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Abstract

Visual Dialog is a multimodal task of an-
swering a sequence of questions grounded
in an image (using the conversation history
as context). It entails challenges in vision,
language, reasoning, and grounding. How-
ever, studying these subtasks in isolation on
large, real datasets is infeasible as it requires
prohibitively-expensive complete annotation
of the ‘state’ of all images and dialogs.

We develop CLEVR-Dialog, a large diagnos-
tic dataset for studying multi-round reasoning
in visual dialog. Specifically, we construct a
dialog grammar that is grounded in the scene
graphs of the images from the CLEVR dataset.
This combination results in a dataset where all
aspects of the visual dialog are fully annotated.
In total, CLEVR-Dialog contains 5 instances
of 10-round dialogs for about 85k CLEVR im-
ages, totaling to 4.25M question-answer pairs.

We use CLEVR-Dialog to benchmark perfor-
mance of standard visual dialog models; in
particular, on visual coreference resolution (as
a function of the coreference distance). This
is the first analysis of its kind for visual dia-
log models that was not possible without this
dataset. We hope the findings from CLEVR-
Dialog will help inform the development of fu-
ture models for visual dialog. Our code and
dataset are publicly available1.

1 Introduction

The focus of this work is on intelligent systems
that can see (perceive their surroundings through
vision), talk (hold a visually grounded dialog), and
reason (store entities in memory as a dialog pro-
gresses, refer back to them as appropriate, count,
compare, etc.). Recent works have begun studying
such systems under the umbrella of Visual Dialog
(Das et al., 2017a; de Vries et al., 2017), where

1https://github.com/satwikkottur/clevr-dialog

an agent must answer a sequence of questions
grounded in an image. As seen in Fig. 1, this entails
challenges in – vision (e.g., identifying objects and
their attributes in the image), language/reasoning
(e.g., keeping track of and referencing previous
conversation via memory), and grounding (e.g.,
grounding textual entities in the image).

In order to train and evaluate agents for Visual
Dialog, Das et al. (2017a) collected a large dataset
of human-human dialog on real images collected
between pairs of workers on Amazon Mechani-
cal Turk (AMT). While such large-scale realistic
datasets enable new lines of research, it is difficult
to study the different challenges (vision, language,
reasoning, grounding) in isolation or to break down
the performance of systems over different chal-
lenges to identify bottlenecks, because that would
require prohibitively-expensive complete annota-
tion of the ‘state’ of all images and dialogs (all
entities, coreferences, etc.).

In this work, we draw inspiration from John-
son et al. (2017), and develop a large diagnos-
tic dataset—CLEVR-Dialog—for studying and
benchmarking multi-round reasoning in visually-
grounded dialog. Each CLEVR image is syntheti-
cally rendered by a particular scene graph (Johnson
et al., 2017) and thus, is by construction exhaus-
tively annotated. We construct a dialog grammar
that is grounded in these scene graphs. Specifically,
similar to Das et al. (2017b), we view dialog gen-
eration as communication between an Answerer
(A-er) who can ‘see’ the image and has the com-
plete scene graph (say Sa), and a Questioner (Q-er),
who does not ‘see’ the image and is trying to recon-
struct the scene graph over rounds of dialog (say
St

q). As illustrated in Fig. 1, the dialog begins by
A-er providing a grounded caption for the image,
which conveys some but not all information about
Sa. The Q-er builds a partial scene graph S0

q based
on the caption, and follows up by asking questions

https://github.com/satwikkottur/clevr-dialog
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Figure 1: CLEVR-Dialog: we view dialog generation as communication between an Answerer (A-er) who can
‘see’ the image I and has the complete scene graph Sa (far right), and a Questioner (Q-er), who does not ‘see’ the
image. A-er begins the dialog with a grounded caption (‘A cylinder is next to a yellow object’). The Q-er converts
this caption into a partial scene graph S0

q (far left, top), follows up with a question grounded in S0
q (‘What shape is

the object?’), which the A-er answers, and the dialog progresses. Questions at round t are generated based solely
on St

q, i.e., without looking at I or Sa, which mimics real-life scenarios of visual dialog. Note that while studying
visual dialog on CLEVR-Dialog, models are forced to answer questions with just the image and dialog history as
additional inputs, and do not have access to Sa.

grounded in S0
q, which the A-er answers, and the

dialog progresses. Our dialog grammar defines
rules and templates for constructing this grounded
dialog. Note that A-er with access to Sa (perfect vi-
sion) exists only during dialog generation to obtain
ground truth answers. While studying visual dialog
on CLEVR-Dialog, models are forced to answer
questions with just the image and dialog history as
additional inputs.

