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Abstract

Minimal Recursion Semantics (MRS) is
the standard formalism used in large-scale
HPSG grammars to model underspecified
semantics. We present the first provably
efficient algorithm to enumerate the read-
ings of MRS structures, by translating
them into normal dominance constraints.

1 Introduction

In the past few years there has been considerable
activity in the development of formalisms forun-
derspecified semantics(Alshawi and Crouch, 1992;
Reyle, 1993; Bos, 1996; Copestake et al., 1999; Egg
et al., 2001). The common idea is to delay the enu-
meration of all readings for as long as possible. In-
stead, they work with a compactunderspecified rep-
resentation; readings are enumerated from this rep-
resentation by need.

Minimal Recursion Semantics (MRS) (Copes-
take et al., 1999) is the standard formalism for se-
mantic underspecification used in large-scale HPSG
grammars (Pollard and Sag, 1994; Copestake and
Flickinger, ). Despite this clear relevance, the most
obvious questions about MRS are still open:

1. Is it possible to enumerate the readings of
MRS structures efficiently? No algorithm has
been published so far. Existing implementa-
tions seem to be practical, even though the
problem whether an MRS has a reading is NP-
complete (Althaus et al., 2003, Theorem 10.1).

2. What is the precise relationship to other un-
derspecification formalism? Are all of them the
same, or else, what are the differences?

We distinguish the sublanguages ofMRS nets
and normal dominance nets, and show that they
can be intertranslated. This translation answers the
first question: existing constraint solvers for normal
dominance constraints can be used to enumerate the
readings of MRS nets in low polynomial time.

The translation also answers the second ques-
tion restricted to pure scope underspecification. It
shows the equivalence of a large fragment of MRSs
and a corresponding fragment of normal dominance
constraints, which in turn is equivalent to a large
fragment of Hole Semantics (Bos, 1996) as proven
in (Koller et al., 2003). Additional underspecified
treatments of ellipsis or reinterpretation, however,
are available for extensions of dominance constraint
only (CLLS, the constraint language for lambda
structures (Egg et al., 2001)).

Our results are subject to a new proof tech-
nique which reduces reasoning about MRS struc-
tures to reasoning aboutweaklynormal dominance
constraints (Bodirsky et al., 2003). The previous
proof techniques for normal dominance constraints
(Koller et al., 2003) do not apply.

2 Minimal Recursion Semantics

We define a simplified version of Minimal Recur-
sion Semantics and discuss differences to the origi-
nal definitions presented in (Copestake et al., 1999).

MRS is a description language for formulas of
first order object languages with generalized quanti-
fiers. Underspecified representations in MRS consist
of elementary predicationsandhandle constraints.
Roughly, elementary predications are object lan-
guage formulas with “holes” into which other for-
mulas can be plugged; handle constraints restrict the



way these formulas can be plugged into each other.
More formally, MRSs are formulas over the follow-
ing vocabulary:

1. Variables.An infinite set of variables ranged
over byh. Variables are also calledhandles.

2. Constants.An infinite set of constants ranged
over byx,y,z. Constants are theindividual vari-
ablesof the object language.

3. Function symbols.

(a) A set of function symbols written asP.
(b) A set of quantifier symbols ranged over

by Q (such aseveryandsome). PairsQx

are further function symbols (thevariable
bindersof x in the object language).

4. The symbol≤ for the outscopes relation.

Formulas of MRS have three kinds of literals, the
first two are calledelementary predications(EPs)
and the thirdhandle constraints:

1. h:P(x1, . . . ,xn,h1, . . . ,hm) wheren,m≥ 0
2. h:Qx(h1,h2)

3. h1 ≤ h2

Label positionsare to the left of colons ‘:’ andargu-
ment positionsto the right. LetM be a set of literals.
The label set lab(M) contains those handles ofM
that occur in label but not in argument position. The
argument handlesetarg(M) contains the handles of
M that occur in argument but not in label position.

