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Abstract

Slot tagging, the task of detecting entities in
input user utterances, is a key component of
natural language understanding systems for
personal digital assistants. Since each new
domain requires a different set of slots, the
annotation costs for labeling data for train-
ing slot tagging models increases rapidly as
the number of domains grow. To tackle this,
we describe Bag of Experts (BoE) architec-
tures for model reuse for both LSTM and CRF
based models. Extensive experimentation over
a dataset of 10 domains drawn from data rel-
evant to our commercial personal digital as-
sistant shows that our BoE models outperform
the baseline models with a statistically signif-
icant average margin of 5.06% in absolute F1-
score when training with 2000 instances per
domain, and achieve an even higher improve-
ment of 12.16% when only 25% of the training
data is used.

1 Introduction

Natural language understanding (NLU) is a key
component of dialog systems for commercial per-
sonal digital assistants (PDAs) such as Amazon
Alexa, Google Home, Microsoft Cortana and Ap-
ple Siri. The task of the NLU component is to map
input user utterances into a semantic frame con-
sisting of domain, intent and slots (Kurata et al.,
2016). The semantic frame is used by the dialog
manager for state tracking and action selection.

Slot tagging can be formulated as a sequence
classification task where each input word in the
user utterance must be classified as belonging
to one of the slot types in a predefined schema
(Sarikaya et al., 2016). In a standard NLU archi-
tecture, each new domain defines a new domain-
specific schema for its slots. Figure 1 shows ex-
amples of annotated queries from three different
domains relevant to a typical commercial digital

assistant. Since the schemas for different domains
can vary, the usual strategy is to train a separate
slot tagging model for each new domain. How-
ever, the number of domains increases rapidly as
the PDAs are required to support new scenarios
and training a separate slot tagging model for each
new domain becomes prohibitively expensive in
terms of annotation costs.

Travel
What are the [best]rating [hotels]service in
[Austin]location
I need a room from [March 23rd]start date to
[April 7th]end date

Flight Status
Check flight heading for [New Y ork]location
on [October 16]start date at [3 pm]start time

What time will [Lufthansa]airline flight
[182]flight from [Denver]location land?

Real Estate
See [houses]property type [for rent]listing type

in [Houston]location
Find out if [123 main street]location is on the
market

Figure 1: Example utterances with the output slot
tags for three different domains.

Even though different domains have different
slot tagging schemas, some classes of slots ap-
pear across a number of domains, as suggested by
the examples in Figure 1. Both travel and flight
status have date and time related slots, and all
three domains have the location slot. Reusing an-
notated data for these common slots would allow
us to train models with better accuracy using less
data. However, since both the input distribution
and the label distribution are different across do-
mains, we must use domain adaptation methods to
train on the joint data (Daume, 2007; Kim et al.,
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Figure 2: Examples for two different strategies for reusing annotated data from reusable slots. Figure
(a) shows data-driven adaptation, while Figure (b) shows model-driven adaptation. Solid lines show the
flow at training time, while the dashed lines show the flow at run-time for the deployed travel model. The
model output at run-time is a slot-tagged user utterance.

2016c; Blitzer et al., 2006).
In this data-driven adaptation approach, we

build a repository of annotated data containing
date, time, location and other reusable slots. We
then combine relevant data from the reusable
repository with the domain specific data during
model training. Figure 2(a) shows an example of
this architecture where reusable date/time data is
used for training travel domain.

A drawback of the data-driven adaptation ap-
proach is that as the repository of data for reusable
slots grows, the training time for new domains in-
creases. The training data for a new domain might
be in the hundreds of samples, while the training
data for the reusable slots might contain hundreds
of thousands of samples. This increase in train-
ing time makes iterative refinement difficult in the
initial design of new domains, which is when the
ability to deploy new models quickly is crucial.

An alternative strategy is to use model-driven
adaptation approaches (Kim et al., 2017b) as
shown in Figure 2(b). Here, instead of retraining
on the data for the reusable slots, we train “ex-
pert” models for these slots, and use the output of
these models directly when training new domains.
Using model-driven adaptation ensures that model
training time is proportional to the data size of new

target domains, as opposed to the large data size
for reusable slots, allowing for faster training.

In this paper, we present a model-driven adap-
tation approach for slot tagging called Bag of
Experts (BoE). In Section 2, we first describe
how this approach can be applied to two popu-
lar machine learning methods used for slot tag-
ging: Long Short Term Memory (LSTM) and
Conditional Random Fields (CRF) models. We
then describe a dataset of 10 target domains and
2 reusable domains that we’ve collected for use in
a commercial digital assistant, in Section 3. Using
this data, we conduct experiments comparing the
BoE models with their non-expert counterparts,
and show that BoE models can lead to significant
F1-score improvements. The experimental setup
is described in Section 4.1 and the results are dis-
cussed in Section 4.3. This is followed by a survey
of related work in Section 5 and the conclusion in
Section 6.

2 Approaches

We first describe our LSTM and CRF models
for slot tagging, followed by their BoE variants:
LSTM-BoE and CRF-BoE. Tensorflow (Abadi
et al., 2015) was used for implementing the LSTM
models, while a custom C++ implementation was
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Domain #Train #Test #Dev #Slots Example Utterance
Fashion 5273 701 696 8 Show me the [turtleneck]item I wore [last Tuesday]date

Flight Stat. 9481 553 492 9 Is flight [283]flight number at [Kennedy airport]location on time

[today]start date?