In total, CLEVR-Dialog contains 5 instances of
10-round dialogs for each of 70k (train) and 15k
(val) CLEVR images, totaling to 3.5M (train) and
0.75M (val) question-answer pairs. We benchmark
several visual dialog models on CLEVR-Dialog as
strong baselines for future work.

The combination of CLEVR images (with full
scene graph annotations) and our dialog grammar
results in a dataset where all aspects of the visual
dialog are fully annotated. We use this to study one
particularly difficult challenge in multi-dialog vi-
sual reasoning – of visual coreference resolution. A
coreference arises when two or more phrases (core-
ferring phrases) in the conversation refer to the
same entity (referent) in the image. For instance,
in the question ‘What about that cylinder?’ (Q3)
from Fig. 1, the referent for the phrase ‘that cylin-
der’ can be inferred only after resolving the phrase
correctly based on the dialog history, as there are
multiple cylinders in the image. We use CLEVR-
Dialog to diagnose performance of different meth-
ods as a function of the history dependency (e.g.,
coreference distance—the number of rounds be-

tween successive mentions of the same object) and
find that the performance of a state-of-art model
(CorefNMN) is at least 30 points inferior for ques-
tions involving coreference resolution compared
to those which do not (Fig. 5), highlighting the
challenging nature of our dataset. This is the first
analysis of its kind for visual dialog that was sim-
ply not possible without this dataset. We hope the
findings from CLEVR-Dialog will help inform the
development of future models for visual dialog.

2 Related Work

Coreference Resolution is a well studied prob-
lem in the NLP community (Ng, 2010; Wiseman
et al., 2016; Lee et al., 2017; Clark and Manning,
2016a,b). Our work focuses on visual coreference
resolution – the referent is now a visual entity to
be grounded in visual data. Several works have
tackled visual coreference resolution in videos (Ra-
manathan et al., 2014; Rohrbach et al., 2017) and
3D data (Kong et al., 2014), and have introduced
real image datasets for the same (Hodosh et al.,
2014).
Visual Dialog and Synthetic Datasets. We con-
trast CLEVR-Dialog against four existing datasets:
(1) CLEVR (Johnson et al., 2017) is a diagnostic
dataset for visual question answering (VQA) (An-
tol et al., 2015) on rendered images that contain
objects like cylinders, cubes, etc., against a plain
background (Fig. 1). While CLEVR-Dialog uses
the same set of images, the key difference is that
of focus and emphasis – the objective of CLEVR-
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Figure 2: Example dialogs from MNIST Dialog, CLEVR-Dialog, and VisDial, with coreference chains manually
marked for VisDial and automatically extracted for MNIST Dialog and CLEVR-Dialog.

VQA questions is to stress-test spatial reasoning
in independent single-shot question answering; the
objective of CLEVR-Dialog is to stress-test tempo-
ral or multi-round reasoning over the dialog history.
(2) CLEVR-Ref+ (Liu et al., 2019) is a diagnostic
dataset based on CLEVR images for visual reason-
ing in referring expressions. CLEVR-Dialog goes
beyond CLEVR-Ref+, which focuses on ground-
ing objects given a natural language expression,
and deals with additional visual and linguistic chal-
lenges that require multi-round reasoning in visual
dialog. (3) MNIST-Dialog (Seo et al., 2017) is
a synthetic dialog dataset on a grid of 4× 4 styl-
ized MNIST digits (Fig. 2). While MNIST-Dialog
is similar in spirit to CLEVR-Dialog, key differ-
ence is complexity – the distance between a core-
ferring phrase and its antecedent is always 1 in
MNIST-Dialog; in contrast, CLEVR-Dialog has
a distribution ranging from 1 to 10. (4) VisDial
(Das et al., 2017a) is a large scale visual dialog
dataset collected by pairing two human annotators
(a Q-er and an A-er) on AMT, built on COCO (Lin
et al., 2014) images. VisDial being a large open-
ended real dataset encompasses all the challenges
of visual dialog, making it difficult to study and
benchmark progress on individual challenges in
isolation. Fig. 2 qualitatively compares MNIST-
Dialog, CLEVR-Dialog, and VisDial, and shows
coreference chains (manually annotated for this
VisDial example, and automatically computed for
MNIST-Dialog and CLEVR-Dialog). We can see
that the chains in MNIST-Dialog are the simplest
(distance always 1). While coreferences in VisDial
can be on a similar level of difficulty than CLEVR-

Name CLEVR MNIST VisDialDialog (ours) Dialog

# Images 85k 50k 123k
# Dialogs 425k 150k 123k
# Questions 4.25M 1.5M 1.2M
# Unique Q 73k 355 380k
# Unique A 29 38 340k
Vocab. Size 125 54 7.k
Mean Q Len. 10.6 8.9 5.1
Mean Coref Dist. 3.2 1.0 -

Table 1: Dataset statistics comparing CLEVR-Dialog
to MNIST Dialog (Seo et al., 2017). Our dataset has
3× the questions (larger), 206× the unique number of
questions (more diverse), 3.2× the mean coreference
distance (more complex), and longer question lengths.
Similar stats for VisDial are also shown. Coreference
distance can not be computed for VisDial due to lack
of annotations.