Definition 1 (MRS). An MRS is finite setM of
MRS-literals such that:

M1 Every handle occurs at most once in label and
at most once in argument position inM.

M2 Handle constraintsh1 ≤ h2 in M always relate
argument handlesh1 to labelsh2 of M.

M3 For every constant (individual variable)x in ar-
gument position inM there is a unique literal of
the formh:Qx(h1,h2) in M.

We call an MRScompactif it additionally satisfies:

M4 Every handle ofM occurs exactly once in an
elementary predication ofM.

We say that a handleh immediately outscopesa
handleh′ in an MRSM iff there is an EPE in M such
thath occurs in label andh′ in argument position of
E. Theoutscopes relationis the reflexive, transitive
closure of the immediate outscopes relation.

everyx

studentx
readx,y

somey

booky

{h1 :everyx(h2,h4),h3 :student(x),h5 :somey(h6,h8),
h7 :book(y),h9 : read(x,y),h2 ≤ h3,h6 ≤ h7}

Figure 1: MRS for “Every student reads a book”.

An example MRS for the scopally ambiguous
sentence “Every student reads a book” is given in
Fig. 1. We often represent MRSs by directed graphs
whose nodes are the handles of the MRS. Elemen-
tary predications are represented by solid edges and
handle constraints by dotted lines. Note that we
make the relation between bound variables and their
binders explicit by dotted lines (as from everyx to
readx,y); redundant “binding-edges” that are sub-
sumed by sequences of other edges are omitted how-
ever (from everyx to studentx for instance).

A solution for an underspecified MRS is called a
configuration, or scope-resolved MRS.

Definition 2 (Configuration). An MRSM is acon-
figuration if it satisfies the following conditions.

C1 The graph ofM is a tree of solid edges: handles
don’t properly outscope themselves or occur in
different argument positions and all handles are
pairwise connected by elementary predications.

C2 If two EPs h:P(. . . ,x, . . .) and h0 :Qx(h1,h2)
belong toM, thenh0 outscopesh in M (so that
the binding edge fromh0 to h is redundant).

We callM aconfiguration foranother MRSM′ if
there exists some substitutionσ : arg(M′) 7→ lab(M′)
which states how to identify argument handles ofM′

with labels ofM′, so that:

C3 M = {σ(E) | E is EP inM′}, and
C4 σ(h1) outscopesh2 in M, for all h1 ≤ h2 ∈ M′.

The valueσ(E) is obtained by substituting all ar-
gument handles inE, leaving all others unchanged.

The MRS in Fig. 1 has precisely two configura-
tions displayed in Fig. 2 which correspond to the two
readings of the sentence. In this paper, we present
an algorithm that enumerates the configurations of
MRSs efficiently.



everyx

studentx somey

booky readx,y

somey

booky everyx

studentx readx,y

Figure 2: Graphs of Configurations.

Differences to Standard MRS. Our version de-
parts from standard MRS in some respects. First,
we assume that different EPs must be labeled with
different handles, and that labels cannot be identi-
fied. In standard MRS, however, conjunctions are
encoded by labeling different EPs with the same
handle. These EP-conjunctions can be replaced in
a preprocessing step introducing additional EPs that
make conjunctions explicit.

Second, our outscope constraints are slightly less
restrictive than the original “qeq-constraints.” A
handleh is qeq to a handleh′ in an MRSM, h =qh′,
if either h = h′ or a quantifierh:Qx(h1,h2) occurs
in M and h2 is qeq toh′ in M. Thus,h =q h′ im-
pliesh≤ h′, but not the other way round. We believe
that the additional strength of qeq-constraints is not
needed in practice for modeling scope. Recent work
in semantic construction for HPSG (Copestake et
al., 2001) supports our conjecture: the examples dis-
cussed there are compatible with our simplification.

