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Abstract

We propose a simple, fast, and mostly-
unsupervised approach for non-factoid ques-
tion answering (QA) called Alignment over
Heterogeneous Embeddings (AHE). AHE sim-
ply aligns each word in the question and candi-
date answer with the most similar word in the
retrieved supporting paragraph, and weighs
each alignment score with the inverse doc-
ument frequency of the corresponding ques-
tion/answer term. AHE’s similarity function
operates over embeddings that model the un-
derlying text at different levels of abstraction:
character (FLAIR), word (BERT and GloVe),
and sentence (InferSent), where the latter is
the only supervised component. Despite its
simplicity and lack of supervision, AHE ob-
tains a new state-of-the-art performance on the
“Easy” partition of the AI2 Reasoning Chal-
lenge (ARC) dataset (64.6% accuracy), top-
two performance on the “Challenge” partition
of ARC (34.1%), and top-three performance
on the WikiQA dataset (74.08% MRR), out-
performing many other complex, supervised
approaches. Our error analysis indicates that
alignments over character, word, and sentence
embeddings capture substantially different se-
mantic information. We exploit this with a
simple meta-classifier that learns how much to
trust the predictions over each representation,
which further improves the performance of un-
supervised AHE1.

1 Introduction

The “deep learning tsunami”(Manning, 2015) has
had a major impact on important natural language
processing (NLP) applications such as question an-
swering (QA). Many neural approaches for QA
have been proposed in the past few years, with
impressive results on several QA tasks (Seo et al.,
2016; Wang and Jiang, 2016; Wang et al., 2017b;

1Code: https://github.com/vikas95/AHE

Question - Which sequence of energy transformations oc-
curs after a battery-operated flashlight is turned on?

1. electrical → light → chemical
2. electrical →chemical → light
3. chemical → light → electrical
4. chemical → electrical → light

Supporting paragraph(s): “a chemical cell converts chem-
ical energy into electrical energy; a flashlight chemical
energy to light energy”

Figure 1: A multiple-choice question from the ARC
dataset with the correct answer in bold font. This ques-
tion is answered correctly by our alignment method that
relies on contextualized word embeddings that capture
the correct sequence, and cannot be answered correctly
when relying on uncontextualized embeddings.

Tymoshenko et al., 2017; Xiong et al., 2016a; Wang
et al., 2018; Radford et al., 2018; Li et al., 2018,
inter alia). However, an undesired effect of this
focus on neural approaches was that other methods
have fallen out of focus, including strong unsuper-
vised benchmarks that are necessary to highlight
the true gains of supervised approaches. For in-
stance, alignment approaches have received consid-
erably less interest recently, despite their initial suc-
cesses (Echihabi and Marcu, 2003; Surdeanu et al.,
2011, inter alia). While a few recent efforts have
adapted these alignment methods to operate over
word representations (Kenter and De Rijke, 2015;
Kim et al., 2017; Yadav et al., 2018), they gener-
ally underperfom supervised neural methods due to
their underlying bag-of-word (BoW) assumptions
and reliance on uncontextualized word representa-
tions such as GloVe (Pennington et al., 2014).

In this work we argue that alignment approaches
are more meaningful today after the advent of con-
textualized word representations, which mitigate
the above BoW limitations. For example, Figure 1
shows an example of a question from AI2’s Reason-
ing Challenge (ARC) dataset (Clark et al., 2018),

https://github.com/vikas95/AHE
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which is not answered correctly by a state-of-the-
art BoW alignment method (Yadav et al., 2018), but
is correctly answered by our alignment approach
when operating over Bidirectional Encoder Repre-
sentations from Transformers (BERT) embeddings
(Devlin et al., 2018).

We propose a simple, fast, and mostly-
unsupervised approach for non-factoid QA
called Alignment over Heterogeneous Embeddings
(AHE). AHE uses an off-the-shelf information re-
trieval (IR) component to retrieve likely supporting
paragraphs from a knowledge base (KB) given a
question and candidate answer. Then AHE aligns
each word in the question and candidate answer
with the most similar word in the retrieved support-
ing paragraph, and weighs each alignment score
with the inverse document frequency (IDF) of the
corresponding question/answer term. AHE’s over-
all alignment score is the sum of the IDF weighted
scores of each of the question/answer term.