Dialog, the difficult cases are rarer in VisDial.

3 CLEVR-Dialog Dataset

In this section, we describe the existing annotation
for CLEVR images, then detail the generation pro-
cess for CLEVR-Dialog, and present the dataset
statistics in comparison to existing datasets.
Setup. Every CLEVR image I has a full scene
graph annotation, Sa. This contains information
about all the objects in the scene, including four
major attributes {color, shape, material, size}, 2D
image and 3D world positions, and relationships
{front, back, right, left} between these objects. We
only use objects, attributes, and relationships.
Dialog Grammar. An important characteristic of
visual dialog that makes it suitable for practical
applications is that the questioner does not ‘see’
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(a) Distribution of caption (left) and question (right) categories. (b) Distribution of coreference distances.

Figure 3: Distribution of caption and question categories, and history dependency in CLEVR-Dialog dataset.

the image (because if it did, it would not need to
ask questions). To mimic this setup, we condition
our question generation at round t only on the par-
tial scene graph St

q that accumulates information
received so far from the dialog history (and not
on Sa). Specifically, we use a set of caption {TC

i }
and question {T Q

i } templates, which serve as the
structural units of our dialog grammar. The role of
the caption is to seed the dialog and initialize S0

q.
Each of the question templates is accompanied by
a set of constraints on St

q, which decide if a partic-
ular template can be selected at the current round.
For instance, a question ‘What shape is the blue
object?’ can be only be asked (generated) if the
dialog so far has already mentioned a ‘blue object’,
i.e., only if St

q contains a (unique) ‘blue object’.
The nature and difficulty of the dataset is highly
dependent on these templates, thus making their
selection crucial.

To this end, we carefully design four categories
of caption templates: (a) Obj-unique mentions an
object with unique set of attributes in the image,
(b) Obj-count specifies the presence of a group of
objects with common attributes, (c) Obj-extreme
describes an object at one of the positional ex-
tremes of the image (right, left, fore, rear, center),
(d) Obj-relation talks about the relationship be-
tween two objects along with their attributes in a
way that allows them to be uniquely identified in
the complete scene graph Sa.

For the questions, we experiment with three dif-
ferent categories: (a) Count questions ask for a
count of objects in the image satisfying specific
conditions, e.g., ‘How many objects share the same
color as this one?’, (b) Existence questions are
yes/no binary questions that verify conditions in
the image, e.g., ‘Are there any other cubes?’, and
(c) Seek questions query attributes of objects, e.g.,
‘What color is that cylinder?’. Note that CLEVR-

Dialog represents not just a static dataset but also
a recipe for constructing increasingly challenging
grounded dialog by expanding this grammar. Refer
to the appendix for further details.

Dialog Generation. At a high level, dialog genera-
tion now ‘simply’ involves selecting a sequence of
templates such that the accompanying constraints
are satisfied by St

q at all t. As a tractable approxi-
mation to this exponentially-large constraint satis-
faction problem, we use beam search that finds a
valid solution and enforces additional conditions to
make the dialog interesting (see Fig. 4). At every
round of the dialog (after 3 rounds), we ensure that
each of the question template types—count, exis-
tence, and seek—falls within a range (10%−20%
for count/existence each, and 30%−60% for seek).
In addition, we identify independent questions that
do not need history to answer them, e.g., ‘How
many objects are present in the image?’, and limit
their number to under 10%. We found this to be
effective both in terms of speed and dialog diversity.
Fig. 4 illustrates the diverse set of candidate ques-
tions generated at each round for a given image.

Dataset Statistics. We compare CLEVR-Dialog
to MNIST-Dialog and VisDial in Tab. 1, but the
key measure of coreference distance cannot be re-
ported for VisDial as it is not annotated. Over-
all, CLEVR-Dialog has 3× the questions and a
striking 206× the unique number of questions than
MNIST-Dialog , indicating higher linguistic diver-
sity. CLEVR-Dialog questions are longer with a
mean length of 10.6 compared to 8.9 for MNIST-
Dialog. Crucially, supporting our motivation, the
mean distance (in terms of rounds) between the
coreferring expressions in CLEVR-Dialog is 3.2×
compared to 1.0 in MNIST-Dialog. Moreover, the
distances (see Fig. 3b) in CLEVR-Dialog vary (min
of 1, max of 10), while it is constant (at 1) in
MNIST-Dialog, making it easy for models to pick
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Figure 4: Dialog generation in CLEVR-Dialog. At
each round, all valid question templates are used to gen-
erate candidates for the next question. However, only a
few interesting candidates (beams) are retained for fur-
ther generation, thus avoiding an exploding number of
possibilities as rounds of dialog progress.

up on this bias. The distribution of caption and
question templates is given in Fig. 3a. See appendix
for further analysis.