Third, we depart in some minor details: we
use sets instead of multi-sets and omit top-handles
which are useful only during semantics construction.

3 Dominance Constraints

Dominance constraints are a general framework for
describing trees, and thus syntax trees of logical for-
mulas. Dominance constraints are the core language
underlying CLLS (Egg et al., 2001) which adds par-
allelism and binding constraints.

3.1 Syntax and Semantics

We assume a possibly infinite signatureΣ of func-
tion symbols with fixed arities and an infinite setVar

of variables ranged over byX,Y,Z. We write f ,g for
function symbols andar( f ) for the arity of f .

A dominance constraintϕ is a conjunction of
dominance, inequality, and labeling literals of the
following forms wherear( f ) = n:

ϕ ::= X/
∗Y | X 6= Y | X : f (X1, . . . ,Xn) | ϕ∧ϕ′

Dominance constraints are interpreted over finite
constructor trees, i.e. ground terms constructed from
the function symbols inΣ. We identify ground terms
with trees that are rooted, ranked, edge-ordered and
labeled. A solution for a dominance constraint con-
sists of a treeτ and a variable assignmentα that
maps variables to nodes ofτ such that all constraints
are satisfied: a labeling literalX : f (X1, . . . ,Xn) is sat-
isfied iff the nodeα(X) is labeled with f and has
daughtersα(X1), . . . ,α(Xn) in this order; a domi-
nance literalX/∗Y is satisfied iffα(X) is an ancestor
of α(Y) in τ; and an inequality literalX 6= Y is satis-
fied iff α(X) andα(Y) are distinct nodes.

Note that solutions may contain additional mate-
rial. The treef (a,b), for instance, satisfies the con-
straintY :a∧Z :b.

3.2 Normality and Weak Normality

The satisfiability problem of arbitrary dominance
constraints is NP-complete (Koller et al., 2001) in
general. However, Althaus et al. (2003) identify a
natural fragment of so callednormal dominance
constraints, which have a polynomial time satisfia-
bility problem. Bodirsky et al. (2003) generalize this
notion toweakly normal dominance constraints.

We call a variable aholeof ϕ if it occurs in argu-
ment position inϕ and aroot of ϕ otherwise.

Definition 3. A dominance constraintϕ is normal
(and compact) if it satisfies the following conditions.

N1 (a) each variable ofϕ occurs at most once in the
labeling literals ofϕ.
(b) each variable ofϕ occurs at least once in the
labeling literals ofϕ.

N2 for distinct rootsX andY of ϕ, X 6= Y is in ϕ.
N3 (a) if X C

∗ Y occurs inϕ, Y is a root inϕ.
(b) if X C

∗ Y occurs inϕ, X is a hole inϕ.

A dominance constraint isweakly normalif it satis-
fies all above properties except forN1(b) andN3(b).

The idea behind (weak) normality is that the con-
straint graph (see below) of a dominance constraint
consists of solid fragments which are connected
by dominance constraints; these fragments may not
properly overlap in solutions.

Note that Definition 3 always imposes compact-
ness, meaning that the heigth of solid fragments is at
most one. As for MRS, this is not a serious restric-
tion, since more general weakly normal dominance



constraints can be compactified, provided that dom-
inance links relate either roots or holes with roots.

Dominance Graphs. We often represent domi-
nance constraints asgraphs. A dominance graphis
the directed graph(V,/∗]/). The graph of a weakly
normal constraintϕ is defined as follows: The nodes
of the graph ofϕ are the variables ofϕ. A labeling
literal X : f (X1, . . . ,Xn) of ϕ contributestree edges
(X,Xi) ∈ / for 1 ≤ i ≤ n that we draw asX Xi;
we freely omit the labelf and the edge order in the
graph. A dominance literalX/∗Y contributes a dom-
inance edge(X,Y) ∈ /∗ that we draw asX Y.
Inequality literals inϕ are also omitted in the graph.

f

a

gFor example, the constraint graph
on the right represents the dominance
constraintX : f (X′)∧Y :g(Y′)∧X′/∗Z∧
Y′/∗Z∧Z :a∧X 6=Y∧X 6=Z∧Y 6=Z.

