
Proceedings of NAACL-HLT 2019, pages 3291–3301
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

3291

Corpora Generation for Grammatical Error Correction

Jared Lichtarge∗, Chris Alberti∗, Shankar Kumar∗, Noam Shazeer∗, Niki Parmar∗, Simon Tong∗

Google Research
{lichtarge,chrisalberti,shankarkumar,noam,nikip,simon}@google.com

Abstract

Grammatical Error Correction (GEC) has

been recently modeled using the sequence-

to-sequence framework. However, unlike se-

quence transduction problems such as ma-

chine translation, GEC suffers from the lack

of plentiful parallel data. We describe two ap-

proaches for generating large parallel datasets

for GEC using publicly available Wikipedia

data. The first method extracts source-

target pairs from Wikipedia edit histories with

minimal filtration heuristics, while the sec-

ond method introduces noise into Wikipedia

sentences via round-trip translation through

bridge languages. Both strategies yield sim-

ilar sized parallel corpora containing around

4B tokens. We employ an iterative decoding

strategy that is tailored to the loosely super-

vised nature of our constructed corpora. We

demonstrate that neural GEC models trained

using either type of corpora give similar per-

formance. Fine-tuning these models on the

Lang-8 corpus and ensembling allows us to

surpass the state of the art on both the CoNLL-

2014 benchmark and the JFLEG task. We pro-

vide systematic analysis that compares the two

approaches to data generation and highlights

the effectiveness of ensembling.

∗∗Equal contribution. Listing order is random. Jared
conducted systematic experiments to determine useful vari-
ants of the Wikipedia revisions corpus, pre-training and fine-
tuning strategies, and iterative decoding. Chris implemented
the ensemble and provided background knowledge and re-
sources related to GEC. Shankar ran training and decoding
experiments using round-trip translated data. Jared, Chris
and Shankar wrote the paper. Noam identified Wikipedia
revisions as a source of training data. Noam developed the
heuristics for using the full Wikipedia revisions at scale and
conducted initial experiments to train Transformer models for
GEC. Noam and Niki provided guidance on training Trans-
former models using the Tensor2Tensor toolkit. Simon pro-
posed using round-trip translations as a source for training
data, and corrupting them with common errors extracted from
Wikipedia revisions. Simon generated such data for this pa-
per.

1 Introduction

Much progress in the Grammatical Error Correc-

tion (GEC) task can be credited to approaching

the problem as a translation task (Brockett et al.,

2006) from an ungrammatical source language to

a grammatical target language. This has enabled

Neural Machine Translation (NMT) sequence-to-

sequence (S2S) models and techniques to be ap-

plied to the GEC task (Tao et al., 2018b; Chol-

lampatt and Ng, 2018; Junczys-Dowmunt et al.,

2018). However, the efficacy of NMT techniques

is degraded for low-resource tasks (Koehn and

Knowles, 2017). This poses difficulties for S2S

approaches to GEC, as Lang-8, the largest publicly

available parallel corpus, contains only ∼25M

words (Mizumoto et al., 2011). Motivated by

this data scarcity, we present two contrasting ap-

proaches to generating parallel data for GEC that

make use of publicly available English language

Wikipedia revision histories12.

Our first strategy is to mine real-world er-

rors. We attempt to accumulate source–target pairs

from grammatical errors and their human-curated

corrections gleaned from the Wikipedia revision

histories. Unlike previous work (Grundkiewicz

and Junczys-Dowmunt, 2014), we apply minimal

filtering so as to generate a large and noisy cor-

pus of ∼4B tokens (Table 1). As a consequence

of such permissive filtering, the generated corpus

contains a large number of real grammatical cor-

rections, but also noise from a variety of sources,

including edits with drastic semantic changes, im-

perfect corrections, ignored errors, and Wikipedia

spam.

Our second strategy is to synthesize data by

corrupting clean sentences. We extract target

sentences from Wikipedia, and generate corre-

1
https://dumps.wikimedia.org/enwiki/latest/

2Last accessed: December 15, 2017
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sponding source sentences by translating the tar-

get into another language and back. This round-

trip translation introduces relatively clean errors,

so the generated corpus is much less noisy than

the human-derived Wikipedia corpus. However,

these synthetic corruptions, unlike human errors,

are limited to the domain of errors that the trans-

lation models are prone to making. Both ap-

proaches benefit from the broad scope of topics in

Wikipedia.

