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Abstract

The order of prenominal adjectival
modifiers in English is governed by
complex and difficult to describe con-
straints which straddle the boundary
between competence and performance.
This paper describes and compares
a number of statistical and machine
learning techniques for ordering se-
quences of adjectives in the context of
a natural language generation system.

1 The problem

The question of robustness is a perennial prob-
lem for parsing systems. In order to be useful,
a parser must be able to accept a wide range of
input types, and must be able to gracefully deal
with dysfluencies, false starts, and other ungram-
matical input. In natural language generation, on
the other hand, robustness is not an issue in the
same way. While a tactical generator must be able
to deal with a wide range of semantic inputs, it
only needs to produce grammatical strings, and
the grammar writer can select in advance which
construction types will be considered grammati-
cal. However, it is important that a generator not
produce strings which are strictly speaking gram-
matical but for some reason unusual. This is a
particular problem for dialog systems which use
the same grammar for both parsing and genera-
tion. The looseness required for robust parsing
is in direct opposition to the tightness needed for
high quality generation.

One area where this tension shows itself clearly
is in the order of prenominal modifiers in English.
In principle, prenominal adjectives can, depend-
ing on context, occur in almost any order:

the large red American car

??the American red large car

*car American red the large

Some orders are more marked than others, but
none are strictly speaking ungrammatical. So, the
grammar should not put any strong constraints on
adjective order. For a generation system, how-
ever, it is important that sequences of adjectives
be produced in the ‘correct’ order. Any other or-
der will at best sound odd and at worst convey an
unintended meaning.

Unfortunately, while there are rules of thumb
for ordering adjectives, none lend themselves to a
computational implementation. For example, ad-
jectives denoting size do tend to precede adjec-
tives denoting color. However, these rules under-
specify the relative order for many pairs of adjec-
tives and are often difficult to apply in practice.
In this paper, we will discuss a number of statisti-
cal and machine learning approaches to automati-
cally extracting from large corpora the constraints
on the order of prenominal adjectives in English.

2 Word bigram model

The problem of generating ordered sequences of
adjectives is an instance of the more general prob-
lem of selecting among a number of possible
outputs from a natural language generation sys-
tem. One approach to this more general problem,
taken by the ‘Nitrogen’ generator (Langkilde and
Knight, 1998a; Langkilde and Knight, 1998b),
takes advantage of standard statistical techniques
by generating a lattice of all possible strings given
a semantic representation as input and selecting
the most likely output using a bigram language
model.



Langkilde and Knight report that this strategy
yields good results for problems like generating
verb/object collocations and for selecting the cor-
rect morphological form of a word. It also should
be straightforwardly applicable to the more spe-
cific problem we are addressing here. To deter-
mine the correct order for a sequence of prenom-
inal adjectives, we can simply generate all possi-
ble orderings and choose the one with the high-
est probability. This has the advantage of reduc-
ing the problem of adjective ordering to the prob-
lem of estimatingn-gram probabilities, some-
thing which is relatively well understood.

To test the effectiveness of this strategy, we
took as a dataset the first one million sentences
of the written portion of the British National Cor-
pus (Burnard, 1995).1 We held out a randomly se-
lected 10% of this dataset and constructed a back-
off bigram model from the remaining 90% using
the CMU-Cambridge statistical language model-
ing toolkit (Clarkson and Rosenfeld, 1997). We
then evaluated the model by extracting all se-
quences of two or more adjectives followed by
a noun from the held-out test data and counted
the number of such sequences for which the most
likely order was the actually observed order. Note
that while the model was constructed using the
entire training set, it was evaluated based on only
sequences of adjectives.

The results of this experiment were some-
what disappointing. Of 5,113 adjective sequences
found in the test data, the order was correctly pre-
dicted for only 3,864 for an overall prediction ac-
curacy of 75.57%. The apparent reason that this
method performs as poorly as it does for this par-
ticular problem is that sequences of adjectives are
relatively rare in written English. This is evi-
denced by the fact that in the test data only one se-
quence of adjectives was found for every twenty
sentences. With adjective sequences so rare, the
chances of finding information about anyparticu-
lar sequence of adjectives is extremely small. The
data is simply too sparse for this to be a reliable
method.