Importantly, AHE’s alignment function operates
over contextualized embeddings that model the un-
derlying text at different levels of abstraction: char-
acter (FLAIR) (Akbik et al., 2018), word (BERT)
(Devlin et al., 2018), and sentence (InferSent) (Con-
neau et al., 2017), where the latter is the only su-
pervised component in the proposed approach. The
different representations are combined through an
ensemble approach that by default is unsupervised
(using a variant of the NoisyOr formula), but can
be replaced with a supervised meta-classifier.

The contributions of our work are the following:

1. To our knowledge, this is the first unsuper-
vised alignment approach for QA that: (a)
operates over contextualized embeddings, and
(b) captures text at multiple levels of abstrac-
tion, including character, word, and sentence.

2. We obtain (near) state-of-the-art results (top
three or higher) on three QA datasets: Wik-
iQA (Yang et al., 2015) (74.08 mean recipro-
cal rank), ARC the Challenge partition (34.1%
precision at 1 (P@1)) and ARC Easy (64.6
P@1). Our approach outperforms information
retrieval methods, other unsupervised align-
ment approaches, and many supervised, neu-
ral approaches, despite the fact that it is mostly
unsupervised and much simpler. Importantly,
unlike many neural approaches, our results
are robust across several datasets. Minimally,
these results indicate that the work proposed
here should be considered as a new, strong

baseline for the task.
3. Our analysis indicates that alignments over

character, word, and sentence embeddings
capture substantially different semantic infor-
mation. We highlight this complementarity
with an oracle system that chooses the cor-
rect answer when it is proposed by any of the
AHE’s representations, which achieves 68%
P@1 on ARC Challenge, 86% on ARC Easy,
and 93.7% mean average precision (MAP)
on WikiQA. We exploit this complementarity
with a simple meta-classifier that learns when
and how much to trust the predictions over
each representation, which further improves
the performance of unsupervised AHE.

2 Related Work

We highlight major trends in the field, and how our
work compares with them. We focus mostly on
non-factoid QA, which is usually implemented in
two forms: multiple-choice QA such as AI2’s Rea-
soning Challenge (ARC), where the answer must
be selected from multiple candidates and (option-
ally) supported by explanatory texts extracted from
external knowledge bases (Clark et al., 2018); or
answer sentence selection, where candidate answer
sentences are provided and the task is to select
the sentences containing the correct answers (Yang
et al., 2015). Alignment models have also been
proposed for other types of QA, such as reading
comprehension (RC) QA (Chakravarti et al., 2017).
We believe AHE can be similarly extended to RC,
but, in this work, we have limited our experiments
to answer selection and multiple-choice QA tasks.

Most QA approaches today use neural, super-
vised methods. Most use stacked architectures usu-
ally coupled with attention mechanisms (He and
Lin, 2016; Yin et al., 2015; Seo et al., 2016; Xiong
et al., 2016b; Kumar et al., 2016; Tan et al., 2015;
Wang et al., 2017a; Chen et al., 2016; Cheng et al.,
2016; Golub and He, 2016). Some of these works
also rely on structured knowledge bases (Zhong
et al., 2018a; Ni et al., 2018) such as ConceptNet
(Speer et al., 2017). Some approaches use query ex-
pansion methods in addition to the above methods
(Musa et al., 2018; Nogueira and Cho, 2017; Ni
et al., 2018). For example, Musa et al. (2018) used
a sequence to sequence model (Sutskever et al.,
2014) to generate an enhanced query for ARC
which retrieves better supporting passages.

However, in general, all these approaches rely
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on annotated training data, and, some, on struc-
tured KBs, which are expensive to create (Jauhar
et al., 2016). Further, as we demonstrate in Sec-
tion 5, these methods tend to be tailored to a spe-
cific dataset and do not port well to other domains
or even within different splits of the same dataset.
In contrast, our method is mostly unsupervised and
does not require training. Even then, our approach
performs well on three distinct QA datasets, with
top three performance in all.

Our work is inspired by previous efforts on us-
ing alignment methods for NLP (Echihabi and
Marcu, 2003). Unsupervised alignment models
have been proposed for several NLP tasks such as
short text similarity (Kenter and De Rijke, 2015),
answer phrase/sentence selection in reading com-
prehension (RC) (Chakravarti et al., 2017), docu-
ment retrieval (Kim et al., 2017), etc. Other works
have utilized word alignments as features in super-
vised models (Surdeanu et al., 2011; Wang and Itty-
cheriah, 2015). For example, Wang and Ittycheriah
(2015) utilized the alignment of words between
two questions as a feature in a feedforward neural
network that matches similar FAQ questions. Re-
cently, Yadav et al. (2018) showed that alignment
methods remain competitive for non-factoid QA.