A dominance graph isweakly normalor a wnd-
graphif it does not contain any forbidden subgraphs:

Dominance graphs of a weakly normal dominance
constraints are clearly weakly normal.

Solved Forms and Configurations. The main dif-
ference between MRS and dominance constraints
lies in their notion of interpretation: solutions versus
configurations.

Every satisfiable dominance constraint has in-
finitely many solutions. Algorithms for dominance
constraints therefore do not enumerate solutions but
solved forms. We say that a dominance constraint is
in solved form iff its graph is in solved form. A wnd-
graphΦ is in solved form iffΦ is a forest. Thesolved
forms of Φ are solved formsΦ′ that are more spe-
cific thanΦ, i.e. Φ andΦ′ differ only in their dom-
inance edges and the reachability relation ofΦ ex-
tends the reachability ofΦ′. A minimal solved form
of Φ is a solved form ofΦ that is minimal with re-
spect to specificity.

The notion of configurations from MRS applies
to dominance constraints as well. Here, aconfigu-
ration is a dominance constraint whose graph is a
tree without dominance edges. A configuration of a
constraintϕ is a configuration that solvesϕ in the
obvious sense.Simple solved formsare tree-shaped
solved forms where every hole has exactly one out-
going dominance edge.

L1

L2

L3 L4

L2

L1

L4L3

Figure 3: A dominance constraint (left) with a mini-
mal solved form (right) that has no configuration.

Lemma 1. Simple solved forms and configurations
correspond: Every simple solved form has exactly
one configuration, and for every configuration there
is exactly one solved form that it configures.

Unfortunately, Lemma 1 does not extend to min-
imal as opposed to simple solved forms: there are
minimal solved forms without configurations. The
constraint on the right of Fig. 3, for instance, has no
configuration: the hole of L1 would have to be filled
twice while the right hole of L2 cannot be filled.

4 Representing MRSs

We next map (compact) MRSs to weakly normal
dominance constraints so that configurations are
preserved. Note that this translation is based on a
non-standard semantics for dominance constraints,
namely configurations. We address this problem in
the following sections.

The translation of an MRSM to a dominance con-
straintϕM is quite trivial. The variables ofϕM are the
handles ofM and its literal set is:

{h:Px1,...,xn(h1, . . .) | h:P(x1, . . . ,xn,h1, . . .) ∈ M}

∪{h:Qx(h1,h2) | h:Qx(h1,h2) ∈ M}

∪{h1/
∗h2 | h1 ≤ h2 ∈ M}

∪{h/∗h0 | h:Qx(h1,h2),h0 :P(. . . ,x, . . .) ∈ M}

∪{h6=h′ | h,h′ in distinct label positions ofM}

Compact MRSsM are clearly translated into (com-
pact) weakly normal dominance constraints. Labels
of M become roots inϕM while argument handles
become holes. Weak root-to-root dominance literals
are needed to encode variable binding conditionC2
of MRS. It could be formulated equivalently through
lambda binding constraints of CLLS (but this is not
necessary here in the absence of parallelism).



Proposition 1. The translation of a compact MRS
M into a weakly normal dominance constraintϕM

preserves configurations.

This weak correctness property follows straight-
forwardly from the analogy in the definitions.

5 Constraint Solving

We recall an algorithm from (Bodirsky et al., 2003)
that efficiently enumerates all minimal solved forms
of wnd-graphs or constraints. All results of this sec-
tion are proved there.

The algorithm can be used to enumerate config-
urations for a large subclass of MRSs, as we will
see in Section 6. But equally importantly, this algo-
rithm provides a powerful proof method for reason-
ing about solved forms and configurations on which
all our results rely.