Corpus # sentences # words

Lang-8 1.9M 25.0M
WikEd 12M 292 M

Wikipedia Revisions 170M 4.1B
Round-Trip Translation 176M 4.1B

Table 1: Statistics computed over extant training sets for
GEC (top) and corpora generated from Wikipedia in this
work (bottom).

We train the Transformer sequence-to-sequence

model (Vaswani et al., 2017) on data generated

from the two schemes. Fine-tuning the models

on the Lang-8 corpus gives us additional improve-

ments which allow a single model to surpass the

state-of-art on both the CoNLL-2014 and the JF-

LEG tasks. Finally, we explore how to combine

the two data sources by comparing a single model

trained on all the data to an ensemble of models.

2 Data Generation from Wikipedia

Revision Histories

Wikipedia provides a dump of the revision histo-

ries of all Wikipedia pages. For each Wikipedia

page, the dump contains chronological snapshots

of the entire content of the page before and after

every submitted edit; thus two consecutive snap-

shots characterize a single revision to the page.

Because a small number of popular pages see dis-

proportionate traffic, some pages grow very large.

As we are interested in the edits between snap-

shots, and not identical content that is typically in

higher proportion in the revision histories for the

largest pages, we discard pages larger than 64Mb.

To prevent remaining large pages from skewing

the dataset towards their topics with their many

revisions, we downsample consecutive revisions

from individual pages, selecting only log1.5(n)
pairs for a page with a total of n revisions. This

reduces the total amount of data 20-fold. Each

remaining pair of consecutive snapshots forms a

source–target pair. The process for extracting ex-

amples from a page’s revision history is illustrated

in Figure 1.

From the XML of each page in a source–target

pair, we extract and align the text, removing non-

text elements. We then probabilistically cut the

aligned text, skipping over non-aligned sequences.

Two cuts bound an example pair, for which the

source sequence is provided by the older snapshot,

and the target sequence by the newer snapshot.

Following extraction of the examples, we do a

small amount of corruption and filtration in or-

der to train a model proficient at both spelling

and grammar correction. We probabilistically in-

troduce spelling errors in the source sequences at

a rate of 0.003 per character, randomly selecting

deletion, insertion, replacement, or transposition

of adjacent characters for each introduced error.

We throw out examples exceeding a maximum

length of 256 word-pieces. The majority of exam-

ples extracted by this process have identical source

and target. Since this is not ideal for a GEC par-

allel corpus, we downsample identity examples by

99% to achieve 3.8% identical examples in the fi-

nal dataset. The data generation scripts we use

have been opensourced3.

In Figure 2, we show examples of extracted

source–target pairs. While some of the edits are

grammatical error corrections, the vast majority

are not.

3 Data Generation from Round-trip

Translations

As an alternative approach to extracting the ed-

its from Wikipedia revisions, we extract sentences

from the identity examples that were discarded

during edit extraction, and generate a separate par-

allel corpus by introducing noise into those sen-

tences using round-trip translation via a bridge

language. Therefore, the original sentence from

Wikipedia is the target sentence and output of

the round-trip translation is the corresponding

source sentence. The round trip translations in-

troduce noise according to both the weaknesses

of the translation models and the various inher-

ent ambiguities of translation. We create a cor-

rupted dataset using each bridge language. We

use French (Fr), German (De), Japanese (Ja) and

Russian (Ru) as bridge languages because they

are high-resource languages and relatively dissim-

3
https://github.com/tensorflow/tensor2tensor/

blob/master/tensor2tensor/data_generators/wiki_

revision.py
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Figure 1: Process for extracting source–target pairs from revision history of a Wikipedia page. See Figure 2 for actual
examples.

Special terms have been coined to denote many imfortant 
technical concepts in the game of Go. Such technical

Players of the game of Go often use jargon terms to describe 
situations on the board and surrounding the game. Such technical:

What we no wcall "disco balls" was first used in nightclubs in the 1920s. What we now call "disco balls" were first used in nightclubs in the 1920 's.:

Artillery in 1941 and was medically dis-charged Artillery in 1941 he was later medically discharged with:

Examples drawn from Revisions

Examples drawn from Round-Trip Translations

The County of Fitzroy is a county in Queensland, The County of Fitzroy is a county (a cadastral division) in Queensland,:

At the same time, she became a jounalist for news, such as "NHK News 
7" and "Shutoken News 845".

At the same time, she became a newscaster for some news shows , such 
as "NHK News 7" and "Shutoken News 845".

