
Proceedings of NAACL-HLT 2018: Demonstrations, pages 36–40
New Orleans, Louisiana, June 2 - 4, 2018. c©2018 Association for Computational Linguistics

DebugSL: An Interactive Tool for Debugging Sentiment Lexicons

Andrew T. Schneider, John N. Male, Saroja Bhogadhi, Eduard C. Dragut
Temple University, Philadelphia, PA

Computer and Information Sciences Department
atschneider, john.male, tug63697, edragut@temple.edu

Abstract

We introduce DebugSL, a visual (Web) de-
bugging tool for sentiment lexicons (SLs). Its
core component implements our algorithms
for the automatic detection of polarity incon-
sistencies in SLs. An inconsistency is a set of
words and/or word-senses whose polarity as-
signments cannot all be simultaneously satis-
fied. DebugSL finds inconsistencies of small
sizes in SLs and has a rich user interface which
helps users in the correction process.

1 Introduction

The problem of Sentiment Analysis (SA) is that
of identifying the polarity (positive, negative, neu-
tral) of the speaker towards the topic of a given
piece of text. SA techniques are facilitated by Sen-
timent Lexicons (SLs), which are lists of words
or word-senses tagged with their a priori polar-
ity probability values. A tag may be a single
value, e.g., positive, or it may be a distribution.The
large number of SLs and methods to generate them
renders errors and disagreements inevitable (Liu,
2015; Feldman, 2013). Numerous works raise
the issue of polarity disagreements between SLs
and its negative impact on SA tasks (Potts, 2011;
Emerson and Declerck, 2014; Liu, 2015). Schnei-
der and Dragut (2015) gives examples of SLs that
disagree on up to 78% of their annotations and
shows that the accuracy of an SA task can improve
by 8.5% by correcting a modest number of incon-
sistencies in an SL.

Dragut et al. (2012) introduces the Polarity
Consistency Problem (PCP) which provides a
framework for identifying inconsistent polarity
annotations in SLs based on the interaction be-
tween words and their underlying shared senses
(synsets). Dragut et al. (2015); Dragut and Fell-
baum (2014); Schneider and Dragut (2015) further
developed the theoretical basis of the PCP.

In this work we present DebugSL, an SL con-
sistency checker and debugger system that imple-
ments the methods developed in those works for
solving the PCP, in a user friendly environment.
Given an SL as input, DebugSL automatically de-
tects entries with potentially incorrect polarity tags
and displays these entries in a bipartite graph to
facilitate correction efforts. DebugSL interfaces
with external sources, such as Dictionary.com, to
assist in the debugging process.

2 Background

We give a brief overview of the PCP and our
methods to solve it in this section. The inter-
ested reader is directed to Dragut et al. (2012,
2015); Dragut and Fellbaum (2014); Schneider
and Dragut (2015) for full details.

2.1 Polarity Probability
Every word and synset is taken to have an under-
lying discrete probability distribution, called a po-
larity distribution, carrying the a priori probabil-
ity it is used with a positive, negative, or neutral
sense, P+, P− and P0, respectively, with the re-
quirements that P+, P−, P0 ≥ 0 and

∑
p Pp =

1. For instance, the synset “worthy of reliance
or trust” of the adjective reliable has P+ =
.375, P− = .0 and P0 = .625 in the SL Senti-
WordNet (Baccianella et al., 2010). The polar-
ity distribution of a word is a weighted sum over
the polarity distributions of its senses. For word
w: Pp(w) =

∑
s∈S(w) f(w, s) · Pp(s), where

Pp(s) is the polarity value of synset s with polar-
ity p ∈ {+,−, 0}, S(w) is the set of all synsets of
w, and f(w, s) denotes the weight between word
w and sense s. The weights may be the word–
synset usage frequencies; they may also be drawn
from uniform, Zipfian, or geometric distributions.
In all cases the weights are normalized so that∑

s∈S(w) f(w, s) = 1 for all w.

36



2.2 Word Polarity Value
Word SLs often only give a discrete annotation tag
for a word, one of the values: positive(+), nega-
tive(-), or neutral(0). We call this a polarity value.
We determine polarity value for a word as follows:

polarity(w) =





+ if P+ > P− + P0,
− if P− > P+ + P0,
0 otherwise

Schneider and Dragut (2015) discusses alterna-
tives for these equations.

