not favorable.

Now we build the concepts from the Spanish
sense clusters. We recall that a concept is defined by
a set of English senses and a set of Spanish senses
that are related. Each cluster represents a concept.
A particular concept is formed by the set of Spanish
senses in the cluster and the English senses relevant
for them. The relevant English senses for any Span-
ish sense is given by its �2WZX�Y . Therefore, the union
of the �*WZX�Y s of all the Spanish senses in the cluster
forms the set of English senses for each concept.

4 Learning the Model Parameters
Once the model is built, we use the popular EM al-
gorithm (Dempster et al., 1977) for hidden vari-
ables to learn the parameters for both models. The
algorithm repeatedly iterates over two steps. The
first step maximizes the expected log-likelihood of
the joint probability of the observed data with the
current parameter settings . / . The next step then re-
estimates the values of the parameters of the model.
Below we summarize the re-estimation steps for
each model.

4.1 EM for the Sense Model

�3� & V " ( �[" \]
^_VL` ) ��� & " ( 1 
 � Q ��
 � Q � . / �

��� ��� Q " � 1 & V " ( �a"
b ^GIHDQ ` ��c VL` ) �3� & " ( 1 
�� Q ��
d� Q � .F/ �b � b ^e H Q ` �<c VL` ) ��� & " ( 1 
 � Q ��
 � Q � . / �

��� � � Q " � 1 & V " ( �
follows similarly.

4.2 EM for the Concept Model

��� : V "gfh�a" \]
^_Vi` ) ��� : V "gfj1 
 � Q ��
 � Q � . / �

��� & � Q "lk<1 : V "gfh�a"
b ^VL` ) ��� : V "mf � & � Q "lk<1 
�� Q ��
d� Q � .F/ �b ^VL` ) ��� : V "gfj1 
 � Q ��
 � Q � . / �



��� �!� Q " � 1 & � Q "lk �["
b ^e HDQ ` �<c VL` ) ��� & � Q "lk<1 
 � Q " � ��
 � Q � . / �b � b ^e HDQ ` �<c VL` ) ��� & � Q "gk�1n��� Q " � ��
 � Q � . / �

��� & � Q " 8 1 : V "ofh�
and

��� � � Q " � 1 & � Q " 8 �
follow similarly.

4.3 Initialization of Model Probabilities
Since the EM algorithm performs gradient ascent
as it iteratively improves the log-likelihood, it is
prone to getting caught in local maxima, and se-
lection of the initial conditions is crucial for the
learning procedure. Instead of opting for a uni-
form or random initialization of the probabilities,
we make use of prior knowledge about the English
words and senses available from WordNet. Word-
Net provides occurrence frequencies for each synset
in the SemCor Corpus that may be normalized to
derive probabilities

� Gqp � ( �$�
for each English sense(>�

. For the Sense Model, these probabilities form
the initial priors over the senses, while all English
(and Spanish) words belonging to a sense are ini-
tially assumed to be equally likely. However, ini-
tialization of the Concept Model using the same
knowledge is trickier. We would like each En-
glish sense

( �
to have

� V p V K � ( ����"r� Gqp � ( �$�
. But

the fact that each sense belongs to multiple con-
cepts and the constraint

b K H6sEt ��� ( �E1 B �u" \ makes
the solution non-trivial. Instead, we settle for a
compromise. We set

� V p V K � ( �E1 B �v"w� Gqp � ( �$�
and��� B �x" b KLH s2t � Gqp � ( �$�

. Subsequent normalization
takes care of the sum constraints. For a Spanish
sense, we set

��� (<� �a" b KLH s ��y{z}|E~ KLR�� � Gqp � (>� �
. Once

we have the Spanish sense probabilities, we follow
the same procedure for setting

��� ( �21 B �
for each con-

cept. All the Spanish and English words for a sense
are set to be equally likely, as in the Sense Model.
It turned out in our experiments on real data that
this initialization makes a significant difference in
model performance.

5 Experimental Evaluation
Both the models are generative probabilistic models
learned from parallel corpora and are expected to
fit the training and subsequent test data. A good fit
should be reflected in good prediction accuracy over
a test set. The prediction task of interest is the sense
of an English word when its translation is provided.
We estimate the prediction accuracy and recall of
our models on Senseval data.2 In addition, the Con-
cept Model learns a sense structure for the Spanish

2Accuracy is the ratio of the number of correct predictions
and the number of attempted predictions. Recall is the ratio of
the number of correct predictions and the size of the test set.

language. While it is hard to objectively evaluate
the quality of such a structure, we present some in-
teresting concepts that are learned as an indication
of the potential of our approach.