1The relevant files were identified by the absence of the
<settDesc> (spoken text “setting description”) SGML tag
in the file header. Thanks to John Carroll for help in prepar-
ing the corpus.

3 The experiments

Since Langkilde and Knight’s general approach
does not seem to be very effective in this particu-
lar case, we instead chose to pursue more focused
solutions to the problem of generating correctly
ordered sequences of prenominal adjectives. In
addition, at least one generation algorithm (Car-
roll et al., 1999) inserts adjectival modifiers in a
post-processing step. This makes it easy to in-
tegrate a distinct adjective-ordering module with
the rest of the generation system.

3.1 The data

To evaluate various methods for ordering
prenominal adjectives, we first constructed a
dataset by taking all sequences of two or more
adjectives followed by a common noun in the 100
million tokens of written English in the British
National Corpus. From 247,032 sequences, we
produced 262,838 individual pairs of adjectives.
Among these pairs, there were 127,016 different
pair types, and 23,941 different adjective types.
For test purposes, we then randomly held out
10% of the pairs, and used the remaining 90% as
the training sample.

Before we look at the different methods for
predicting the order of adjective pairs, there are
two properties of this dataset which bear noting.
First, it is quite sparse. More than 76% of the
adjective pair types occur only once, and 49%
of the adjective types only occur once. Second,
we get no useful information about the syntag-
matic context in which a pair appears. The left-
hand context is almost always a determiner, and
including information about the modified head
noun would only make the data even sparser. This
lack of context makes this problem different from
other problems, such as part-of-speech tagging
and grapheme-to-phoneme conversion, for which
statistical and machine learning solutions have
been proposed.

3.2 Direct evidence

The simplest strategy for ordering adjectives is
what Shaw and Hatzivassiloglou (1999) call the
direct evidencemethod. To order the pair{a,b},
count how many times the ordered sequences
〈a,b〉 and 〈b,a〉 appear in the training data and
output the pair in the order which occurred more
often.



This method has the advantage of being con-
ceptually very simple, easy to implement, and
highly accurate for pairs of adjectives which ac-
tually appear in the training data. Applying this
method to the adjectives sequences taken from
the BNC yields better than 98% accuracy for
pairs that occurred in the training data. However,
since as we have seen, the majority of pairs occur
only once, the overall accuracy of this method is
59.72%, only slightly better than random guess-
ing. Fortunately, another strength of this method
is that it is easy to identify those pairs for which
it is likely to give the right result. This means
that one can fall back on another less accurate but
more general method for pairs which did not oc-
cur in the training data. In particular, if we ran-
domly assign an order to unseen pairs, we can cut
the error rate in half and raise the overall accuracy
to 78.28%.

It should be noted that the direct evidence
method as employed here is slightly different
from Shaw and Hatzivassiloglou’s: we simply
compare raw token counts and take the larger
value, while they applied a significance test to es-
timate the probability that a difference between
counts arose strictly by chance. Like one finds in
a trade-off between precision and recall, the use
of a significance test slightly improved the accu-
racy of the method for those pairs which it had
an opinion about, but also increased the number
of pairs which had to be randomly assigned an
order. As a result, the net impact of using a sig-
nificance test for the BNC data was a very slight
decrease in the overall prediction accuracy.

The direct evidence method is straightforward
to implement and gives impressive results for ap-
plications that involve a small number of frequent
adjectives which occur in all relevant combina-
tions in the training data. However, as a general
approach to ordering adjectives, it leaves quite
a bit to be desired. In order to overcome the
sparseness inherent to this kind of data, we need
a method which can generalize from the pairs
which occur in the training data to unseen pairs.