:

Aerolineas held a strong company through rthe 90's and 
they even aded Sydney as a goal for a little while.

Aerolineas kept on being a strong company thru the 90's and 
they even added Sydney as a destination for a little while.

:

Figure 2: Example source–target pairs from each corpus.

ilar from each other. Thus, we compute a total

of four corrupted datasets. The translations are

obtained using a competitive machine translation

system (Wu et al., 2016).

These round trip translated sentence-pairs con-

tained only a small fraction of identity transla-

tions compared to those that are present in real-

world GEC corpora. To address this deficiency,

we augment this corpus with 2.5% identity trans-

lations. Analogous to Section 2, we want the mod-

els to learn both spelling and grammar correction.

Thus, we randomly corrupt single characters via

insertion, deletion, and transposition, each with

a probability of 0.005/3. Round-trip translations

do not contain some types of word and phrase er-

rors (e.g., your/you’re, should of/should have) and

so we additionally corrupt the translated text by

stochastically introducing common errors identi-

fied in Wikipedia. We first examine the Wikipedia

revision histories to extract edits of up to three

words whose source and target phrases are close

in edit distance, and which do not contain num-

bers or capitalization. For each of the remaining

edits (original, revised), we compute the probabil-

ity that the user typed original when they intended

to type revised:

P (original|revised) =
C(original, revised)

C(revised)
,

where C(x) refers to the counts of x in the cor-

pus. We then probabilistically apply these rules to

corrupt the translated text.

This process produces a parallel corpus iden-

tical in size to the Wikipedia Revision corpus,

though with vastly different characteristics. Be-

cause the target sentences are Wikipedia sentences

that were left unchanged for at least one Wikipedia

revision, they are less likely to contain poor gram-

mar, misspellings, or spam than the target se-

quences of the revisions data.
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Figure 3: F0.5 with iterative decoding on the CoNLL dev set.
Triangles indicate performance with single-shot decoding.

Also, the errors introduced by round-trip trans-

lation are relatively clean, but they represent only

a subset of the domain of real-world errors. In

contrast, the Wikipedia data likely has good cov-

erage of the domain of real-world grammatical er-

rors, but is polluted by significant noise. Examples

from both corpora are shown in Figure 2. Exam-

ples of round-trip translations for each bridge lan-

guage are shown in Table 2.

4 Iterative Decoding

Many sentences that require grammatical correc-

tion contain multiple errors. As a result, it can

be difficult to correct all errors in a single de-

coding pass. This is specifically a problem when

using models trained on noisy parallel data such

as Lang-8 where the target sentences still con-

tain grammatical errors. Following other work

on the GEC task (Dahlmeier and Ng, 2012a;

Tao et al., 2018a), we employ an iterative de-

coding algorithm that allows the model to make

multiple incremental corrections. This allows

the model multiple chances to suggest individu-

ally high-confidence changes, accruing incremen-

tal improvements until it cannot find any more ed-

its to make.

Our iterative decoding algorithm is presented in

Algorithm 1. Given the source sentence S and a

hypothesis H , Cost(H) refers to the negative log

probability −logP (H|S) using the sequence-to-

sequence model. In each iteration, the algorithm

performs a conventional beam search but is only

allowed to output a rewrite (non-identity transla-

tion) if it has high confidence i.e., its cost is less

than the cost of the identity translation times a pre-

specified threshold. Using iterative decoding al-

lows a stricter threshold value than what is opti-

mal for single-shot decoding, as a change ignored

for being low confidence in one decoding iteration

may be selected in the next.

Using incremental edits produces a significant

improvement in performance over single-shot de-

coding for models trained on the Wikipedia re-

vision data, a highly noisy corpus, while models

trained on the relatively clean round-trip transla-

tion data see no improvment. All models finetuned

on Lang-8 see improvement with iterative decod-

ing (Figure 3, Table 3).

Algorithm 1: Iterative Decoding

Data: I , beam, threshold, MAXITER
Result: T̂
for i ∈ {1, 2, ...,MAXITER} do

Nbestlist = Decode(I, beam)
CIdentity = +∞
CNon-Identity = +∞
HNon-Identity = NULL
for H ∈ Nbestlist do

if H = I then
CIdentity = Cost(H);

else if Cost(H) < CNon-Identity then
CNon-Identity = Cost(H)
HNon-Identity = H

end
⊲ Rewrite if non-identity cost < identity cost

if CNon-Identity/CIdentity < threshold then

T̂ = HNon-Identity ⊲ Output rewrite.
else

T̂ = I ⊲ Output identity.
end

I = T̂ ⊲ Input for next iteration.
end

In Table 4, we show an example of iterative de-

coding in action. The model continues to refine

the input until it reaches a sentence that does not

require any edits. We generally see fewer edits be-

ing applied as the model gets closer to the final

result.