2.3 Polarity Consistency
In this context, the PCP amounts to the following
question:

Given a set of words and polarity tags from an
SL, does there exist an assignment of polarities to
the word senses such that all of the word polarity
values agree with the SL tags?

If the answer is yes we say the SL in question
is consistent. If the answer is no we say the SL is
inconsistent.

Figure 1 shows a network of 4 words with their
annotation tags from (Opinion Finder) OF (Wil-
son et al., 2005) and their related synsets which
comprise a connected component. w3 : pertinac-
ity and w4 : tenacity are tagged − and +, respec-
tively. Since both words share only one synset, s3,
there is no polarity distribution for s3 which can
simultaneously satisfy the polarity value demands
of both w3 and w4. Hence this component is in-
consistent.

2.4 Solving the PCP via Linear Programming
Using the above definitions, the conversion to an
LP problem follows a direct procedure. We re-
fer the interested reader to Schneider and Dragut
(2015) for the details.
DebugSL supports both discrete and continu-

ous polarity distributions of the synsets. In the
discrete case, the synset polarity distributions are
restricted to the set {0,1}, i.e., exactly one of P+,
P−, or P0 is 1 and the other two are 0, for each
synset; this corresponds to an integer LP problem.
For the continuous case, each of P+, P−, or P0

is in the range [0, 1], which corresponds to a gen-
eral LP problem over real numbers. In the discrete
case PCP is NP-complete, while for the contin-
uous case the problem is solvable in polynomial
time (Dragut et al., 2012; Schneider and Dragut,
2015).

perseverance
w1 : +

persistence
w2 : 0

pertinacity
w3 : −

tenacity
w4 : +

s3 : “persistent
determination”

s2 : “the property
of a continuous
period of time”

s1 : “the act
of persisting or

persevering”

0.5 0.29
1 10.5

0.7
0.01

Figure 1: A network of 4 words and 3 synsets.
Edges represent word–synset relations, weighted
by frequency.

3 Supporting SL Debugging

A key capability of DebugSL is that of isolat-
ing a (small) subset of words/synsets that is po-
larity inconsistent, but becomes consistent if one
element is removed; we call this an Irreducible
Polarity Inconsistent Subset (IPIS). Fixing an SL
via IPIS isolation proceeds iteratively: (1) isolate
an IPIS, (2) determine a repair for this IPIS, (3)
if the model is still infeasible, return to step 1.
DebugSL can deterministically identify an IPIS,
but it cannot deterministically decide which incon-
sistent words and/or senses to adjust as this is sim-
ply not an objective decision. Much like a soft-
ware debugger, which can identify a known pro-
gramming error, say the use of an undefined vari-
able,but cannot assign a value to the variable, our
debugger can identify inconsistent components,
but it does not decide which elements to adjust.
In Figure 1, minimally one of pertinacity(-)
and tenacity(+) must be adjusted, but the deci-
sion as to which requires user feedback.

The example of Figure 1 belies the complexity
of the PCP. DebugSL employs a divide and con-
quer approach, dividing an instance of PCP into
the connected components of the bipartite word–
synset graph, then solving for each component
separately. Running DebugSL on OF generates
1178 such components for adjectives alone; the
largest component has 914 unique words and 1880
unique synsets. Manually checking such SLs is
unrealistic.

4 System Overview

DebugSL follows a four-step procedure to iden-
tify and reduce lexicon inconsistency. (1) The user
uploads a formatted SL to the DebugSL system.
(2) A server-side program uses the lexical database
WordNet(WN) (Fellbaum, 1998) to form the un-
derlying word–synset graph of the SL and checks
for inconsistencies. (3) Inconsistent components
are returned to the client and they are displayed

37



Polarity Consistency 
Checking

Display 
Graphically

Detect
Causes of 

Inconsistency 

Adjust Polarities and 
Indicate Missing 

Senses

OF

AL
GI

Input Sentiment 
Dictionaries

Suggestions 
to WordNet

Figure 2: DebugSL process flow

graphically for inspection. (4) The user dynami-
cally interacts with the components, such as look-
ing up information on the words/synsets and ad-
justing their polarities. The user can repeat the
process as desired.