5.1 Weak Connectedness

Two nodesX andY of a wnd-graphΦ = (V,E) are
weakly connectedif there is an undirected path from
X to Y in (V,E). We callΦ weakly connected if all
its nodes are weakly connected. A weakly connected
component (wcc) ofΦ is a maximal weakly con-
nected subgraph ofΦ. The wccs ofΦ = (V,E) form
proper partitions ofV andE.

Proposition 2. The graph of a solved form of a
weakly connected wnd-graph is a tree.

5.2 Freeness

The enumeration algorithm is based on the notion of
freeness.

Definition 4. A nodeX of a wnd-graphΦ is called
free in Φ if there exists a solved form ofΦ whose
graph is a tree with rootX.

A weakly connected wnd-graph without free
nodes is unsolvable. Otherwise, it has a solved form
whose graph is a tree (Prop. 2) and the root of this
tree is free inΦ.

Given a set of nodesV ′ ⊆V, we writeΦ|V ′ for the
restriction ofΦ to nodes inV ′ and edges inV ′×V ′.
The following lemma characterizes freeness:

Lemma 2. A wnd-graphΦ with free nodeX satis-
fies the freeness conditions:

F1 nodeX has indegree zero in graphΦ, and

F2 no distinct childrenY andY′ of X in Φ that are
linked toX by immediate dominance edges are
weakly connected in the remainderΦ|V\{X}.

5.3 Algorithm

The algorithm for enumerating the minimal solved
forms of a wnd-graph (or equivalently constraint) is
given in Fig. 4. We illustrate the algorithm for the
problematic wnd-graphΦ in Fig. 3. The graph ofΦ
is weakly connected, so that we can call solve(Φ).
This procedure guesses topmost fragments in solved
forms ofΦ (which always exist by Prop. 2).

The only candidates areL1 or L2 since L3 and
L4 have incoming dominance edges, which violates
F1. Let us choose the fragmentL2 to be topmost.
The graph which remains when removingL2 is still
weakly connected. It has a single minimal solved
form computed by a recursive call of the solver,
whereL1 dominatesL3 andL4. The solved form of
the restricted graph is then put below the left hole of
L2, since it is connected to this hole. As a result, we
obtain the solved form on the right of Fig. 3.

Theorem 1. The function solved-form(Φ) com-
putes all minimal solved forms of a weakly normal
dominance graphΦ; it runs in quadratic time per
solved form.

6 Full Translation

Next, we explain how to encode a large class of
MRSs into wnd-constraints such that configurations
correspond precisely to minimal solved forms. The
result of the translation will indeed be normal.

6.1 Problems and Examples

The naive representation of MRSs as weakly nor-
mal dominance constraints is only correct in a weak
sense. The encoding fails in that some MRSs which
have no configurations are mapped to solvable wnd-
constraints. For instance, this holds for the MRS on
the right in Fig 3.

We cannot even hope to translate arbitrary MRSs
correctly into wnd-constraints: the configurability
problem of MRSs is NP-complete, while satisfia-
bility of wnd-constraints can be solved in polyno-
mial time. Instead, we introduce the sublanguages
of MRS-netsand equivalentwnd-nets,and show that
they can be intertranslated in quadratic time.



solved-form(Φ) ≡
Let Φ1, . . . ,Φk be the wccs ofΦ = (V,E)
Let (Vi ,Ei) be the result of solve(Φi)
return (V,∪k

i=1Ei)
solve(Φ) ≡

precond: Φ = (V,/]/∗) is weakly connected
choose a nodeX satisfying (F1) and (F2) in Φ else fail
LetY1, . . . ,Yn be all nodes s.t.X /Yi

Let Φ1, . . . ,Φk be the weakly connected components ofΦ|V−{X,Y1,...,Yn}

Let (Wj ,E j) be the result of solve(Φ j ), andXj ∈Wj its root
return (V,∪k

j=1E j ∪/∪/∗1∪/∗2) where
/∗1 = {(Yi ,Xj) | ∃X′ : (Yi ,X′) ∈ /∗∧X′ ∈Wj},
/∗2 = {(X,Xj) | ¬∃X′ : (Yi ,X′) ∈ /∗∧X′ ∈Wj}

Figure 4: Enumerating the minimal solved-forms of a wnd-graph.