4 Experiments

Baselines. To benchmark performance, we evalu-
ate several models on CLEVR-Dialog. Random
picks an answer at random. Random-Q picks an
answer at random among valid answers for a given
question type (e.g., name of a color for color ques-
tions). Further, we adapt the discriminative visual
dialog models from Das et al. (2017a): (a) Late
Fusion (LF) that models separately encode each
of question (Q), history (H), and image (I); and
then fuse them by concatenation. (b) Hierarchical
Recurrent Encoder (HRE) that models dialog via
both dialog-level and sentence-level recurrent neu-
ral networks. (c) Memory Network (MN) that
stores history as memory units and retrieves them
based on the current question. We also consider
neural modular architectures: (a) CorefNMN (Kot-
tur et al., 2018) that explicitly models coreferences
in visual dialog by identifying the reference in the
question (textual grounding) and then localizing
the referent in the image (visual grounding), (b)
NMN (Hu et al., 2017), which is a history-agnostic
ablation of CorefNMN.
Results. We use multi-class classification accuracy
for evaluation since CLEVR-Dialog has one-word
answers. Tab. 2 shows the performance of different
models. The key observations are: (a) Neural mod-
els outperform random baselines by a large margin.

Model Acc.

Random 3.4
Random-Q 33.4

LF-Q 40.3
LF-QI 50.4
LF-QH 44.1
LF-QIH 55.9

HRE-QH 45.9
HRE-QIH 63.3

MN-QH 44.2
MN-QIH 59.6

NMN 56.6
CorefNMN 68.0

Figure 5: Breakdown of per-
formance by questions that
depend on entire history (All),
require coreference resolu-
tion (Coref ), and are history-
independent (None).
Table 2: Accuracy (%) on
CLEVR-Dialog (higher is
better). See text for details.

The best performing model, CorefNMN, outper-
forms Random-Q by 35%. (b) History-agnostic
models (LF-Q, LF-QI, NMN) also suffer in perfor-
mance, highlighting the importance of history. (c)
Finally, we break down the performance of top-3
models on questions which depend on entire history
(All), require coreference resolution (Coref ), and
are history-independent (None), in Fig. 5. We find
that CorefNMN is 30% worse on Coref than None
questions, signifying the complexity of CLEVR-
Dialog as the former are qualitatively harder to
answer than the latter. (d) More interestingly, HRE-
QIH, though inferior to CorefNMN on Coref, out-
performs the latter on All questions (‘How many
other objects?’) by around 20%. A possible expla-
nation is that the former, owing to its dialog-level
RNN, captures global summaries more efficiently
than the latter. This is the first analysis of its kind
for visual dialog that was simply not possible with-
out this dataset. Appendix provides a further analy-
sis of model performances.
Conclusion. We proposed a large, synthetic
dataset called CLEVR-Dialog, to study multi-
round reasoning in visual dialog, and in particular
the challenge of visual coreference resolution. We
benchmarked several qualitatively different models
from prior work on this dataset, which act as base-
lines for future work. Our dataset opens the door to
evaluate how well models do on visual coreference
resolution, without the need to collect expensive
annotations on real datasets.
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Appendix

The appendix is organized as follows:

• We begin with the description of CLEVR images
in Sec. A,

• Sec. B describes further details of the dialog
generation,

• Sec. C provides additional statistical analysis for
CLEVR-Dialog,

• Diagnostic model performance analysis in given
in Sec. D, and finally

• Implementation details can be found in Sec. E.

A CLEVR Images

First introduced by Johnson et al. (2017), CLEVR
images are synthetically rendered, and contain sev-
eral objects spatial located on a plain background.
These objects have four different attributes: (a)
Shape—cylinder, cube, sphere; (b) Color—blue,
brown, cyan, gray, green, purple, red, yellow; (c)
Size—large and small; and finally (d) Material—
metal and rubber.