3.3 Transitivity

One way to think of the direct evidence method is
to see that it defines a relation≺ on the set of En-
glish adjectives. Given two adjectives, if the or-
dered pair〈a,b〉 appears in the training data more
often then the pair〈b,a〉, thena≺ b. If the re-

verse is true, and〈b,a〉 is found more often than
〈a,b〉, thenb≺ a. If neither order appears in the
training data, then neithera≺ b nor b≺ a and an
order must be randomly assigned.

Shaw and Hatzivassiloglou (1999) propose to
generalize the direct evidence method so that it
can apply to unseen pairs of adjectives by com-
puting thetransitive closureof the ordering re-
lation ≺. That is, if a ≺ c and c ≺ b, we can
conclude thata ≺ b. To take an example from
the BNC, the adjectiveslargeandgreennever oc-
cur together in the training data, and so would
be assigned a random order by the direct evi-
dence method. However, the pairs〈large,new〉
and〈new,green〉 occur fairly frequently. There-
fore, in the face of this evidence we can assign
this pair the order〈large,green〉, which not coin-
cidently is the correct English word order.

The difficulty with applying the transitive clo-
sure method to any large dataset is that there of-
ten will be evidence for both orders of any given
pair. For instance, alongside the evidence sup-
porting the order〈large,green〉, we also find the
pairs 〈green,byzantine〉, 〈byzantine,decorative〉,
and 〈decorative,new〉, which suggest the order
〈green, large〉.

Intuitively, the evidence for the first order is
quite a bit stronger than the evidence for the sec-
ond. The first ordered pairs are more frequent, as
are the individual adjectives involved. To quan-
tify the relative strengths of these transitive in-
ferences, Shaw and Hatzivassiloglou (1999) pro-
pose to assign a weight to each link. Say the order
〈a,b〉 occursm times and the pair{a,b} occursn
times in total. Then the weight of the paira→ b
is:

− log

(
1−

n

∑
k=m

(
n
k

)
· 1
2

n
)

This weight decreases as the probability that the
observed order did not occur strictly by chance
increases. This way, the problem of finding the
order best supported by the evidence can be stated
as a general shortest path problem: to find the pre-
ferred order for{a,b}, find the sum of the weights
of the pairs in the lowest-weighted path froma to
b and fromb to a and choose whichever is lower.

Using this method, Shaw and Hatzivassiloglou
report predictions ranging from 81% to 95% ac-
curacy on small, domain specific samples. How-
ever, they note that the results are very domain-



specific. Applying a graph trained on one domain
to a text from another another generally gives
very poor results, ranging from 54% to 58% accu-
racy. Applying this method to the BNC data gives
83.91% accuracy, in line with Shaw and Hatzivas-
siloglou’s results and considerably better than the
direct evidence method. However, applying the
method is computationally a bit expensive. Like
the direct evidence method, it requires storing ev-
ery pair of adjectives found in the training data
along with its frequency. In addition, it also re-
quires solving the all-pairs shortest path problem,
for which common algorithms run inO(n3) time.

3.4 Adjective bigrams

Another way to look at the direct evidence
method is as a comparison between two proba-
bilities. Given an adjective pair{a,b}, we com-
pare the number of times we observed the order
〈a,b〉 to the number of times we observed the or-
der 〈b,a〉. Dividing each of these counts by the
total number of times{a,b} occurred gives us the
maximum likelihood estimate of the probabilities
P(〈a,b〉|{a,b}) andP(〈b,a〉|{a,b}).

Looking at it this way, it should be clear why
the direct evidence method does not work well, as
maximum likelihood estimation of bigram proba-
bilities is well known to fail in the face of sparse
data. It should also be clear how we might im-
prove the direct evidence method. Using the same
strategy as described in section 2, we constructed
a back-off bigram model of adjective pairs, again
using the CMU-Cambridge toolkit. Since this
model was constructed using only data specifi-
cally about adjective sequences, the relative in-
frequency of such sequences does not degrade its
performance. Therefore, while the word bigram
model gave an accuracy of only 75.57%, the ad-
jective bigram model yields an overall prediction
accuracy of 88.02% for the BNC data.