...

...

(a) strong

. ...

...

(b) weak

.

 ...

...

(c) island

Figure 5: Fragment Schemas of Nets

6.2 Dominance and MRS-Nets

A hypernormal path (Althaus et al., 2003) in a wnd-
graph is a sequence of adjacent edges that does
not traverse two outgoing dominance edges of some
hole X in sequence, i.e. a wnd-graph without situa-
tionsY1 X Y2.

A dominance netΦ is a weakly normal domi-
nance constraint whose fragments all satisfy one of
the three schemas in Fig. 5. MRS-nets can be de-
fined analogously. This means that all roots ofΦ are
labeled inΦ, and that all fragmentsX : f (X1, . . . ,Xn)
of Φ satisfy one of the following three conditions:

strong. n≥ 0 and for allY ∈ {X1, . . . ,Xn} there ex-
ists a uniqueZ such thatY C

∗ Z in Φ, and there exists
no Z such thatX C

∗ Z in Φ.
weak. n≥ 1 and for allY ∈ {X1, . . . ,Xn−1,X} there
exists a uniqueZ such thatY C

∗ Z in Φ, and there
exists noZ such thatXn C

∗ Z in Φ.
island. n = 1 and all variables in{Y | X1 C

∗ Y} are

connected by a hypernormal path in the graph of the
restricted constraintΦ|V−{X1}, and there exists noZ
such thatX C

∗ Z in Φ.

The requirement of hypernormal connections in
islands replaces the notion of chain-connectedness
in (Koller et al., 2003), which fails to apply to dom-
inance constraints with weak dominance edges.

For ease of presentation, we restrict ourselves to
a simple version of island fragments. In general, we
should allow for island fragments withn > 1.

6.3 Normalizing Dominance Nets

Dominance nets are wnd-constraints. We next trans-
late dominance netsΦ to normal dominance con-
straintsΦ′ so thatΦ has a configuration iffΦ′ is sat-
isfiable. The trick is to normalize weak dominance
edges. The normalizationnorm(Φ) of a weakly nor-
mal dominance constraintΦ is obtained by convert-
ing all root-to-root dominance literalsX C

∗ Y as fol-
lows:

X C
∗ Y ⇒ Xn C

∗ Y

if X roots a fragment ofΦ that satisfies schema
weak of net fragments. IfΦ is a dominance net then
norm(Φ) is indeed a normal dominance net.

Theorem 2. The configurations of a weakly con-
nected dominance netΦ correspond bijectively
to the minimal solved forms of its normalization
norm(Φ).

For illustration, consider the problematic wnd-
constraintΦ on the left of Fig. 3.Φ has two minimal



solved forms with top-most fragmentsL1 andL2 re-
spectively. The former can be configured, in contrast
to the later which is drawn on the right of Fig. 3.

Normalizing Φ has an interesting consequence:
norm(Φ) has (in contrast toΦ) a single minimal
solved form withL1 on top. Indeed,norm(Φ) cannot
be satisfied while placingL2 topmost. Our algorithm
detects this correctly: the normalization of fragment
L2 is not free innorm(Φ) since it violates property
F2.

The proof of Theorem 2 captures the rest of this
section. We show in a first step (Prop. 3) that the con-
figurations are preserved when normalizing weakly
connected and satisfiable nets. In the second step,
we show that minimal solved forms of normalized
nets, and thus ofnorm(Φ), can always be configured
(Prop. 4).