1. Input. The user begins by uploading an SL
to DebugSL and specifying various interface op-
tions, such as the part of speech and the version
of WN to use. After the lexicon has been success-
fully uploaded, the user can download the (modi-
fied) lexicon, or save it in the system.

2. Lexicon Inconsistency Checking. A server-
side Java program builds the connected compo-
nents of word–synset linkage. DebugSL checks
the consistency of each connected component. In-
consistent components are returned to the client.

3. Component Display. A JavaScript pro-
cess receives the inconsistent components from
the server and formats them to be understood by
the graphing library SigmaJS which displays the
inconsistent components to the user.

4. Interactive Viewing and User Analysis.
The interactive viewing is essential to our tool be-
cause it allows a user to focus on a small set of
inconsistent words or synsets, make adjustments,
and re-run the program to see the effects.

5 Software

DebugSL is developed using web technologies.
Client side work is completed using HTML 5,
CSS, and JavaScript. The graphs are structured
using the open source JavaScript library SigmaJS.
The client-side program is programmed in Java
and is called through a Java Servlet. For linear pro-
gramming DebugSL employs the GUROBI LP
solver (www.gurobi.com). Apache Tomcat is
used as the local server.

5.1 Interactive Features

Customizable Polarity Display. DebugSL dis-
plays the word polarities from the uploaded SL on
the word–synset graph. By default, the polarities
are shown by node color: green, red, and grey
for positive, negative, and neutral, respectively.
These color choices are customizable. The user
can switch to display polarities by symbols: +, −,
and 0, instead, or use both symbols and colors.

Component and Word Selection. Inconsistent
components are listed on the left represented by
the first word of each component. An ellipsis in-
dicates the presence of additional words. When a
component is selected, its words are expanded into
a sublist (Figure 3a on the left).

All Viewing and Progressive Viewing. Two
modes of viewing the graph are available. In All
Viewing mode all checked words and synsets are
visible. Clicking on a word or synset hides any
edges not associated with that word or synset.

Progressive Viewing mode allows the user to
build the desired connected graph by progressively
adding words. Clicking a word node hides other
words and reveals its associated synsets. Clicking
a revealed synset hides all but the associated words
and edges. The user may use any selected word or
synset as a base for building the graph. Holding
shift allows words to be added progressively.

Dictionary Query. The user may look up
the senses of any word from an online dictio-
nary by right-clicking. This functionality is
currently implemented to interface with three
online dictionaries: Merriam-Webster (www.
merriam-webster.com), Dictionary.com
(www.dictionary.com), and the Free Dic-
tionary (www.thefreedictionary.com).
The dictionary appears to the right of the graph
window with the results of the word lookup.
Right-clicking a new word, automatically updates
the dictionary area.

5.2 Identifying Missing Senses in WordNet

In some cases, when an inconsistency is identified,
the user may decide that the polarity assignments
are correct and the error is in fact due to a missing
sense in WN. DebugSL allows the user to check
for potentially missing senses in WN. As an ex-
ample, the verbs “tantalize” and “taunt,” have pos-
itive and negative polarities, respectively, in Opin-
ion Finder (Wilson et al., 2005). They also have
a shared, unique sense in WN. By our formula-

38



(a) DebugSL debugging (b) DebugSL comparison

Figure 3: DebugSL screenshots

tion, this leads to a contradiction. In this case the
Free Dictionary gives a second sense of tantalize
that is missing from WN: “to be strongly attrac-
tive to. . . ”. This sense conveys a positive polar-
ity. Hence, tantalize conveys a positive sentiment
when used with this sense, and the inconsistency
is not due to a mislabeling in the SL.

When the user utilizes the online dictionary
lookup feature, the dictionary senses (definitions)
of the word are automatically matched to their
corresponding best matching synsets in the WN
graph, using the Levenshtein edit distance and the
Gale-Shapley stable marriage matching algorithm
(Gale and Shapley, 1962). If a relevant sense ap-
pears to be missing from WN, the user can log
a note of the missing synset with us and we can,
in turn, provide this information to the WN team
(Dragut and Fellbaum, 2014).