3.5 Memory-based learning

An important property of the direct evidence
method for ordering adjectives is that it requires
storing all of the adjective pairs observed in the
training data. In this respect, the direct evidence
method can be thought of as a kind of memory-
based learning.

Memory-based (also known as lazy, near-
est neighbor, instance-based, or case-based) ap-
proaches to classification work by storing all of

the instances in the training data, along with their
classes. To classify a new instance, the store of
previously seen instances is searched to find those
instances which most resemble the new instance
with respect to some similarity metric. The new
instance is then assigned a class based on the ma-
jority class of its nearest neighbors in the space of
previously seen instances.

To make the comparison between the direct
evidence method and memory-based learning
clearer, we can frame the problem of adjective or-
dering as a classification problem. Given an un-
ordered pair{a,b}, we can assign it some canon-
ical order to get an instanceab. Then, if a pre-
cedesb more often thanb precedesa in the train-
ing data, we assign the instanceab to the class
a≺ b. Otherwise, we assign it to the classb≺ a.

Seen as a solution to a classification problem,
the direct evidence method then is an application
of memory-based learning where the chosen sim-
ilarity metric is strict identity. As with the inter-
pretation of the direct evidence method explored
in the previous section, this view both reveals a
reason why the method is not very effective and
also indicates a direction which can be taken to
improve it. By requiring the new instance to be
identical to a previously seen instance in order to
classify it, the direct evidence method is unable to
generalize from seen pairs to unseen pairs. There-
fore, to improve the method, we need a more ap-
propriate similarity metric that allows the classi-
fier to get information from previously seen pairs
which are relevant to but not identical to new un-
seen pairs.

Following the conventional linguistic wisdom
(Quirk et al., 1985, e.g.), this similarity metric
should pick out adjectives which belong to the
same semantic class. Unfortunately, for many
adjectives this information is difficult or impos-
sible to come by. Machine readable dictionar-
ies and lexical databases such as WordNet (Fell-
baum, 1998) do provide some information about
semantic classes. However, the semantic classifi-
cation in a lexical database may not make exactly
the distinctions required for predicting adjective
order. More seriously, available lexical databases
are by necessity limited to a relatively small num-
ber of words, of which a relatively small fraction
are adjectives. In practice, the available sources
of semantic information only provide semantic
classifications for fairly common adjectives, and



these are precisely the adjectives which are found
frequently in the training data and so for which
semantic information is least necessary.

While we do not reliably have access to the
meaning of an adjective, we do always have ac-
cess to its form. And, fortunately, for many of
the cases in which the direct evidence method
fails, finding a previously seen pair of adjec-
tives with a similar form has the effect of find-
ing a pair with a similar meaning. For ex-
ample, suppose we want to order the adjective
pair {21-year-old,Armenian}. If this pair ap-
pears in the training data, then the previous oc-
currences of this pair will be used to predict
the order and the method reduces to direct ev-
idence. If, on the other hand, that particu-
lar pair did not appear in the training data, we
can base the classification on previously seen
pairs with a similar form. In this way, we
may find pairs like{73-year-old,Colombian} and
{44-year-old,Norwegian}, which have more or
less the same distribution as the target pair.

To test the effectiveness of a form-based sim-
ilarity metric, we encoded each adjective pairab
as a vector of 16 features (the last 8 characters
of a and the last 8 characters ofb) and a class
a≺ b or b≺ a. Constructing the instance base
and testing the classification was performed using
the TiMBL 3.0 (Daelemans et al., 2000) memory-
based learning system. Instances to be classified
were compared to previously seen instances by
counting the number of feature values that the two
instances had in common.

In computing the similarity score, features
were weighted by their information gain, an in-
formation theoretic measure of the relevance of a
feature for determining the correct classification
(Quinlan, 1986; Daelemans and van den Bosch,
1992). This weighting reduces the sensitivity of
memory based learning to the presence of irrele-
vant features.