Corollary 1. Configurability of weakly connected
MRS-nets can be decided in polynomial time; con-
figurations of weakly connected MRS-nets can be
enumerated in quadratic time per configuration.

6.4 Correctness Proof

Most importantly, nets can be recursively decom-
posed into nets as long as they have configurations:

Lemma 3. If a dominance netΦ has a configuration
whose top-most fragment isX : f (X1, . . . ,Xn), then
the restrictionΦ|V−{X,X1,...,Xn} is a dominance net.

Note that the restriction of the problematic netΦ
by L2 on the left in Fig. 3 is not a net. This does not
contradict the lemma, asΦ does not have a configu-
ration with top-most fragmentL2.

Proof. First note that asX is free inΦ it cannot have
incoming edges (conditionF1). This means that the
restriction deletes only dominance edges that depart
from nodes in{X,X1, . . . ,Xn}. Other fragments thus
only lose ingoing dominance edges by normality
condition N3. Such deletions preserve the validity
of the schemasweak andstrong.

The island schema is more problematic. We have
to show that the hypernormal connections in this
schema can never be cut. So suppose thatY : f (Y1) is
an island fragment with outgoing dominance edges
Y1 C

∗ Z1 andY1 C
∗ Z2, so thatZ1 and Z2 are con-

nected by some hypernormal path traversing the
deleted fragmentX : f (X1, . . . ,Xn). We distinguish
the three possible schemata for this fragment:

...

(a) strong

. ...

(b) weak

.

 ...

(c) island

Figure 6: Traversals through fragments of free roots

strong: sinceX does not have incoming dominance
edges, there is only a single non-trival kind of traver-
sal, drawn in Fig. 6(a). But such traversals contradict
the freeness ofX according toF2.
weak: there is one other way of traversing weak
fragments, shown in Fig. 6(b). LetX C

∗ Y be the
weak dominance edge. The traversal proves thatY
belongs to the weakly connected components of one
of the Xi, so theΦ∧Xn C

∗ Y is unsatisfiable. This
shows that the holeXn cannot be identified with any
root, i.e.Φ does not have any configuration in con-
trast to our assumption.
island: free island fragments permit one single non-
trivial form of traversals, depicted in Fig. 6(c). But
such traversals are not hypernormal.

Proposition 3. A configuration of a weakly con-
nected dominance netΦ configures its normalization
norm(Φ), and vice versa of course.

Proof. Let C be a configuration ofΦ. We show that
it also configuresnorm(Φ). Let S be the simple
solved form ofΦ that is configured byC (Lemma 1),
andS′ be a minimal solved form ofΦ which is more
general thanS.

Let X : f (Y1, . . . ,Yn) be the top-most fragment of
the treeS. This fragment must also be the top-most
fragment ofS′, which is a tree sinceΦ is assumed to
be weakly connected (Prop. 2).S′ is constructed by
our algorithm (Theorem 1), so that the evaluation of
solve(Φ) must chooseX as free root inΦ.

SinceΦ is a net, some literalX : f (Y1, . . . ,Yn) must
belong toΦ. Let Φ′ = Φ|{X,Y1,...,Yn} be the restriction
of Φ to the lower fragments. The weakly connected
components of allY1, . . ., Yn−1 must be pairwise dis-
joint by F2 (which holds by Lemma 2 sinceX is free
in Φ). TheX-fragment of netΦ must satisfy one of
three possible schemata of net fragments:



weak fragments: there exists a unique weak domi-
nance edgeX C

∗ Z in Φ and a unique holeYn without
outgoing dominance edges. The variableZ must be a
root in Φ and thus be labeled. IfZ is equal toX then
Φ is unsatisfiable by normality conditionN2, which
is impossible. Hence,Z occurs in the restrictionΦ′

but not in the weakly connected components of any
Y1, . . ., Yn−1. Otherwise, the minimal solved formS′

could not be configured since the holeYn could not
be identified with any root. Furthermore, the root of
the Z-component must be identified withYn in any
configuration ofΦ with root X. Hence,C satisfies
Yn C