6 Demonstration

We present two main scenarios to demonstrate
the practical usefulness of DebugSL, screenshots
of which are shown in Figure 3. The source
code is available at https://github.com/
atschneid/DebugSL.

1. Iterative SL Debugging: This commences
with a user uploading an SL, L. The user must
turn a few knobs, e.g., select the part of speech,
weighting scheme, and WN version. DebugSL
displays the discovered sets of polarity inconsis-
tencies on the left side. Let I be an IPIS the user
has selected. This demo scenario has two paths:

Debugging. The user attempts to correct polar-
ity values assigned to the entries in I. Most IPISs
consist of up to 4 words; very few have more than
8. This aids in holding the user’s focus. The user
can use the bipartite view in DebugSL to analyze
the words and their sense and determine if some
entries in I have wrong polarity tags. Upon iden-

tifying a mislabeled entry in I, the user can edit its
polarity value (see Figure 3a), then repeat the con-
sistency check again on the revised SL, and ana-
lyze any new or remaining IPISs. At any time, the
user can save, revisit, and eventually download the
revised version of L.

Missing Senses. If all the entries in I have the
correct polarity tags, there remains the possibility
that WN has incomplete information. DebugSL
allows the user to compare the synsets of a word
w in I with those of w in several online dictionar-
ies (Figure 3a, see the popup menu in the center).
The user selects a dictionary to reference and the
senses of w from this dictionary will appear beside
the graph. DebugSL matches the WN synsets
with the dictionary senses (see Figure 3). The user
can suggest via DebugSL a sense present in Dic-
tionary.com for w that is missing in WN. We store
all the suggestions.

2. Comparing Two SLs: This second demo
scenario uncovers the disagreement between two
SLs: typically one word annotating, Sw, (e.g., OF)
and one synset annotating, Ss, (e.g., SentiWord-
Net). The formal procedure for this functional-
ity is described at length in Schneider and Dragut
(2015). The output is the collection of graphs
of components with inconsistencies. DebugSL
can also compare two word annotating SLs or two
sense annotating SLs wherein DebugSL checks
for agreement.

7 Conclusion

In this paper we have presented the system
DebugSL and described its usage. The project
source code is available at https://github.
com/atschneid/DebugSL and a screencast
can be viewed at https://cis.temple.
edu/˜edragut/DebugSL.webm. The sys-
tem will be deployed online for use by the public.

39



References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. SentiWordNet 3.0: An Enhanced Lex-
ical Resource for Sentiment Analysis and Opinion
Mining. In LREC.

Eduard Dragut and Christiane Fellbaum. 2014. The
role of adverbs in sentiment analysis. In Proceed-
ings of Frame Semantics in NLP: A Workshop in
Honor of Chuck Fillmore (1929-2014).

Eduard Dragut, Hong Wang, Prasad Sistla, Clement
Yu, and Weiyi Meng. 2015. Polarity consistency
checking for domain independent sentiment dictio-
naries. IEEE TKDE, 27(3):838–851.

Eduard C. Dragut, Hong Wang, Clement Yu, Prasad
Sistla, and Weiyi Meng. 2012. Polarity consistency
checking for sentiment dictionaries. In ACL.

Guy Emerson and Thierry Declerck. 2014. Sen-
timerge: Combining sentiment lexicons in a
bayesian framework. In workshop at COLING.

Ronen Feldman. 2013. Techniques and applications
for sentiment analysis. Commun. ACM, 56(4).

Christiane Fellbaum. 1998. WordNet: An On-Line Lex-
ical Database and Some of its Applications. MIT
Press.

David Gale and Lloyd S. Shapley. 1962. College ad-
missions and the stability of marriage. AMM, 69.

Bing Liu. 2015. Sentiment Analysis: Mining Opinions,
Sentiments, and Emotions. Cambridge University
Press.

Christopher Potts. 2011. Sentiment symposium tuto-
rial: Lexicons.

Andrew T. Schneider and Eduard C. Dragut. 2015. To-
wards debugging sentiment lexicons. In ACL.

T. Wilson, J. Wiebe, and P. Hoffmann. 2005. Recog-
nizing contextual polarity in phrase-level sentiment
analysis. In HLT/EMNLP.

40