B Generating CLEVR-Dialog Dataset

As noted in the main paper, an important charac-
teristic of visual dialog that makes it suitable for
practical applications is that the questioner does
not ‘see’ the image (because if it did, it would not
need to ask questions). To mimic this setup, we
condition our question generation at round t only
on the partial scene graph St

q that accumulates infor-
mation received so far from the dialog history (and
not on Sa). Specifically, we use a set of caption
{TC

i } and question {T Q
i } templates (enumerated

in Tab. 3), which serve as the basis for our dialog
generation. Each of these templates in turn con-
sists of primitives, composed together according
to a generation grammar. In what follows, we will
first describe these primitives, discuss how they are
used to generate a caption or a question at each
round, and tie everything together to explain dialog
generation in CLEVR-Dialog.

Grammar Primitives. The templates used to
generate captions and questions are composed
of intuitive and atomic operations called prim-
itives. Each of these primitives can have dif-
ferent instantiations depending on a parameter,
and also take input arguments. For example, all

Filter primitives filter out objects from an in-
put set of objects according to certain constraints.
In particular, Filter[color](blue) filters out
blue objects from a given set of objects, while
Filter[shape](sphere) filters out all spheres.
In our work, we use the following primitives:

• Sample: sample an object/attribute,
• Unique: identify unique objects/attributes,
• Count: count the number of input objects,
• Group: group objects based on attribute(s),
• Filter: filter inputs according to a constraint,
• Exist: check for existence of objects,
• Relate: apply a relation (e.g., right of ).

Note that each of these primitives inherently de-
notes a set of constraints, which when failed leads
to a reset of the generation process for the current
caption/question in the dialog. For example, if the
output of Filter[color](blue) is empty due to
an absence of blue objects in the input, we abort
generation for the current template and move on to
the next template.

Caption Generation. The role of the caption is
to seed the dialog and initialize S0

q. In other words,
caption gives Q-er partial information about the
image so that asking follow-up questions is pos-
sible. Because A-er generates the caption, it uses
the full scene graph Sa. Fig. 6 shows the caption
grammar in action, producing three different cap-
tions for a given image. Consider the grammar
for Fig. 6(c). First, Sample[attribute] produces
{shape, color} used by Unique to select objects
from Sa with unique shape and color attributes. An
object (gray cylinder) is then sampled from these
using Sample[object]. Next, a relation (in front
of ) is enforced via a Relate primitive leading to
the green cylinder in front of the gray cylinder.
Finally, Sample[attribute] samples one of the
attributes to give us the caption, ‘A green object
stands in front of a gray cylinder.’

Question Generation. Unlike the caption, the
questions are generated by the Q-er, having access
only to a partial scene graph St

q at round t. This St
q

is an assimilation of information from the previous
rounds of the dialog. The primitives in the question
template therefore take St

q as the input scene graph,
and the generation proceeds in a manner similar to
that of the caption explained above. As the dialog is
driven by Q-er based on partial scene information,
only a few questions are non-redundant (or even
plausible) at a given round of the dialog. To this
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Figure 6: Usage of dialog grammar in caption generation. See text for details.

Figure 7: Usage of dialog grammar in question generation. See text for details.

end, the inherent constraints associated with the
primitives now play a bigger role in the template
selection.

Consider Fig. 7 that shows how the current
question is generated using the primitives and
grammar, given the caption and dialog history
(question-answer pair for the first three rounds).
For the current round, the question ‘What mate-
rial is the green object at the back?’ is clearly
implausible (Q-er is unaware of the existence of
a green object), while the question ‘What shape
is the red object?’ is redundant. For the tem-
plates visualized, Unique[object] returns a list
of unique known object-attribute pairs (using St

q).
A candidate is sampled by Sample[object] and
a relation is applied through Relate(in front
of). There are multiple choices at this junc-
tion: (a) The use of Count leads to a counting
question (count-obj-rel-early), (b) Invoking
Sample[attribute] results in a seek question
(seek-attr-rel-early), and finally, (c) Exist
primitive generates an exist question of type
exist-obj-rel-early.

Dialog Generation. As specified in the main pa-
per, we use beam search as a more tractable alter-
native to search through the exponential space of
possible dialogs, by using additional constrains to
retain only interesting dialogs. At every round
of the dialog (after 3 rounds), we ensure that
each of the question template types—count, ex-
istence, and seek—falls within a range (10%−
20% for count/existence each, and 30%− 60%
for seek). In addition, we identify independent
questions that do not need history to answer them,
e.g., ‘How many objects are present in the im-
age?’, and limit their number to under 10%. Fi-
nally, to encourage questions that require reasoning
over the history, e.g., seek-attr-sim-early and
count-obj-excl-imm, we tailor our beam search
objective so that dialogs containing such questions
have a higher value. We use a beam search with
100 beams for each dialog. Fig. 4 illustrates the
diverse set of candidate questions generated at each
round for a given image.