5 Model

In this work, we use the Transformer sequence-to-

sequence model (Vaswani et al., 2017), using the

Tensor2Tensor opensource implementation.4 We

use 6 layers for both the encoder and the decoder, 8

attention heads, embedding size dmodel = 1024, a

position-wise feed forward network at every layer

of inner size dff = 4096, and Adafactor as op-

timizer with inverse squared root decay (Shazeer

and Stern, 2018)5. The word tokens are split into

subwords using a variant of the byte-pair encod-

ing technique (Sennrich et al., 2016b), described

in Schuster and Nakajima (2012).

We train the Transformer model for 5 epochs

4
https://github.com/tensorflow/tensor2tensor

5We used the “transformer clean big tpu” setting.
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Original “The Adventures of Patchhead“ makes its second and final appearance.

Bridge Language

French “The Adventures of Patchhead “ makes his secnod and final appearance.
German “The Adventures of Patchhead” makes its second and last appearance.
Russian “The Adventures of Patchhead” makes its second and last apparance.
Japanese “Patchhead Adventure” is the final appearance of the second time.

Original He is not so tolerant of the shortcomings of those outside his family.

Bridge Language

French He is not so tolerant of the weaknesses of those outside his family.
German He is not so tolerant to the defects of the outside of his family.
Russian He is not so tolerant of the shortcomings of those outside his family,.
Japanese He is not so tolerant of the shortcomings of those outside his family.

Table 2: Example sentences generated via round-trip translation with introduced spelling errors.

Source Decoding CoNLL-2014 JFLEG

Prec. Rec. F0.5 GLEU+

Revision single-shot 60.4 19.2 42.2 54.5
iterative 58.3 25.1 46.1 56.6

+finetune single-shot 67.7 28.1 52.8 57.9
iterative 64.5 36.2 55.8 62.0

RTT single-shot 47.1 21.4 38.0 52.5
iterative 47.1 21.4 38.0 52.5

+finetune single-shot 66.7 31.8 54.7 59.0
iterative 64.4 38.4 56.7 62.1

Table 3: Comparing iterative decoding to single-shot decod-
ing for two models, trained on all Wikipedia revisions data
and on all round-trip translation (RTT) data.

Original this is nto the pizzza that i ordering
1st this is not the pizza that I ordering
2nd This is not the pizza that I ordering
3nd This is not the pizza that I ordered
4th This is not the pizza that I ordered.
Final This is not the pizza that I ordered.

Table 4: Iterative decoding on a sample sentence.

with a batch size of approximately 64,000 word

pieces. While training on the Wikipedia corpora,

we set the learning rate to 0.01 for the first 10,000

steps, then decrease it proportionally to the inverse

square root of the number of steps after that.

We then finetune our models on Lang-8 for 50

epochs and use a constant learning rate of 3 ×
10−5. We stop the fine-tuning before the models

start to overfit on a development set drawn from

Lang-8.

6 Experiments

6.1 Evaluation

We report results on the CoNLL-2014 test set (Ng

et al., 2014) and the JFLEG test set (Napoles et al.,

2017; Heilman et al., 2014). Our initial experi-

ments with iterative decoding showed that increas-

ing beam sizes beyond 4 did not yield improve-

ments in performance. Thus, we report all results

using a beam size of 4. Our ensemble models are

obtained by decoding with 4 identical Transform-

ers trained and finetuned separately. Ensembles

of neural translation systems are typically con-

structed by computing the logits from each indi-

vidual system and combining them using either an

arithmetic average (Sutskever et al., 2014) or a ge-

ometric average (Cromieres et al., 2016). Similar

to Cromieres et al. (2016), we find that a geo-

metric average outperforms an arithmetic average.

Hence, we report results using only this scheme.