However, the majority of alignment models that
rely on representation learning utilize uncontextual-
ized word embeddings such as GloVe, coupled with
other BoW models such as IBM Model 1 (Brown
et al., 1993) for alignment (Kenter and De Rijke,
2015; Kim et al., 2017; Yadav et al., 2018). To
our knowledge, we are the first to adapt these ideas
to contextualized embeddings, which mitigates the
BoW limitations of previous efforts (as shown in
Figure 1). While contextualized representations
have been shown to be extremely useful for mul-
tiple NLP tasks (Devlin et al., 2018; Peters et al.,
2018; Howard and Ruder, 2018), our work is the
first to apply them to an unsupervised alignment
approach. Further, we show that different contex-
tualized representations of text (character, word,
sentence) capture complementary information, and
combining them improves performance further.

3 Approach

The core component of our approach computes the
score of a candidate answer by aligning two texts.
For multiple-choice questions, the first text consists
of the question concatenated with the candidate an-
swer, and the second is a supporting paragraph

such as the one shown in Figure 1, which consists
of one or more sentences retrieved from a larger
textual KB using an off-the-shelf IR system (Sec-
tion 3.1). For answer selection tasks, the first text is
the question and the second is the sentence that con-
tains the candidate answer. Answer candidates are
then sorted in descending order of their alignment
scores. In both cases, the alignment approach oper-
ates over multiple contextualized embeddings that
model the two texts at different levels of abstrac-
tion: character, word, and sentence. The overall
architecture is illustrated in Figure 2. We detail the
alignment method in §3.2, the multiple representa-
tions of text considered in §3.3, and the ensemble
strategies over these representations in §3.4.

3.1 Retrieving Supporting Paragraphs
For multiple-choice question datasets such as ARC,
we retrieve supporting information from external
KBs using Lucene, an off-the-shelf IR system2.
We use as query the question concatenated with
the corresponding answer candidate, and BM25
(Robertson et al., 2009) as the ranking function3.
For each query, we keep the top C Lucene docu-
ments, where each document consists of a sentence
retrieved from the ARC corpus. Similar to our pre-
vious work (Yadav et al., 2018), we boost candidate
answer terms by a factor of 3 while keeping ques-
tion terms as it is in the BM25 ranking function. All
texts were preprocessed by discarding the case of
the tokens, removing the stop words from Lucene’s
list, and lemmatizing the remaining tokens using
NLTK (Bird, 2006). For all experiments reported
on the ARC dataset we used C = 20.

Here we also calculate the IDF of each query
term qi (required later during alignment):

idf (qi) = log
N − docfreq(qi) + 0.5

docfreq(qi) + 0.5
(1)

where N is the number of documents (e.g., 14.3M
for the ARC KB) and docfreq(qi) is the number
of documents that contain qi.

3.2 Alignment Algorithm
For representations that produce word embeddings
(e.g., FLAIR, BERT, GloVe), we use the alignment
algorithm in Figure 3. Our method computes the
alignment score of each query token with every
token in the given KB paragraph, using the cosine

2https://lucene.apache.org
3https://lucene.apache.org/core/7_

0_1/core/org/apache/lucene/search/
similarities/BM25Similarity.html

https://lucene.apache.org
https://lucene.apache.org/core/7_0_1/core/or g/apache/lucene/search/similarities/BM25Similarity.html
https://lucene.apache.org/core/7_0_1/core/or g/apache/lucene/search/similarities/BM25Similarity.html
https://lucene.apache.org/core/7_0_1/core/or g/apache/lucene/search/similarities/BM25Similarity.html
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Embedding representation 4 (InferSent)
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Figure 2: AHE architecture illustrated for the multiple-choice question setting. The left text consists with of the
question concatenated with the answer candidate; the right text is a supporting paragraph retrieved from an external
KB. The same alignment score is computed over multiple representations of text, and then aggregated through an
ensemble model.
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Figure 3: Alignment component of AHE, where a co-
sine similarity matrix is constructed by comparing to-
ken embeddings of input query tokens (Qi) and sup-
porting KB paragraph tokens (KBj), and the maximal
alignment cosine score for each input query token is
weighted by its IDF.