To summarize, the usage of primitives and a dia-
log grammar makes our generation procedure: (a)
modular: each primitive has an intuitive meaning,
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Captions

obj-relation
‘A [Z] [C] [M] [S] stands [R] a [Z1] [C1] [M1] [S1].’
‘A gray sphere stands to the right of a red object.’

obj-unique
’A [Z] [C] [M] [S] is present in the image.’
‘A red object is present in the image’

obj-extreme
‘The rightmost thing in the view is a [Z] [C] [M] [S].’
‘The rightmost thing in the view is a cylinder.’

obj-count
‘The image has [X] [Z] [C] [M] [S].’
‘The image has four cylinders.’

Count/Exist Question Type

count-all ‘How many objects in the image?’
count/ ‘[How many | Are there] other [Z] [C] [M] [S] in the picture?’

exist-excl ‘[How many | Are there] other cubes in the picture?’
count/ ‘[If present, how many | Are there] [Z] [C] [M] [S] objects?’

exist-attr ‘[If present, how many | Are there] metallic objects?’
count/ ‘[How many | Are there] [Z] [C] [M] [S] among them?’

exist-attr-group ‘[How many | Are there] blue cylinders among them?’
count/ ‘[How many | Are there] things to its [R]?’

exist-obj-rel-imm ‘[How many | Are there] things to its right?’
count/ ‘How about to its [R]?’

exist-obj-rel-imm2 ‘How about to its left?’
count/ ‘[How many | Are there] things [R] that [Z] [C] [M] [S]?’

exist-obj-rel-early ‘[How many | Are there] things in front of that shiny object?’
count/ ‘[How many | Are there] things that share its [A]?’

exist-obj-excl-imm ‘[How many | Are there] things that share its color?’
count/ ‘[How many | Are there] things that are the same [A] as that [Z] [C] [M]

[S]?’
exist-obj-excl-early ‘[How many | Are there] things that are the same size as that round object?’

Seek Question Type

seek-attr-imm
‘What is its [A]?’
‘What is its shape?’

seek-attr-imm2
‘How about [A]?’
‘How about color?’

seek-attr-early
‘What is the [A] of that [Z] [C] [M] [S]?’
‘What is the shape of that shiny thing?’

seek-attr-sim-early
‘What about the earlier [Z] [C] [M] [S]?’
‘What about the earlier box?’

seek-attr-rel-imm
‘If there is a thing to its [R], what [A] is it?’
‘If there is a thing to its right, what color is it?’

seek-attr-rel-early
‘If there is a thing [R] that [Z] [C] [M] [S], what [A] is it made of?’
‘If there is a thing in front of that shiny object, what material is it made
of?’

Table 3: Example templates for all the caption and question types used to generate CLEVR-Dialog dataset. For
each type, we show both: (a) a sample template with placeholders (Z=size, C=color, M=material, S=shape,
A=attribute, X=count, R=relation), and (b) a realization with placeholders filled with random values.
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(a) Distribution of questions according to the template labels.

(b) Distribution of answers.

Figure 8: Visualization of distributions for question types and answers in our CLEVR-Dialog dataset. See Sec. C
for more details.

(b) expressive: complex templates can be broken
down into these primitives, (c) computationally ef-
ficient: outputs can reused for templates sharing
similar primitive structures (as seen in Fig. 7), thus
allowing an easy extension to new primitives and
templates. We believe that CLEVR-Dialog rep-
resents not just a static dataset but also a recipe
for constructing increasingly challenging grounded
dialog by expanding this grammar.

C Additional Datasets Analysis

Fig. 8 visualizes the distribution of caption tem-
plates, question templates, answers, and the history
dependency of questions in CLEVR-Dialog.

Caption Categories. As the dialog between Q-
er and A-er is initiated by the caption, care must
be taken to ensure it is interesting enough to spawn
clarifying questions from the Q-er. To this end, we
carefully design four different categories of caption
templates (Fig. 3a): (a) Obj-unique mentions an
object with unique set of attributes in the image,
(b) Obj-count specifies the presence of a group of

objects with common attributes, (c) Obj-extreme
describes an object at one of the positional ex-
tremes of the image (right, left, fore, rear, center),
(d) Obj-relation talks about the relationship be-
tween two objects along with their attributes in a
way that allows them to be uniquely identified in
the complete scene graph Sa. Example captions are
given in Tab. 3. In contrast, MNIST Dialog does
not have captions.