Following (Grundkiewicz and Junczys-

Dowmunt, 2018; Junczys-Dowmunt et al., 2018),

we preprocess JFLEG development and test sets

with a spell-checking component but do not

apply spelling correction to CoNLL sets. For

CoNLL sets, we pick the best iterative decoding

threshold and number of iterations on a subset of

the CoNLL-2014 training set, sampled to have the

same ratio of modified to unmodified sentences as

the CoNLL-2014 dev set. For JFLEG, we pick the

best decoding threshold on the JFLEG dev set.We

report performance of our models by measuring

F0.5 with the M2 scorer (Dahlmeier and Ng,

2012b) on the CoNLL-2014 dev and test sets, and

the GLEU+ metric (Napoles et al., 2016) on the

JFLEG dev and test sets. Table 5 reports statistics

computed over the development and test sets.

Test/Dev Set # sentences # annotators Metric

CoNLL-2014 dev 1345 1 M2

CoNLL-2014 test 1312 2 M2

JFLEG dev 754 4 GLEU
JFLEG test 747 4 GLEU

Table 5: Statistics for test/dev data.

6.2 Data from Wikipedia Revisions

In extracting examples from Wikipedia revision

histories, we set a number of variables, selecting
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Revision Dataset CoNLL-2014 JFLEG

Prec. Rec. F0.5 GLEU+

Revisions
Default setting 62.7 24.3 47.7 56.9
Max-edit-28 57.3 28.0 47.4 57.1
Max-edit-6 58.3 25.7 46.5 56.1

Dwnsample-1.35 47.0 35.1 44.0 56.4
All 58.3 25.1 46.1 56.8

+ finetuning on Lang-8
Default setting 68.8 32.3 56.1 61.7
Max-edit-28 59.6 40.9 54.6 61.8
Max-edit-6 65.5 37.1 56.8 61.6

Dwnsample-1.35 62.7 39.9 56.3 61.3
All 64.5 36.2 55.8 62.0

Lang-8 only 41.2 16.4 31.7 52.8

Table 6: Performance of the models trained on variants of
data extracted from Wikipedia revision histories (top panel)
and then fine-tuned on Lang-8 (bottom panel), and of a model
trained only on Lang-8 with the same architecture.

rate of revision downsampling, and maximum edit

distance. We generate four data sets using vari-

ations of these values: Default setting uses the

default values described in Section 2, Max-edit-

28 and Max-edit-6 correspond to maximum edit

distance of 28 and 6 wordpieces respectively, and

Dwnsample-1.35 corresponds to a revision down-

sampling rate of log
1.35(n) for a page with a total

of n revisions (whereas the default setting uses a

rate of log
1.5(n)). We train a fifth model on the

union of the datasets. Table 6 shows that varying

the data generation parameters led to modest vari-

ation in performance, but training on the union of

the diverse datasets did not yield any benefit. Fine-

tuning yields large improvements for all models.

As a sanity check, we also trained a model only

on Lang-8 with the same architecture. All pre-

trained and fine-tuned models substantially out-

perform this Lang-8 only model, confirming the

usefulness of pre-training.

6.3 Round Trip Translations

As for the Revision data, we train a model on each

of the round-trip translation datasets, and a fifth

model on the union of their data, then fine-tune all

models. The results are shown in Table 7. Using

Japanese as the bridge language gives the best per-

formance on CoNLL-2014, even when compared

to the model trained on all round-trip data. This

is likely because the error patterns generated us-

ing Japanese round-trip translations are very sim-

ilar to those in CoNLL-2014 set, created from

non-native speakers of English (Ng et al., 2014).

Pooling all round-trip translations dilutes this sim-

ilarity and lowers performance on CoNLL-2014.

However, the model trained on all data performs

best on the JFLEG set, which has a different distri-

bution of errors relative to CoNLL-2014 (Napoles

et al., 2017). After fine-tuning, all round-trip mod-

els perform considerably better than the Lang-8

model.

Bridge Language CoNLL-2014 JFLEG

Precision Recall F0.5 GLEU+

Round-Trip Translations

French 33.6 21.9 30.3 50.6
German 36.4 21.2 31.8 51.3
Russian 33.5 21.1 30.0 50.5
Japanese 35.7 51.3 38.1 46.2

All 38.1 27.1 35.2 52.1

+ finetuning on Lang-8
French 57.9 39.9 53.1 60.9
German 56.4 42.1 52.8 61.5
Russian 60.8 32.5 51.7 59.9
Japanese 60.9 38.6 54.6 61.5

All 62.1 40.0 56.0 61.6

Lang-8 only 41.2 16.4 31.7 52.8

Table 7: Performance of the models trained on the round-
trip translations (top panel) and fine-tuned on Lang8 (bottom
panel) and of a model trained only on Lang-8 with the same
architecture.