similarity of the two embedding vectors. Then, a
max-pooling layer over this cosine similarity ma-
trix is used to retrieve the most similar token in the
supporting passage for each query token. Lastly,
this max-pooled vector of similarity scores is mul-
tiplied with the vector containing the IDF values of
the query tokens and the resultant vector is summed
to produce the overall alignment score s for the
given query Qa (formed from question Q and can-
didate answer a) and the supporting paragraph Pj :

s(Qa, Pj) =

|Qa|∑
i=1

idf (qi) · align(qi, Pj) (2)

align(qi, Pj) =
|Pj |
max
k=1

cosSim(qi, pk) (3)

cosSim(qi, pk) =
~qi · ~pk

||~qi|| · || ~pk||
(4)

where ~qi and ~pk are the embedding vectors of the
terms qi and pk.

In addition to alignments over word-level embed-
dings, we include InferSent (Conneau et al., 2017),
which generates sentence-level embeddings (see
§3.3 for details). For InferSent, the alignment score
between a query Qa and a supporting paragraph
Pj is computed as the dot product of the two corre-
sponding sentence vectors, ~Qa and ~Pj , normalized
using softmax over all candidate answers:

s(Qa, Pj) = softmax( ~Qa · ~Pj) (5)
For ARC, the above alignment scores are computed
for each supporting paragraph in the set of C para-
graphs retrieved in §3.1. For WikiQA, this score
is computed just for the sentence containing the
candidate answer.

To aggregate the retrieved ARC paragraph scores
(for ARC) into an overall score for the correspond-
ing candidate answer, we consider:
Max: selects the maximum alignment score be-
tween all available paragraphs as the final score for
candidate answer a:

S(canda) =
C

max
j=1

(s(Qa, Pj)) (6)

Weighted average: averages all available para-
graph scores, using as weights the inverse IR ranks
of the corresponding paragraphs:

S(canda) =
C∑

j=1

1

j
(s(Qa, Pj)) (7)

During tuning, we observed that the max strategy
is better for ARC Challenge, while the weighted
average is better for ARC Easy. We conjecture that
this happens because Challenge questions require
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information that is sparser in the collection, and,
thus, including more than the top paragraph tends
to introduce noise.

3.3 Text Representations
AHE computes alignments over four different em-
bedding representations that model the text at dif-
ferent levels of abstraction: character, word, and
sentence (as detailed below). Although all these
embeddings can be tuned for specific domains to
improve performance, here we highlight the poten-
tial of publicly-available, pre-trained embeddings.
Hence, we did not train embeddings on any domain
specific corpus, and directly used off-the-shelf em-
beddings in all but one situation. The details of all
four component embeddings of AHE are discussed
below.

Character-based embeddings: We used the
FLAIR contextual character language model of
Akbik et al. (2018). They used long short-term
memory (LSTM) networks that operate at charac-
ter level over the entire text to generate character
embeddings (in both forward and backward direc-
tions). Similar to them, to generate the embedding
for token i, we concatenate the embedding from the
forward LSTM for the character following the to-
ken, with the embedding from the backward LSTM
for the character preceding the token:

wFLAIR
i :=

[
hf
ti+1−1

hb
ti−1

]
(8)

where ti is the character offset of the ith token in
the input text, and h is the corresponding LSTM’s
hidden state. We used the “mix-forward” and “mix-
backward” pretrained models provided by the au-
thors to produce two character embeddings, each
of size 2048, resulting in word embeddings of size
4096.

Word-based embeddings: We incorporated two
different word-based embeddings:
BERT – we used the Bidirectional Encoder Repre-
sentations from Transformers (BERT) embedding
model of Devlin et al. (2018). We concatenated the
last four layers (as suggested by the authors4) of the
BERT Large language model, where each layer has
size 1024, summing up to size 4096 embeddings
for each token:

wBERT
i := [Layer−1, ...., Layer−4] (9)

4https://github.com/google-research/
bert

GloVe – we also include GloVe embeddings (Pen-
nington et al., 2014), under the hypothesis that
these uncontextualized word embeddings will pro-
vide complementary information to the contextu-
alized BERT embeddings. We used GloVe embed-
dings of size 300, trained over 840B tokens from
Wikipedia, resulting in 2.2M words vocabulary.

Sentence-based embeddings: Lastly, we used
InferSent, the sentence-based embeddings of Con-
neau et al. (2017). InferSent was originally
trained on several natural language inference (NLI)
datasets to generate the sentence representations
that maximize the probability of correct inference.
This model achieved poor performance on our QA
tasks (see rows 8a in Table 1 and row 7a in Table 2).