Question Categories and Types. CLEVR-
Dialog contains three broad question categories—
count, exist, and seek—with each further
containing variants totaling up to 23 different
types of questions. In comparison, MNIST-Dialog
only has 5 types of questions and is less diverse.
The distributions for the question categories and
question types are shown in Fig. 3a and Fig. 8a,
respectively. Our questions are 60% seek as they
open up more interesting follow-up questions, 23%
count, and 17% exist.

History Dependency. Recall that our motivation
for CLEVR-Dialog to create a diagnostic dataset
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Figure 9: Dialog generation in CLEVR-Dialog. At
each round, all valid question templates are used to gen-
erate candidates for the next question. However, only a
few interesting candidates (beams) are retained for fur-
ther generation, thus avoiding an exploding number of
possibilities as rounds of dialog progress.

for multi-round reasoning in visual dialog. As a
result, a majority of questions in our dataset de-
pend on the dialog history. We identify three major
kinds of history dependency for the questions: (a)
Coreference occurs when a phrase within the cur-
rent question refers to a earlier mentioned object
(referent). We characterize coreferences by mea-
suring the distance between the current and the
earlier mention, in terms of dialog rounds. This
can range from 1 (e.g., ‘What is its color?’) to 10
(a question in round 10 referring to an entity in the
caption). (b) All: When the question depends on
the entire dialog history, e.g., ‘How many other ob-
jects are present in the image?’, (c) None: When
the question is stand-alone and does not depend on
the history, e.g., ‘How many spheres does the scene
have?’ The distribution of questions characterized
according to the history dependency is shown in
Fig. 3b. Unlike MNIST Dialog, CLEVR-Dialog
contains a good distribution of reference distances
beyond just 1, leading to a mean distance of 3.2.
Thus, the models will need to reason through dif-
ferent rounds of dialog history in order to succeed.

D Additional Model Analysis

In this section, we diagnose performance of all the
models by breaking it down according to question
type and history dependency. We then focus on the
best performing model, CorefNMN (Kottur et al.,
2018), which explicitly models coreferences in vi-
sual dialog by identifying the reference in the ques-
tion (textual grounding) and then localizing the ref-

Figure 10: Accuracy breakdown of models according
to the history dependency type. While CorefNMN out-
performs all methods on questions (average) containing
references (1−10), it performs poorly on questions that
depend on the entire history (‘All’).

erent in the image (visual grounding). We study the
behavior of CorefNMN on CLEVR-Dialog both
qualitatively and quantitatively. Specifically, we
visualize qualitative examples and develop met-
rics to quantitatively evaluate the textual and visual
grounding. Note that such a diagnostic analysis is
first of its kind which would not be possible without
our CLEVR-Dialog.

D.1 Accuracy vs History Dependency
The breakdown of model performances based on
this history dependency is presented in Fig. 10. The
following are the key observations:

• The best performing model, CorefNMN, has a
superior performance (on an average) on all ques-
tion with coreference (1− 10) compared to all
other models. As CorefNMN is designed specifi-
cally to handle coreferences in visual dialog, this
is not surprising.
• Interestingly, the second best model HRE-QIH

has the best accuracy on ‘All’ questions, even
beating CorefNMN by a margin of 20%. In
other words, HRE-QIH (and even MN-QIH) is
able to answer ‘All’ questions significantly better
than CorefNMN perhaps due to the ability of its
dialog-level RNN to summarize information as
the dialog progresses.
• Both NMN and CorefNMN perform similarly

on the ‘None’ questions. This observation is
intuitive as NMN is a history-agnostic version
of CorefNMN by construction. However, the
difference becomes evident as CorefNMN out-
performs NMN by about 12% overall.
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Figure 11: Accuracy breakdown of models according to the question type.

D.2 Accuracy vs Question Type
Fig. 11 breaks down the performance of all the
models according to the question types. An obvi-
ous observation is that performance on counting
and seek questions is worse than that on exist ques-
tions. While this is in part because of the binary
nature of exist questions, they are also easier to
answer than counting or extracting attributes that
need complicated visual understanding.

D.3 Qualitative Anaylsis for CorefNMN
We now qualitatively visualize (Fig. 12) the best
performing model, CorefNMN. In the example
shown, CorefNMN first parses the caption ‘There
is a cyan metal object to the front of all the ob-
jects.’ and localizes the right cyan object. While
answering Q-1, CorefNMN rightly instantiates the
Refer module and applies the desired transforma-
tion (see module outputs on the right). For Q-2, it
accurately identifies the object as the previous one,
and extracts the attributes. Finally, the question

‘What about that cyan object?’ cannot be answered
in isolation as: (a) there are multiple cyan objects,
(b) the meaning of the question is incomplete with-
out Q-2. It is interesting to note that even though
CorefNMN overcomes (a) by correctly resolving
the reference that cyan object (in the image), it is
unable to circumvent (b) due to its specialization
in visual coreferences.