6.4 Combining Data Sources

Having generated multiple diverse datasets, we in-

vestigate strategies for utilizing combinations of

data from multiple sources. For each corpus, we

train a single model on all data and compare its

performance to an ensemble of the 4 individually-

trained models (Table 8). The ensemble clearly

outperforms the single model for both types of

data. We additionally train a single model on the

union of all Revisions and Round-Trip Translated

datasets reported on in Tables 6 and 7, which we

compare to an ensemble of the 8 models trained

individually on those datasets.

When Wikipedia edits are combined with the

round-trip translations, the single-model perfor-

mance remains unchanged on CoNLL-2014, while

the ensemble shows an improvement. This sug-

gests that when utilizing disparate sources of data,

an ensemble is preferable to combining the data.

6.5 Comparison with Other systems

We compare the performance of our best individ-

ual system, trained on all revisions, the best en-

semble of 8 models trained from both revisions

and roundtrip translations on the CoNLL-2014

and JFLEG datasets (Table 9). We only report

performance of models that use publicly available
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Model CoNLL-2014 JFLEG

Precision Recall F0.5 GLEU+

Revisions

All 64.5 36.2 55.8 62.0
Ensemble (4) 66.3 42.3 59.0 62.9

Round-Trip Translations

All 62.1 40.0 56.0 61.6
Ensemble (4) 63.5 47.0 59.3 63.2

Revisions + Round-Trip Translations

All 65.8 35.2 56.1 62.6
Ensemble (8) 66.7 43.9 60.4 63.3

Table 8: Combining datasets using either a single model
trained on all data versus an ensemble of models. All models
are fine-tuned on Lang-8.

Lang-8 and CoNLL datasets. Our single system

trained on all revisions outperforms all previous

systems on both datasets, and our ensemble im-

proves upon the single system result6.

7 Error Analysis

All models trained on Wikipedia-derived data are

demonstrated to benefit significantly from fine-

tuning on Lang-8 (Tables 6 and 7). In Table 10,

we compare example corrections proposed by

two Wikipedia-derived models to the corrections

proposed by their fine-tuned counterparts. The

changes proposed by the revisions-trained model

often appear to be improvements to the original

sentence, but fall outside the scope of GEC. Mod-

els finetuned on Lang-8 learn to make more con-

servative corrections.

The finetuning on Lang-8 can be viewed as an

adaptation technique that shifts the model from

the Wikipedia-editing task to the GEC task. On

Wikipedia, it is common to see substantial ed-

its that make the text more concise and readable,

e.g. replacing “which is RFID for short” with

“(RFID)”, or removing less important clauses like

“Then we can see that”. But these are not ap-

propriate for GEC as they are editorial style fixes

rather than grammatical fixes. The models trained

on round-trip translation seem to be make fewer

drastic changes.

Table 11 reports F0.5 across broad error cat-

egories for models trained from revisions and

round-trip translations on the CoNLL-2014 test

6Using non-public sentences beyond the regular Lang-8
and CoNLL datasets, Tao et al. (2018b) recently obtained
an F0.5 of 61.3 on CoNLL-2014 and a GLEU of 62.4 on JF-
LEG. Using finetuning data beyond the standard datasets, we
obtain an F0.5 of 62.8 on CoNLL-2014 and a GLEU of 65.0
on JFLEG.

set. The error categories were tagged using the

approach in Bryant et al. (2017). Although the

overall F0.5 of the 2 ensembles are similar, there

are notable differences on specific categories. The

ensemble using round-trip translation performs

considerably better on prepositions and pronouns

while the revision ensemble is better on morphol-

ogy and orthography. Thus, each system may have

advantages on specific domains.

8 Related Work

Progress in GEC has accelerated rapidly since

the CoNLL-2014 Shared Task (Ng et al.,

2014). Rozovskaya and Roth (2016) combined a

Phrase Based Machine Translation (PBMT) model

trained on the Lang-8 dataset (Mizumoto et al.,

2011) with error specific classifiers. Junczys-

Dowmunt and Grundkiewicz (2016) combined a

PBMT model with bitext features and a larger lan-

guage model. The first Neural Machine Transla-

tion (NMT) model to reach the state of the art on

CoNLL-2014 (Chollampatt and Ng, 2018) used

an ensemble of four convolutional sequence-to-

sequence models followed by rescoring. The cur-

rent state of the art (F0.5 of 56.25 on CoNLL-

2014) using publicly available Lang-8 and CoNLL

data was achieved by Grundkiewicz and Junczys-

Dowmunt (2018) with a hybrid PBMT-NMT sys-

tem. A neural-only result with an F0.5 of 56.1 on

CoNLL-2014 was reported by Junczys-Dowmunt

et al. (2018) using an ensemble of neural Trans-

former models (Vaswani et al., 2017), where the

decoder side of each model is pretrained as a lan-

guage model. From a modeling perspective, our

approach can be viewed as a direct extension of

this last work. Rather than pretraining only the de-

coder as a language model, we pretrain on a large

amount of parallel data from either Wikipedia re-

vision histories or from round-trip translations.