Therefore, rather than using this NLI model, we
trained InferSent on our data by maximizing the
inference probability from the input query5 to the
supporting paragraph. We used the same number
of supporting passages (C = 20) and the same
scoring functions as explained in Section 3.2. We
trained InferSent using batches of size 32, the
Adam optimizer, learning rate = 0.001, and 50
epochs. We used max pooling over the token’s
LSTM hidden states to generate an overall sentence
embedding. We tuned the sentence representation
size on the development sets,6 which resulted in
128 for WikiQA and 384 for ARC.

3.4 Aggregating Multiple Representations

We aggregate the scores of candidate answers over
the four different embedding representations using
an unsupervised variant of the NoisyOr formula:

NoisyOrM (i) = 1− (
M∏

m=0

(1−αm ∗Sm
i )) (10)

which computes the overall score for answer can-
didate i. M is the total number of representations
(e.g., 4 in our case), and Sm

i is the score of answer
candidate i under representation m. Lastly, αm

is a hyperparameter used to dampen peaky distri-
butions of answer probabilities. We included this
hyperparameter because we observed that InferSent
produces a probability distribution over candidate
answers where one answer tends to take most of
the probability mass, and these scores dominate in
the NoisyOr. Thus, the αm weights are set to 1 for

5In ARC, the input query concatenates the question with a
candidate answer.

6This was a light process that inspected only five possible
values: 64, 128, 256, 384, and 512.

https://github.com/google-research/bert
https://github.com/google-research/bert
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Easy Challenge
# Supervised? Type of KB Model P@1 P@1

Baselines
1 No text Random baseline 25.02 25.02
2 No text AI2 IR Solver (Clark et al., 2018) 59.99 23.98
3 No text AI2 IR Solver (our implementation) 60.31 23.74
4 No text Sanity Check (Yadav et al., 2018) 58.36 26.56
5 No text AHE over GloVe 60.71 28.75
6 No text AHE over FLAIR 62.29 31.05
7 No text AHE over BERT 62.73 32.76

8a No text AHE over InferSent (trained on NLI) 32.13 25.36
8b Yes text AHE over InferSent (trained on ARC) 54.01 31.66

Previous work
9 Yes text, structured Tuple-Inf (Clark et al., 2018) 60.71 23.83

10 Yes text Decomp-att (Clark et al., 2018) 52.95 24.40
11 Yes text, structured DGEM (Clark et al., 2018) 58.97 27.11
12 Yes text BiDAF (for ARC) (Clark et al., 2018) 51.05 26.54
13 Yes text, structured KG2 (Zhang et al., 2018) - 31.70
14 Yes – Bi-LSTM max-out (Mihaylov et al., 2018) 34.26 33.87
15 Yes text, structured NCRF++/match-LSTM (Musa et al., 2018) 52.22 33.20
16 Yes text, structured TriAN+f(dir)(cs)+f(ind)(cs) (Zhong et al., 2018b) - 33.39
17 Yes text, structured ET-RR (Ni et al., 2018) - 36.56

Unsupervised AHE
18 No text AHE (FLAIR+BERT) 63.45 33.87
19 No text AHE (FLAIR+BERT+GloVe) 64.60 31.06
20 Minimal text AHE (FLAIR+BERT+InferSent) 62.21 34.05
21 Minimal text AHE (FLAIR+BERT+GloVe+InferSent) 63.22 33.28

Supervised AHE
22 Yes text AHE (FLAIR+BERT+GloVe+InferSent) 65.19 33.70
23 Yes text AHE (FLAIR+BERT+GloVe+InferSent) with grade 65.66 34.47

Oracle
24 – text Oracle ensemble (FLAIR+BERT+GloVe+InferSent) 85.11 68.09

Table 1: Performance on the ARC dataset, measured using precision at 1 (P@1), on both the Easy and Challenge
partitions. Italic font indicates which AHE components are supervised, e.g., InferSent is the InferSent model
trained on ARC data; AHE is the AHE variant that uses the supervised meta-classifier ensemble. Line 8a shows
performance of alignment over the original InferSent embeddings (trained on NLI datasets); line 8b shows perfor-
mance when using InferSent embeddings trained on ARC training data. The “minimal” supervision configurations
(lines 20 and 21) include the supervised InferSent, but use the unsupervised NoisyOr strategy for aggregation.

all representations with the exception of InferSent,
for which we tuned its value to 0.2.