Given the probabilitypi of finding each class
i in the instance baseD, we can compute the en-
tropy H(D), a measure of the amount of uncer-
tainty inD:

H(D) =−∑
pi

pi log2 pi

In the case of the adjective ordering data, there
are two classesa≺ b andb≺ a, each of which
occurs with a probability of roughly 0.5, so the

entropy of the instance base is close to 1 bit. We
can also compute the entropy of a featuref which
takes valuesV as the weighted sum of the entropy
of each of the valuesV:

H(D f ) = ∑
vi∈V

H(D f =vi )
|D f =vi |
|D|

HereH(D f =vi ) is the entropy of subset of the in-
stance base which has valuevi for featuref . The
information gain of a feature then is simply the
difference between the total entropy of the in-
stance base and the entropy of a single feature:

G(D, f ) = H(D)−H(D f )

The information gainG(D, f ) is the reduction in
uncertainty inD we expect to achieve by learning
the value of the featuref . In other words, know-
ing the value of a feature with a higherG gets us
closer on average to knowing the class of an in-
stance than knowing the value of a feature with a
lowerG does.

The similarity∆ between two instances then is
the number of feature values they have in com-
mon, weighted by the information gain:

∆(X,Y) =
n

∑
i=1

G(D, i)δ(xi ,yi)

where:

δ(xi ,yi) =
{

1 if xi = yi

0 otherwise

Classification was based on the five training in-
stances most similar to the instance to be classi-
fied, and produced an overall prediction accuracy
of 89.34% for the BNC data.

3.6 Positional probabilities

One difficulty faced by each of the methods de-
scribed so far is that they all to one degree or an-
other depend on finding particular pairs of adjec-
tives. For example, in order for the direct evi-
dence method to assign an order to a pair of ad-
jectives like{blue, large}, this specific pair must
have appeared in the training data. If not, an or-
der will have to be assigned randomly, even if
the individual adjectivesblue and large appear
quite frequently in combination with a wide vari-
ety of other adjectives. Both the adjective bigram
method and the memory-based learning method



reduce this dependency on pairs to a certain ex-
tent, but these methods still suffer from the fact
that even for common adjectives one is much less
likely to find a specific pair in the training data
than to find some pair of which a specific adjec-
tive is a member.

Recall that the adjective bigram method
depended on estimating the probabilities
P(〈a,b〉|{a,b}) andP(〈b,a〉|{a,b}). Suppose we
now assume that the probability of a particular
adjective appearing first in a sequence depends
only on that adjective, and not the the other ad-
jectives in the sequence. We can easily estimate
the probability that if an adjective pair includes
some given adjectivea, then that adjective occurs
first (let us call thatP(〈a,x〉|{a,x})) by looking
at each pair in the training data that includes
that adjectivea. Then, given the assumption of
independence, the probabilityP(〈a,b〉|{a,b})
is simply the product ofP(〈a,x〉|{a,x}) and
P(〈x,b〉|{b,x}). Taking the most likely order
for a pair of adjectives using this alternative
method for estimating P(〈a,b〉|{a,b}) and
P(〈a,b〉|{a,b}) gives quite good results: a
prediction accuracy of 89.73% for the BNC data.

At first glance, the effectiveness of this method
may be surprising since it is based on an indepen-
dence assumption which common sense indicates
must not be true. However, to order a pair of ad-
jectives, this method brings to bear information
from all the previously seen pairs which include
either of adjectives in the pair in question. Since
it makes much more effective use of the train-
ing data, it can nevertheless achieve high accu-
racy. This method also has the advantage of be-
ing computationally quite simple. Applying this
method requires only one easy-to-calculate value
be stored for each possible adjective. Compared
to the other methods, which require at a mini-
mum that all of the training data be available dur-
ing classification, this represents a considerable
resource savings.

3.7 Combined method

The two highest scoring methods, using memory-
based learning and positional probability, perform
similarly, and from the point of view of accuracy
there is little to recommend one method over the
other. However, it is interesting to note that the er-
rors made by the two methods do not completely
overlap: while either of the methods gives the

right answer for about 89% of the test data, one
of the two is right 95.00% of the time. This in-
dicates that a method which combined the infor-
mation used by the memory-based learning and
positional probability methods ought to be able
to perform better than either one individually.