5.1 Evaluation with Senseval Data
In our experiments with real data, we make use of
the parallel corpora constructed by Diab and Resnik
(2002) for evaluation purposes. We chose to work
on these corpora in order to permit a direct compar-
ison with their results. The sense-tagged portion of
the English corpus is comprised of the English “all-
words” section of the SENSEVAL-2 test data. The
remainder of this corpus is constructed by adding
the Brown Corpus, the SENSEVAL-1 corpus, the
SENSEVAL-2 English Lexical Sample test, trial
and training corpora and the Wall Street Journal sec-
tions 18-24 from the Penn Treebank. This English
corpus is translated into Spanish using two com-
mercially available MT systems: Globalink Pro 6.4
and Systran Professional Premium. The GIZA++
implementation of the IBM statistical MT models
was used to derive the most-likely word-level align-
ments, and these define the English/Spanish word
co-occurrences. To take into account variability of
translation, we combine the translations from the
two systems for each English word, following in the
footsteps of Diab and Resnik (2002). For our ex-
periments, we focus only on nouns, of which there
are 875 occurrences in our tagged data. The sense
tags for the English domain are derived from the
WordNet 1.7 inventory. After pruning stopwords,
we end up with 16,186 English words, 31,862 Span-
ish words and 2,385,574 instances of 41,850 distinct
translation pairs. The English words come from
20,361 WordNet senses.

Table 1: Comparison with Diab’s Model
Model Accuracy Recall Parameters
Diab 0.618 0.572 -
Sense M. 0.624 0.616 154,947
Concept M. 0.672 0.651 120,268

As can be seen from the following table, both our
models clearly outperform Diab (2003), which is
an improvement over Diab and Resnik (2002), in
both accuracy and recall, while the Concept Model
does significantly better than the Sense Model with
fewer parameters. The comparison is restricted to
the same subset of the test data. For our best re-
sults, the Sense Model has 20,361 senses, while the
Concept Model has 20,361 English senses, 11,961
Spanish senses and 7,366 concepts. The Concept
Model results are for the version that allows mul-
tiple senses for a Spanish word. Results for the
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single-sense model are similar.
In Figure 3, we compare the prediction accuracy

and recall against those of the 21 Senseval-2 English
All Words participants and that of Diab (2003),
when restricted to the same set of noun instances
from the gold standard. It can be seen that our mod-
els outperform all the unsupervised approaches in
recall and many supervised ones as well. No un-
supervised approach is better in both accuracy and
recall. It needs to be kept in mind that we take into
account only bilingual data for our predictions, and
not monolingual features like context of the word as
most other WSD approaches do.

5.2 Semantic Grouping of Spanish Senses
Table 2 shows some interesting examples of differ-
ent Spanish senses for discovered concepts.3 The
context of most concepts, like the ones shown, can
be easily understood. For example, the first concept
is about government actions and the second deals
with murder and accidental deaths. The penulti-
mate concept is interesting because it deals with dif-
ferent kinds of association and involves three dif-
ferent senses containing the word conexión. The
other words in two of these senses suggest that
they are about union and relation respectively. The
third probably involves the link sense of connection.
Conciseness of the concepts depends on the simi-
larity threshold that is selected. Some may bring
together loosely-related topics, which can be sepa-
rated by a higher threshold.

6 Model Analysis
In this section, we back up our experimental results
with an in-depth analysis of the performance of our
two models.

Our Sense Model was motivated by Diab and
Resnik (2002) but the flavors of the two are quite

3Some English words are found to occur in the Spanish
Senses. This is because the machine translation system used
to create the Spanish document left certain words untranslated.

different. The most important distinction is that the
Sense Model is a probabilistic generative model for
parallel corpora, where interaction between differ-
ent words stemming from the same sense comes
into play, even if the words are not related through
translations, and this interdependence of the senses
through common words plays a role in sense disam-
biguation.

We started off with our discussions on semantic
ambiguity with the intuition that identification of
semantic concepts in the corpus that relate multi-
ple senses should help disambiguate senses. The
Sense Model falls short of this target since it only
brings together a single sense from each language.
We will now revisit the motivating example from
Section 2 and see how concepts help in disambigua-
tion by grouping multiple related senses together.

For the Sense Model,
�����S�<���F���I�D���E�?1 ( �>�����

�����S�<���F���I�D���E�?1 ( �<
��
since it is the only word that( ���

can generate. However, this difference is com-
pensated for by the higher prior probability

��� ( ��
��
,

which is strengthened by both the translation pairs.
Since the probability of joint occurrence is given by
the product

�3� ( ����� 
 �F1 ( ����� 
 �21 ( �
for any sense

(
,

the model does not develop a clear preference for
any of the two senses.

The critical difference in the Concept Model can
be appreciated directly from the corresponding joint
probability

��� B ����� ( �F1 B ����� 
 �O1 ( ������� ( �21 B ����� 
 �21 ( �6�
,

where
B

is the relevant concept in the model.
The preference for a particular instantiation in the
model is dependent not on the prior

��� (�� �
over

a sense, but on the sense conditional
�3� ( �21 B �

. In
our example, since � bar, obstrucción

�
can be

generated only through concept
B��E�

,
��� ( ��
*1 B��E� �

is
the only English sense conditional boosted by it.
� prevention, prevención

�
is generated through a

different concept
B�� \F\�� , where the higher condi-

tional
�����q�����E���S�D�D�E�?1 ( �����

gradually strengthens one
of the possible instantiations for it, and the other
one becomes increasingly unlikely as the iterations
progress. The inference is that only one sense of
prevention is possible in the context of the parallel
corpus. The key factor in this disambiguation was
that two senses of prevention separated out in two
different concepts.