Of course, other types of aggregation are possi-
ble. To explore this space, we also implemented
a supervised meta-classifier, which aims to learn
the aggregation function directly from data. We
implemented this multi-classifier as a feed forward
network with two fully connected dense layers of
hidden size 16 and K respectively, where K is
the maximum number of candidate answers for the
given dataset. The activation function of the first
dense layer was tanh; we used a softmax in the
second output layer. The input to this network was
a vector of size M × K. For example, for ARC
this vector has a size 4 × 5 = 20. For WikiQA
this vector has size 4 × 22 = 88. Each element
in the input vector is the score of one candidate
answer under a given representation. Additionally,
for ARC we used an extra position in the input vec-
tor to indicate the grade of the corresponding exam

question (provided in the dataset) with the intuition
that the meta-classifier will learn to trust different
representations for different grade levels.

4 Empirical Results

We evaluate AHE on two QA tasks:

AI2’s Reasoning Challenge (ARC): this is a
multiple-choice question dataset, containing sci-
ence exam questions (Clark et al., 2018). The
dataset is split in two partitions: Easy and Chal-
lenge, where the latter partition contains the more
difficult questions that require reasoning. Each par-
tition is split into train/development/test as follows:
Easy contains 2251/570/2376 questions, and Chal-
lenge 1119/299/1172. Most of the questions have
4 answer choices, with only < 1% of all the ques-
tions having either 3 or 5 answer choices. ARC
also includes a textual KB of 14.3M passages suit-
able for solving ARC questions. Note that we use
solely this KB for retrieving supporting paragraphs,
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# Supervised? Model MAP MRR
Baselines

1 No Wgt Word Cnt (Yang et al., 2015) 50.99 51.32
2 Yes LCLR (Yang et al., 2015) 59.93 60.86
3 No Sanity Check (Yadav et al., 2018) 64.02 -
4 No AHE over GloVe 63.40 65.39
5 No AHE over FLAIR 64.91 66.51
6 No AHE over BERT 65.13 66.40
7 Yes AHE over InferSent 66.93 68.70

Previous work
8 Yes CNN+Cnt (Yang et al., 2015) 65.20 66.52
9 Yes RNN-1way (Jurczyk et al., 2016) 66.64 68.70
10 Yes RNN-Attention pool (Jurczyk et al., 2016) 67.47 68.92
11 Yes CNN (avg + emb) (Jurczyk et al., 2016) 68.78 70.82
12 Yes AP-CNN (dos Santos et al., 2016) 68.86 69.57
13 Yes LSTM-att (Miao et al., 2016) 68.86 70.69
14 Yes ABCNN (Yin et al., 2015) 69.21 71.08
15 Yes Key-value memory network (Miller et al., 2016) 70.69 72.65
16 Yes CubeCNN (He and Lin, 2016) 70.90 72.34
17 Yes BiMPM (Wang et al., 2017b) 71.80 73.10
18 Yes (Tymoshenko et al., 2017) 72.19 74.08
19 Yes Compare-Aggregate (Wang and Jiang, 2016) 74.33 75.45
20 Yes (Li et al., 2018) 75.41 76.59

Unsupervised AHE
21 No AHE (FLAIR+BERT) 66.98 68.10
22 No AHE (FLAIR+BERT+Glove) 67.31 68.53
23 Minimal AHE (FLAIR+BERT+InferSent) 71.52 73.85
24 Minimal AHE (FLAIR+BERT+Glove+InferSent) 71.77 74.08

Supervised AHE
25 Yes AHE (FLAIR+BERT+Glove+InferSent) 72.13 74.64

Oracle
26 – Oracle ensemble (FLAIR+BERT+Glove+InferSent) 93.71 95.49

Table 2: Performance on the WikiQA dataset, measured using mean average precision (MAP) and mean reciprocal
rank (MRR). Italic font indicates which AHE components are supervised, e.g., InferSent is the InferSent model
trained on WikiQA data; AHE is the AHE variant that uses the supervised meta-classifier ensemble. The “minimal”
supervision configurations (lines 23 and 24) include the supervised InferSent, but use the unsupervised NoisyOr
strategy for aggregation.

unlike many other approaches that use additional
structured KBs such as ConceptNet (Zhong et al.,
2018b) (see column 3 in Table 1).

WikiQA: is an open-domain answer selection
dataset (Yang et al., 2015). It was constructed from
Bing queries and candidate answer sentences from
Wikipedia articles. It contains 1040/140/293 ques-
tions in train/development/test, and each question
has an average of 9.6 candidate answer sentences.