To test this possibility, we added two new fea-
tures to the representation described in section
3.5. Besides information about the morphological
form of the adjectives in the pair, we also included
the positional probabilitiesP(〈a,x〉|{a,x}) and
P(〈b,x〉|{b,x}) as real-valued features. For nu-
meric features, the similarity metric∆ is com-
puted using the scaled difference between the val-
ues:

δ(xi ,yi) =
xi−yi

maxi−mini

Repeating the MBL experiment with these two
additional features yields 91.85% accuracy for
the BNC data, a 24% reduction in error rate over
purely morphological MBL with only a modest
increase in resource requirements.

4 Future directions

To get an idea of what the upper bound on ac-
curacy is for this task, we tried applying the di-
rect evidence method trained on both the train-
ing data and the held-out test data. This gave
an accuracy of approximately 99%, which means
that 1% of the pairs in the corpus are in the
‘wrong’ order. For an even larger percentage of
pairs either order is acceptable, so an evaluation
procedure which assumes that the observed or-
der is the only correct order will underestimate
the classification accuracy. Native speaker intu-
itions about infrequently-occurring adjectives are
not very strong, so it is difficult to estimate what
fraction of adjective pairs in the corpus are ac-
tually unordered. However, it should be clear
that even a perfect method for ordering adjectives
would score well below 100% given the experi-
mental set-up described here.

While the combined MBL method achieves
reasonably good results even given the limitations
of the evaluation method, there is still clearly
room for improvement. Future work will pur-
sue at least two directions for improving the re-
sults. First, while semantic information is not
available for all adjectives, it is clearly available
for some. Furthermore, any realistic dialog sys-
tem would make use of some limited vocabulary



Direct evidence 78.28%
Adjective bigrams 88.02%
MBL (morphological) 89.34% (*)
Positional probabilities 89.73% (*)
MBL (combined) 91.85%

Table 1: Summary of results. With the exception
of the starred values, all differences are statisti-
cally significant (p< 0.005)

for which semantic information would be avail-
able. More generally, distributional clustering
techniques (Scḧutze, 1992; Pereira et al., 1993)
could be applied to extract semantic classes from
the corpus itself. Since the constraints on adjec-
tive ordering in English depend largely on seman-
tic classes, the addition of semantic information
to the model ought to improve the results.

The second area where the methods described
here could be improved is in the way that multi-
ple information sources are integrated. The tech-
nique method described in section 3.7 is a fairly
crude method for combining frequency informa-
tion with symbolic data. It would be worthwhile
to investigate applying some of the more sophis-
ticated ensemble learning techniques which have
been proposed in the literature (Dietterich, 1997).
In particular, boosting (Schapire, 1999; Abney et
al., 1999) offers the possibility of achieving high
accuracy from a collection of classifiers which in-
dividually perform quite poorly.

5 Conclusion

In this paper, we have presented the results of ap-
plying a number of statistical and machine learn-
ing techniques to the problem of predicting the
order of prenominal adjectives in English. The
scores for each of the methods are summarized in
table 1. The best methods yield around 90% ac-
curacy, better than the best previously published
methods when applied to the broad domain data
of the British National Corpus. Note that Mc-
Nemar’s test (Dietterich, 1998) confirms the sig-
nificance of all of the differences reflected here
(with p< 0.005) with the exception of the differ-
ence between purely morphological MBL and the
method based on positional probabilities.

From this investigation, we can draw some ad-
ditional conclusions. First, a solution specific
to adjective ordering works better than a gen-

eral probabilistic filter. Second, machine learn-
ing techniques can be applied to a different kind
of linguistic problem with some success, even in
the absence of syntagmatic context, and can be
used to augment a hand-built competence gram-
mar. Third, in some cases statistical and memory
based learning techniques can be combined in a
way that performs better than either individually.
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