While pretraining on out-of-domain data has been

employed previously for neural machine transla-

tion (Luong and Manning, 2015), it has not been

presented in GEC thus far, perhaps due to the ab-

sence of such large datasets. Tao et al. (2018b)

apply iterative decoding, where two neural mod-

els, trained in left-to-right and right-to-left direc-

tions, are applied in an interleaved manner. Sim-

ilar to their study, we find that iterative decoding

can improve the performance of GEC.

Prior work (Brockett et al., 2006; Foster

and Andersen, 2009; Rozovskaya and Roth,



3298

Model CoNLL-2014 JFLEG
Precision Recall F0.5 GLEU+

Chollampatt and Ng (2018) MLConvembed 60.9 23.7 46.4 51.3
Ensemble (4) +EO +LM +SpellCheck 65.5 33.1 54.8 57.5

Junczys-Dowmunt et al. (2018) Single Transformer 53.0 57.9
Ensemble (4) 63.0 38.9 56.1 58.5

Ensemble (4) +LM 61.9 40.2 55.8 59.9

Grundkiewicz and Junczys-Dowmunt (2018) Hybrid PBMT +NMT +LM 66.8 34.5 56.3 61.5

Best Single Model 65.5 37.1 56.8 61.6
Best Ensemble 66.7 43.9 60.4 63.3

Table 9: Comparison of recent state-of-the-art models (top) and our best single-system and ensemble models (bottom) on the
CoNLL-2014 and JFLEG datsets. Only systems trained with publicly available Lang-8 and CoNLL datasets are reported.

Original Recently, a new coming surveillance technology called radio-frequency identification which is RFID
for short has caused heated discussions on whether it should be used to track people.

Revisions Recently, a surveillance technology called radio frequency identification (RFID) has caused heated
discussions on whether it should be used to track people.

+finetuning Recently, a new surveillance technology called radio-frequency identification, which is RFID for
short, has caused heated discussions on whether it should be used to track people.

Ensemble Recently, a new coming surveillance technology called radio-frequency identification, which is RFID
for short, has caused heated discussions on whether it should be used to track people.

Round-Trip Recently, a new coming surveillance technology called radio-frequency identification which is RFID
for short has caused heated discussions on whether it should be used to track people.

+finetuning Recently, a new upcoming surveillance technology called radio-frequency identification which is RFID
for short has caused heated discussions on whether it should be used to track people.

Ensemble Recently, a new surveillance technology called radio-frequency identification which is RFID for short
has caused heated discussions on whether it should be used to track people.

Original Then we can see that the rising life expectancies can also be viewed as a challenge for us to face.
Revisions The rising life expectancy can also be viewed as a challenge for people to face.
+finetuning Then we can see that the rising life expectancy can also be viewed as a challenge for us to face.
Ensemble Then we can see that the rising life expectancies can also be viewed as a challenge for us to face.

Round-Trip Then we can see that the rising life expectancies can also be viewed as a challenge for us to face.
+finetuning Then we can see that the rising life expectancy can also be viewed as a challenge for us to face.
Ensemble Then we can see that the rising life expectancies can also be viewed as a challenge for us to face.

Table 10: Corrections from models trained on (a) Wikipedia revisions and (b) round-trip translations using Japanese as a bridge
language, along with suggestions from their Lang-8 finetuned counterparts. Also shown are the corrections from the ensembles
of 4 wikipedia models as well as 4 models trained on round trip translations. Example sentences are from the CoNLL-2014 dev
set.