Results and discussion: Tables 1 and 2 summa-
rize the performance of multiple AHE variants,
compared against several baselines and previous
works, on two datasets. We draw several observa-
tions from these:

(1) The mostly unsupervised AHE, i.e., with the
only supervised component being the InferSent em-
beddings, has solid and stable performance across
the three datasets: best on ARC Easy, second best
on ARC Challenge (see lines 18 – 21 in Table 1),
and top three on WikiQA for MRR (see lines 21 –

24 in Table 2). We find these results encouraging:
AHE outperforms many complex supervised neu-
ral approaches, including methods having multiple
RNNs and stacked attention layers (Wang et al.,
2017b; He and Lin, 2016; Miller et al., 2016; Yin
et al., 2015; Miao et al., 2016; Musa et al., 2018;
Mihaylov et al., 2018), despite the fact that it relies
mostly on simple, unsupervised components.

(2) AHE ports well between different partitions
(Easy and Challenge) of same dataset (ARC), un-
like many of the previous approaches. For exam-
ple, neural architectures that perform well on ARC
Challenge perform worse than a simple IR base-
line on ARC Easy (see, e.g., rows 14 and 15 in
Table 1) or vice versa (see lines 9 – 12). This lack
of portability occurs despite these models being
trained/tested within the same partition in Table 1.
To emphasize this issue, we explore more aggres-
sive domain transfer settings in Section 5.2.

(3) Ablation analysis – The alignment performance
from individual components of AHE are shown
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in the baseline blocks of Tables 1 and 2, while
the combinations of AHE’s components are shown
in the corresponding unsupervised and supervised
blocks, i.e.: rows 5–8 in table 1 and rows 4–7 in
table 2 show performance from individual embed-
dings of AHE, while rows 18–23 and rows 21–25,
respectively, show performance from combinations
of AHE components. This comparison indicates
that the combination of two or more embedding
types are always better than individual embeddings.
Further, we see that word embeddings such as
GloVe are useful for ARC Easy but not for the
Challenge partition of ARC (row 19). In contrast,
sentence-level embeddings (InferSent) show the op-
posite behavior (row 20), suggesting that the more
complex the task, the more high-level representa-
tions are required.

(4) The oracle system (line 24 in table 1 and line
26 in table 2) indicates that the different represen-
tations of text are to a large extent complementary:
when selecting the correct answer when at least one
of the representations proposes it, the oracle sys-
tem achieves 85.1 P@1 on ARC Easy, 68.1 P@1 on
ARC Challenge, and 93.71 MAP on WikiQA. The
supervised AHE, which uses a feed-forward neural
network to learn when to trust each representation
demonstrates that (some of) this complementarity
can be learned: the supervised AHE consistently
outperforms its unsupervised counterpart, albeit by
small amounts. Further, line 23 in Table 1 indicates
that additional information about the questions (i.e.,
grade information) is beneficial, as it provides the
meta-classifier more grounding on when to trust
which representation. We analyze this complemen-
tarity further in Section 5.1.

5 Analysis

To explore the potential of AHE and further under-
stand its individual components, we conducted the
following analyses:

5.1 Complementarity of Representations

We calculated the overlap of questions answered
correctly by each component of AHE to investigate
the complementarity of the different representa-
tions. The results are visualized in Figure 4. For
simplicity, the figure shows the number of ques-
tions answered correctly by the first three (unsuper-
vised) components of AHE, but we found similar
trends for the InferSent as well. As shown in the
figure, the overlap between any two components is

ARC Challenge ARC Easy
Figure 4: Overlap of correct questions answered by
AHE models when they operate over different embed-
dings. This was a post-hoc analysis on the test parti-
tions; we observed similar trends on training and devel-
opment. This figure is best viewed in color.

within the range [42 - 53]% in the Challenge parti-
tion (GloVe and BERT overlap = (161/384 = 42%)
, FLAIR and BERT overlap = (204/384 = 53%))
and [73 - 86]% in the Easy partition. Our current
meta-classifier only begins to mine this comple-
mentarity, but it is limited because it has no infor-
mation about the question and candidate answers
(other than their scores). We conjecture that con-
siderable performance improvements are possible
when such a meta-classifier includes additional in-
formation such as question type, question encoding,
etc. Our initial results that include grade informa-
tion (line 23 in Table 1) support this hypothesis.
We leave a further exploration of this direction as
future work.

