
Proceedings of NAACL HLT 2019: Tutorial Abstracts, pages 6–8
Minneapolis, Minnesota, June 2, 2019. c©2019 Association for Computational Linguistics

6

Deep Learning for Natural Language Inference

Samuel R. Bowman
New York University
bowman@nyu.edu

Xiaodan Zhu
ECE, Queen’s University
zhu2048@gmail.com

1 Description

The task of natural language inference (NLI; also
known as recognizing textual entailment, or RTE)
asks a system to evaluate the relationships between
the truth-conditional meanings of two sentences
or, in other words, decide whether one sentence
follows from another. This task neatly isolates the
core NLP problem of sentence understanding as
a classification problem, and also offers promise
as an intermediate step in the building of complex
systems (Dagan et al., 2005; MacCartney, 2009;
Bowman et al., 2015).

The last few years have seen fast progress in
NLI, with the introduction of a few large train-
ing datasets and many popular evaluation sets as
well as an explosion of new model architectures
and methods for using unlabeled data and outside
knowledge. This tutorial will layout the motiva-
tions for work on NLI, survey the available re-
sources for the task, and present highlights from
recent research showing us what NLI can teach us
about the capabilities and limits of deep learning
models for language understanding and reasoning.

The tutorial will start from a brief discus-
sion on the motivations for NLI, problem defini-
tions, and typical conventional approaches (Da-
gan et al., 2013; MacCartney, 2009; Iftene and
Balahur-Dobrescu, 2007).

Critical to the recent advance on NLI, the cre-
ation of larger annotated datasets (Bowman et al.,
2015; Williams et al., 2018; Conneau et al., 2018)
has made it feasible to train complex models that
need to estimate a large number of parameters.
The tutorial will present detailed discussion on the
available datasets as well as the motivations for
and insights from developing these datasets. Then
based on more recent research on annotation ar-
tifacts, we will extend the discussion to what we
should or shouldn’t take away from the current
datasets.

We will then focus on the cutting-edge deep
learning models for NLI. We start from two basic

setups for NLI modeling: sentence-embedding-
based modeling (Bowman et al., 2015; Chen et al.,
2017b, 2018a; Williams et al., 2018; Yoon et al.,
2018; Kiela et al., 2018; Talman et al., 2018)
and deep-learning approaches that utilize cross-
sentence statistics (Bowman et al., 2015; Chen
et al., 2017a, 2018b; Radford et al., 2018; Devlin
et al., 2018; Peters et al., 2018). We will cover typ-
ical deep-learning architectures in both paradigms.

Based on this we will deepen our discussion
from several perspectives. We first describe mod-
els that can further consider linguistic structures in
the deep-learning NLI architectures (Chen et al.,
2017a). We then advance to discuss models that
utilize external knowledge, which include two typ-
ical types of approaches: those explicitly incorpo-
rating human-authorized knowledge (Chen et al.,
2018b) and those based on unsupervised pretrain-
ing (Radford et al., 2018; Devlin et al., 2018; Pe-
ters et al., 2018). We will present how NLI models
are sensitive or robust to different newly proposed
tests (Glockner et al., 2018; Wang et al., 2018;
Naik et al., 2018; Poliak et al., 2018). The tuto-
rial will also cover the recent modeling on cross-
lingual NLI (Conneau et al., 2018).

Finally we will summarize the tutorial and flesh
out some discussions on future directions.

2 Tutorial Outline

• Introduction
• Background

◦ Problem definition
◦ Motivations

• History and conventional methods
◦ Natural logic methods
◦ Theorem proving methods

• Recent advance on dataset development
◦ Motivations
◦ Detailed discussions/insights on dataset

development and available datasets
◦ Recent research on annotation artifacts

representation
• Cutting-edge deep learning models
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◦ Sentence-embedding-based models
◦ Deep learning architectures exploring

cross-sentence statistics
◦ Models enhanced with linguistic struc-

tures
◦ Modeling external knowledge
◦ Recent advance on pretrain-based models
◦ Cross-lingual NLI Models
◦ Revisiting data and model limitation

jointly
• Applications

◦ Existing and potential downstream appli-
cations
� MNLI for evaluation
� MNLI for pretraining (incl. RTE)

◦ NLI for evaluating sentence representa-
tion

• Summary
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