∗ Z which is add by normalization.
The restrictionΦ′ must be a dominance net by
Lemma 3, and hence, all its weakly connected com-
ponents are nets. For all 1≤ i ≤ n− 1, the compo-
nent ofYi in Φ′ is configured by the subtree ofC at
nodeYi , while the subtree ofC at nodeYn configures
the component ofZ in Φ′. The induction hypothesis
yields that the normalizations of all these compo-
nents are configured by the respective subconfigura-
tions ofC. Hence,norm(Φ) is configured byC.
strong or island fragments are not altered by nor-
malization, so we can recurse to the lower fragments
(if there exist any).

Proposition 4. Minimal solved forms of normal,
weakly connected dominance nets have configura-
tions.

Proof. By induction over the construction of min-
imal solved forms, we can show that all holes of
minimal solved forms have a unique outgoing dom-
inance edge at each hole. Furthermore, all minimal
solved forms are trees since we assumed connect-
edness (Prop.2). Thus, all minimal solved forms are
simple, so they have configurations (Lemma 1).

7 Conclusion

We have related two underspecification formalism,
MRS and normal dominance constraints. We have
distinguished the sublanguages of MRS-nets and
normal dominance nets that are sufficient to model
scope underspecification, and proved their equiva-
lence. Thereby, we have obtained the first provably
efficient algorithm to enumerate the readings of un-
derspecified semantic representations in MRS.

Our encoding has the advantage that researchers
interested in dominance constraints can benefit from

the large grammar resources of MRS. This requires
further work in order to deal with unrestricted ver-
sions of MRS used in practice. Conversely, one can
now lift the additional modeling power of CLLS to
MRS.

References

H. Alshawi and R. Crouch. 1992. Monotonic semantic
interpretation. InProc. 30th ACL, pages 32–39.

E. Althaus, D. Duchier, A. Koller, K. Mehlhorn,
J. Niehren, and S. Thiel. 2003. An efficient graph
algorithm for dominance constraints.Journal of Algo-
rithms. In press.

Manuel Bodirsky, Denys Duchier, Joachim Niehren, and
Sebastian Miele. 2003. An efficient algorithm for
weakly normal dominance constraints. Available at
www.ps.uni-sb.de/Papers.

Johan Bos. 1996. Predicate logic unplugged. InAmster-
dam Colloquium, pages 133–143.

Ann Copestake and Dan Flickinger. An open-
source grammar development environment and broad-
coverage English grammar using HPSG. InConfer-
ence on Language Resources and Evaluation.

Ann Copestake, Dan Flickinger, Ivan Sag, and Carl Pol-
lard. 1999. Minimal Recursion Semantics: An Intro-
duction. Manuscript, Stanford University.

Ann Copestake, Alex Lascarides, and Dan Flickinger.
2001. An algebra for semantic construction in
constraint-based grammars. InProceedings of the
39th ACL, pages 132–139, Toulouse, France.

Markus Egg, Alexander Koller, and Joachim Niehren.
2001. The Constraint Language for Lambda Struc-
tures.Logic, Language, and Information, 10:457–485.

Alexander Koller, Joachim Niehren, and Ralf Treinen.
2001. Dominance constraints: Algorithms and com-
plexity. In LACL’98, volume 2014 ofLNAI, pages
106–125.

Alexander Koller, Joachim Niehren, and Stefan Thater.
2003. Bridging the gap between underspecification
formalisms: Hole semantics as dominance constraints.
In EACL’03, April. In press.

Carl Pollard and Ivan Sag. 1994.Head-driven Phrase
Structure Grammar. University of Chicago Press.

Uwe Reyle. 1993. Dealing with ambiguities by under-
specification: Construction, representation and deduc-
tion. Journal of Semantics, 10(1).