5.2 Domain Transfer

As shown in Table 1 and discussed in the previ-
ous section, many supervised neural methods do
not perform robustly across different partitions
(Easy and Challenge) of the same ARC dataset,
even though they were trained within each par-
tition. This raises the question of how stable is
their performance when trained/tested in different
domains, which is closer to a real-world deploy-
ment scenario? To answer this question, we trained
and tested two state-of-the-art neural models, BiL-
STM Max-out (Mihaylov et al., 2018; Conneau
et al., 2017) and BiMPM (Wang et al., 2017b),
across three domains: ARC Easy, ARC Challenge,
and WikiQA. We selected these two approaches
because of they are end-to-end neural methods,
and they achieve good performance on all datasets.
Further, BiMPM is reminiscent of a supervised
alignment method, since it computes the overall
similarity of question and answers by aligning the
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Train \Test ARC Easy (P@1) ARC Challenge (P@1) WikiQA (MAP, MRR)

ARC Easy 34.26, 38.84 23.12, 24.10 (38.71, 40.51), (52.13, 53.87)
ARC Challenge 27.02, 36.17 33.87, 26.39 (39.05, 40.68), (40.09,41.48)
WikiQA 25.84, 38.40 24.32, 25.36 (67.40, 69.08), (69.20, 71.19)
Unsupervised AHE 64.60 33.87 (67.31, 68.53)

Table 3: Performance of two neural QA methods, BiLSTM Max-out and BiMPM, when trained/tested across
datasets. The first value in each cell corresponds to BiLSTM Max-out, and the second to BiMPM. The last row
contains the best unsupervised performance of AHE, which was not trained on any of these three datasets.

tokens’ LSTM hidden states.
The results are summarized in Table 3. The table

highlights that the performance of these systems
varies considerably based on the training domain,
even underperforming a random baseline in some
configurations. In contrast, the unsupervised AHE
does not require training, and obtains state-of-the-
art, stable performance across the three datasets.
This analysis suggests that future QA evaluations
should consider domain transfer as another evalua-
tion measure, to quantify the performance of QA
systems under realistic scenarios.

5.3 Brief Qualitative Analysis

We manually analyzed the questions answered in-
correctly by AHE and observed that many of the
candidate answers were partially answering the
questions. As shown in Figure 5, candidate an-
swers 2 and 5 are partially answering the question,
while candidate answers 1 and 3 provide topically
relevant information. To select the correct answer
in such complex questions, especially for short
questions, a successful method would have to in-
corporate inference, e.g., recognizing process ques-
tions such as the one in the figure and coupling with
it with a dedicated problem solving method (Clark
et al., 2013). We leave the integration of inference
methods with AHE as future work.

6 Conclusion

We proposed a simple, mostly-unsupervised align-
ment model for non-factoid QA, which operates
over multiple contextualized embedding represen-
tations that model the text at different levels of
abstraction. Despite its simplicity, our approach
obtains good performance (top three or higher) that
is stable across three QA datasets. Our analysis in-
dicates that the different levels of abstraction (char-
acter, word, sentence) capture distinct semantics.
We showed that this can be modeled with a meta-
classifier that learns when and how much to trust

Question - how a water pump works?
1. A large, electrically driven pump (electropump) for

waterworks near the Hengsteysee , Germany.
2. A pump is a device that moves fluids (liquids or

gases), or sometimes slurries , by mechanical ac-
tion.

3. Pumps can be classified into three major groups
according to the method they use to move the fluid:
direct lift, displacement, and gravity pumps.

4. Pumps operate by some mechanism (typically
reciprocating or rotary), and consume energy to
perform mechanical work by moving the fluid.

5. Pumps operate via many energy sources, includ-
ing manual operation, electricity, engines , or wind
power .

Figure 5: A question with correct answer in bold font
from the WikiQA dataset, which was incorrectly an-
swered by AHE, BiLSTM Max-out and BiMPM.

the predictions over each representation, and that
this has a beneficial impact on performance.

All in all, our work indicates that the first, and
possibly best, investment in the design of a QA
system should be on contextualized embeddings
rather than custom, complex neural architectures.

When such embeddings are available, state-of-
the-art performance that is competitive with mod-
ern neural approaches for QA can be obtained
with simple alignment-based aggregation strategies.
Minimally, our work should be regarded as a new,
strong baseline for non-factoid question answering
or answer sentence selection.
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