D.4 Grounding Analysis for CorefNMN
As shown in Fig. 12, CorefNMN identifies a refer-
ence phrase in the current question and proceeds to

Figure 12: Qualitative visualization of CorefNMN on
CLEVR-Dialog.

visually ground the corresponding referent in the
image. Such explicit textual and visual grounding
at each round allows for an interesting quantitative
analysis for CorefNMN, with the help of annota-
tions in our CLEVR-Dialog. To elaborate, CLEVR-
Dialog provides coreference annotations for each
question, if any, in the form of a reference phrase
and its bounding box localization in the image. By
comparing these grounding annotations with the
output from the model, we can quantitatively assess
grounding (both textual and visual) by CorefNMN.
In what follows, we first describe the ground an-
notations, detail the evaluation procedure and then
present our observations.
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(a) NDCG value for text grounding for various question types.

(b) NDCG value for visual grounding for various question types.

Figure 13: Evaluating the textual (above) and visual (below) grounding of CorefNMN on CLEVR-Dialog, using
Normalized Discounted Cumulative Gain (NDCG) for various question types. Higher is better.

Annotations. While the original CLEVR dataset
(Johnson et al., 2017) does not contain bounding
box annotations for the objects in the scene, Kr-
ishna et al. (2018) later added these in their work
on referring expressions. We leverage these annota-
tions to obtain the ground truth visual groundings
(AV ) for the referents in our questions. On the other
hand, each of the caption and question templates
has referring phrase annotations in them, thus giv-
ing the ground truth textual groundings (AT ). We
use the above two groundings for evaluation.

Evaluation. For every coreference resolution,
CorefNMN produces an visual attention map of
size 14×14 (ÂV ) and a textual attention over the
question words (ÂT ). We rank all the 142 = 196
cells in ÂV according to their attention values. Next,
we obtain the relevant cells among them from an
appropriately scaled down (14× 14) version of
AV and Next, we appropriately scaled down AV

(14×14) and consider the cells spanning the bound-
ing box as relevant. To evaluate grounding, we
measure the retrieval performance of the relevant

cells in the sorted ÂV through the widely used Nor-
malized Discounted Cumulative Gain (NDCG)2.
It is a measure of how highly the relevant cells
were ranked in the sorted ÂV , with a logarithmic
weighting scheme to higher ranks, thus higher is
better. For the textual grounding, we perform a
similar computation between ÂT and AT and report
NDCG.

Observations. The NDCG values to evalute both
textual and visual groundings for CorefNMN are
shown in Fig. 13. An important takeaway being
that the model is able to accurately ground the ref-
erences in the question (Fig. 13a) consistently for
several question types, as reflected in an higher av-
erage NDCG. On the other hand, the visual ground-
ing in Fig. 13b is inferior compared to the ground
truth annotations with a mean of around 0.3 and a
high variance. This trend remains the same across
all the question types. A possible hypothesis is that
while the model is able to identify the references

2https://en.wikipedia.org/wiki/Discounted_
cumulative_gain

https://en.wikipedia.org/wiki/Discounted_cumulative_gain
https://en.wikipedia.org/wiki/Discounted_cumulative_gain
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in text, it is unable to resolve and ground the ref-
erent accurately in the image–an area of potential
improvement.

E Implementation details

Dataset generation was done entirely in Python,
without any significant additional package depen-
dencies. To evaluate the models from Das et al.
(2017a), we use their open source implementation3

based on Lua Torch4. For the neural module ar-
chitectures (Hu et al., 2017; Kottur et al., 2018),

3https://github.com/batra-mlp-lab/visdial
4http://torch.ch/
5https://github.com/ronghanghu/n2nmn
6https://github.com/facebookresearch/corefnmn
7https://github.com/satwikkottur/clevr-dialog

we use the authors’ Python-based, publicly avail-
able implementations—NMN5 and CorefNMN6.
Questions are encoded by first learning a 128-
dimensional embedding for the words, which are
then fed into a single layer LSTM of hidden size
128. We use a pretrained convolution neural net-
work, ResNet-101 (He et al., 2016), to extract fea-
tures for the images. Adam (Kingma and Ba, 2014)
steps with a learning rate of 0.0001 are employed
to maximize the loglikelihood of the ground truth
answer, while training. A small portion (500 im-
ages) from the training set is set aside to pick the
best performing model via early stopping. Our
code and dataset are publicly available7.

https://github.com/batra-mlp-lab/visdial
http://torch.ch/
https://github.com/ronghanghu/n2nmn
https://github.com/facebookresearch/corefnmn
https://github.com/satwikkottur/clevr-dialog