The other significant difference between the mod-
els is in the constraints on the parameters and the
effect that they have on sense disambiguation. In
the Sense Model,

b K ��� ( �u" \ , while in the Con-
cept Model,

b K H6sEt ��� ( �E1 B �?" \ separately for each
concept

B
. Now for two relevant senses for an En-

glish word, a slight difference in their priors will
tend to get ironed out when normalized over the en-



Table 2: Example Spanish Senses in a Concept. For each concept, each row is a separate sense. Dictionary
senses of Spanish words are provided in English within parenthesis where necessary.
actos accidente accidentes
supremas muertes(deaths)
decisión decisiones casualty
gobernando gobernante matar(to kill) matanzas(slaughter) muertes-le
gubernamentales slaying
gobernación gobierno-proporciona derramamiento-de-sangre (spilling-of-blood)
prohibir prohibiendo prohibitivo prohibitiva cachiporra(bludgeon) obligar(force) obligando(forcing)
gubernamental gobiernos asesinato(murder) asesinatos

linterna-eléctrica linterna(lantern) manía craze
faros-automóvil(headlight) culto(cult) cultos proto-senility
linternas-portuarias(harbor-light) delirio delirium
antorcha(torch) antorchas antorchas-pino-nudo rabias(fury) rabia farfulla(do hastily)
oportunidad oportunidades diferenciación
ocasión ocasiones distinción distinciones
riesgo(risk) riesgos peligro(danger) especialización
destino sino(fate) maestría (mastery)
fortuna suerte(fate) peculiaridades particularidades peculiaridades-inglesas
probabilidad probabilidades especialidad especialidades
diablo(devil) diablos modelo parangón
dickens ideal ideales
heller santo(saint) santos san
lucifer satan satanás idol idols ídolo
deslumbra(dazzle) dios god dioses
cromo(chromium) divinidad divinity
meteoro meteoros meteor meteoros-blue inmortal(immortal) inmortales
meteorito meteoritos teología teolog
pedregosos(rocky) deidad deity deidades
variación variaciones minutos minuto
discordancia desacuerdo(discord) discordancias momento momentos un-momento
desviación(deviation) desviaciones desviaciones-normales minutos momentos momento segundos
discrepancia discrepancias fugaces(fleeting) variación diferencia instante momento
disensión pestañeo(blink) guiña(wink) pestañean
adhesión adherencia ataduras(tying) pasillo(corridor)
enlace(connection) ataduras aisle
atadura ataduras pasarela(footbridge)
conexión conexiones hall vestíbulos
conexión une(to unite) pasaje(passage)
relación conexión callejón(alley) callejas-ciegas (blind alley) callejones-ocultos
implicación (complicity) envolvimiento

tire set of senses for the corpus. In contrast, if these
two senses belong to the same concept in the Con-
cept Model, the difference in the sense conditionals
will be highlighted since the normalization occurs
over a very small set of senses — the senses for
only that concept, which in the best possible sce-
nario will contain only the two contending senses,
as in concept

B \F\�� of our example.

As can be seen from Table 1, the Concept Model
not only outperforms the Sense Model, it does so
with significantly fewer parameters. This may be
counter-intuitive since Concept Model involves an
extra concept variable. However, the dissociation of
Spanish and English senses can significantly reduce
the parameter space. Imagine two Spanish words
that are associated with ten English senses and ac-

cordingly each of them has a probability for belong-
ing to each of these ten senses. Aided with a con-
cept variable, it is possible to model the same re-
lationship by creating a separate Spanish sense that
contains these two words and relating this Spanish
sense with the ten English senses through a concept
variable. Thus these words now need to belong to
only one sense as opposed to ten. Of course, now
there are new transition probabilities for each of the
eleven senses from the new concept node. The exact
reduction in the parameter space will depend on the
frequent subsets discovered for the �2W�X�Y s of the
Spanish words. Longer and more frequent subsets
will lead to larger reductions. It must also be borne
in mind that this reduction comes with the indepen-
dence assumptions made in the Concept Model.



7 Conclusions and Future Work
We have presented two novel probabilistic models
for unsupervised word sense disambiguation using
parallel corpora and have shown that both models
outperform existing unsupervised approaches. In
addition, we have shown that our second model,
the Concept model, can be used to learn a sense
inventory for the secondary language. An advan-
tage of the probabilistic models is that they can eas-
ily incorporate additional information, such as con-
text information. In future work, we plan to investi-
gate the use of additional monolingual context. We
would also like to perform additional validation of
the learned secondary language sense inventory.
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