2010), (Felice et al., 2014; Xie et al., 2016; Rei

et al., 2017) has investigated multiple strategies

for generating artificial errors in GEC. Cahill

et al. (2013) show that preposition corrections

extracted from Wikipedia revisions improve the

quality of a GEC model for correcting preposition

errors. Back-translation (Sennrich et al., 2016a;

Xie et al., 2018) addresses data sparsity by intro-

ducing noise into a clean corpus using a trans-

lation model trained in the clean to noisy direc-

tion. However, training such a reverse translation

model also requires access to parallel data which

is scarce for GEC. In contrast, round-trip transla-

tion attempts to introduce noise via bridge trans-

lations. Round-trip translations have been inves-

tigated for GEC. Madnani et al. Madnani et al.

(2012) combine round-trip translations to generate

a lattice from which the best correction is extracted

using a language model. Désilets et al. (2009) use

round-trip translations for correcting preposition

errors. In contrast to these approaches, we em-

ploy round-trip translations for generating a large

parallel training corpus for neural GEC models.

9 Discussion

Motivated by data scarcity for the GEC task, we

present two contrasting approaches for generat-

ing large parallel corpora from the same publicly

available data source. We believe both techniques

offer promising research avenues for further devel-

opment on the task.

We show that models trained exclusively on

minimally filtered English Wikipedia revisions

can already be valuable for the GEC task. This

approach can be easily extended to the many other

languages represented in Wikipedia, presenting an
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Error Type Revisions Round-trip Translations

Pre-trained Fine-tuned Ensemble Pre-trained Fine-tuned Ensemble

Adjective 16.9 29.4 36.6 14.4 27.8 37.9
Adverb 31.5 39.7 43.5 21.7 33.3 44.6

Determiner 31.3 57.2 59.4 27.4 57.7 59.5
Morphology 64.5 66.1 66.1 38.7 59.3 62.0

Noun 24.1 28.6 33.2 8.6 27.5 32.4
Orthography 69.4 57.1 69.6 19.2 58.6 57.9
Preposition 33.0 49.2 55.6 30.3 52.7 61.9

Pronoun 34.9 34.1 44.6 24.4 41.7 50.1
Punctuation 26.7 29.5 36.4 29.8 18.4 33.3

Spelling 60.6 69.2 66.7 51.0 58.5 62.5
Verb 36.1 47.1 43.2 20.7 45.2 43.2

Word Order 45.5 33.3 52.1 34.8 42.9 45.5

Table 11: F0.5 across error categories on the CoNLL-2014 test set.

opportunity to extend GEC into languages that

may have no extant GEC corpora. While we ex-

pect pre-training on Wikipedia to give us a rea-

sonable model, it may be crucial to fine-tune this

model on small amounts of clean, in-domain cor-

pora to achieve good performance.

When extracting examples from the Wikipedia

revisions, we implemented minimal filtration in

pursuit of simplicity, and to produce a sufficiently

large dataset. Implementing more complex fil-

tration in order to reduce the noise in the gen-

erated dataset will likely be a productive av-

enue to increase the value of this approach. The

performance achieved by the reported Wikipedia

revisions-trained models, both with and without

finetuning, may be used as a baseline by which

to evaluate smaller, cleaner datasets drawn from

Wikipedia revisions.

Round-trip translation takes advantage of the

advanced state of the task of Machine Transla-

tion relative to GEC by leveraging extant trans-

lation models as a source of grammatical-style

data corruption. In this work, we only experiment

with producing English-language GEC corpora,

but this technique can be extended to any of the

many languages for which translation models ex-

ist. It would be useful to assess how the translation

quality influences the performance of the resulting

GEC model. In our experiments with round-trip

translation, we used target sentences drawn from

Wikipedia to maintain a reasonable comparabil-

ity between the two techniques. However, there is

no constraint preventing the application of round-

trip translation to diverse data sources; any source

of clean text can be turned into a parallel GEC

corpus. This can be used to increase diversity in

the generated data, or to generate domain-specific

GEC corpora (e.g. patents).

We observe that pooling two diverse data

sources used to train competitively performing

models on the same task can degrade performance.

This suggests that within datasets useful for a spe-

cific task, there may be greater value to be discov-

ered in finding optimal partitions of the data for

training models which can then be combined using

ensembles. Prior work in combining diverse data

sources includes addition of special tokens (John-

son et al., 2017) and meta-learning (Finn et al.,

2017). We intend to compare ensembling with

these alternatives.

We have opensourced the scripts used to

extract example pairs from Wikipedia, which

we hope will become a resource in the further

development of models for GEC as well as other

NLP tasks that rely on edit histories, such as

sentence re-writing (Botha et al., 2018) and text

simplification (Tonelli et al., 2016).
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