Deals 25598 1271 2036 5 Find [mexican]category deals in [seattle]location

Purchase 5033 397 402 18 Buy the [shirt]item I was looking at [yesterday]date
Real Estate 5633 525 498 7 Show me the [rental]property type at [13 Holt Street]location

Shopping 19725 1106 892 16 Find the [Nov 2017]date [iphone]brand name model

Soc. Net. 38450 432 441 21 Display [Mike]username’s [tweets]media type from

[yesterday]date

Sports 20341 1048 1048 21 Display games [this week]date for [texas tech]team name

Transport. 162951 19706 19724 17 [Driving]transport type directions to [union station]location

Travel 49300 2027 1990 27 How much for [2]number rooms rooms at the [Hilton]place name in

[SF ]location?

Table 1: List of target domains used for our experiments, along with some statistics and example ut-
terances. The test and development data sets are sampled at 10% of the total annotated data. “Flight
Stat.” stands for “Flight Status”, “Soc. Net.” stands for “Social Network”, and “Transport.” stands for
“Transportation”.

used for the CRF models.

2.1 LSTM

For our LSTM model, we follow a standard bidi-
rectional LSTM architecture (Huang et al., 2015;
Ma and Hovy, 2016; Lample et al., 2016). Let
w1...wn denote the input word sequence. For ev-
ery input word wi, let fC

i and bCi be the out-
puts of the forward and backward character level
LSTMs respectively, and let mi be the word em-
bedding (initialized either randomly or with pre-
trained embeddings). The input to the word level
LSTMs, gi, is the concatenation of these three vec-
tors:

gi = [fC
i ; bCi ;mi]

where both fC
i , bCi ∈ R25 and mi has the same

dimensions as the pre-trained embeddings. The
forward and backward word level LSTMs take gi
as input and produce fW

i and bWi , which are then
concatenated to produce hi:

hi = [fW
i , bWi ]

where fW
i , bWi ∈ R100, making hi ∈ R200. hi

is then input to a dense feed forward layer with a
softmax activation to predict the label probabilities
for each word. We train using stochastic gradient
descent with Adam (Kingma and Ba, 2015). To
avoid overfitting, we also use dropout on top of mi

and hi layers, with a default dropout keep proba-
bility of 0.8. We experiment with some variations

of this default LSTM architecture, the results are
described in Section 4.2.

2.2 LSTM-BoE

We now describe the LSTM Bag of Experts
(LSTM-BoE) architecture. Let e1...ek ∈ E be
the set of reusable expert domains. For each ex-
pert ej , we train a separate LSTM with the archi-
tecture described in Section 2.1. Let heji be the
bi-directional word LSTM output for expert ej on
word wi.

When training on a target domain, for each
word wi, we first compute the character level
LSTMs fC

i , bCi similarly to Section 2.1. We then
compute a BoE representation for this word as:

hE =
∑

ei∈E
h
ej
i

The input to the word level LSTM for word wi

in the target domain is now a concatenation of the
character level LSTM outputs (fC

i , bCi ), the word
embedding mi, and hE :

gi = [fC
i ; bCi ;mi;h

E ]

gi is then input to the word level LSTM for the
target domain to produce hi in the same way as
Section 2.1. This architecture is similar to the one
presented in (Kim et al., 2017b), with the excep-
tion that in their architecture, hE is concatenated
with the word level LSTM output hi for the target
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domain. In our architecture, we add hE before the
word-level LSTM in order to capture long-range
dependencies of label prediction for a word on ex-
pert predictions for context words.

2.3 CRF
Conditional Random Fields (CRF) are a popular
family of models that have been proven to work
well in a variety of sequence tagging NLP applica-
tions (Lafferty et al., 2001). For our experiments,
we use a standard linear-chain CRF architecture
with n-gram and context features.

In particular, for each token, we use unigram,
bigram and trigram features, along with previous
and next unigrams, bigrams, and trigrams for con-
text length of up to 3 words. We also use a skip
bigram feature created by concatenating the cur-
rent unigram and skip-one unigram.

We train our CRF using stochastic gradient de-
scent with L1 regularization to prevent overfitting.
The L1 coefficient was set to 0.1 and we use a
learning rate of 0.1 with exponential decay for
learning rate scheduling (Tsuruoka et al., 2009).

2.4 CRF-BoE
Similar to the LSTM-BoE model, we first train a
CRF model cj for each of the reusable expert do-
mains ej ∈ E. When training on a target domain,
for every query word wi, a one-hot label vector lji
is emitted by each expert CRF model cj .

The length of the label vector lji is the number
of labels in the expert domain, with the value cor-
responding to the label predicted by cj for word wi

set to 1, and values for all other labels set to 0. For
each word, the label vectors for all the expert CRF
models are concatenated and provided as features
for the target domain CRF training, along with the
n-gram features.

3 Data

3.1 Target Domains
We built a dataset of 10 target domains for exper-
imentation. Table 1 shows the list of domains as
well as some statistics and example utterances. We
treated these as new domains - that is, we do not
have real interaction data with users for these do-
mains. The annotated data is therefore prepared in
two steps.

First, utterances are obtained using crowdsourc-
ing, where workers are provided with prompts for
different intents of a domain and asked to generate

Variation Average Diff P-val
Embeddings
Glove (100) +1.61± 0.71∗ 0.048
Glove (200) +2.01± 0.64∗ 0.012
Glove (300) +1.92± 0.94 0.073
PDA Logs (500) +2.60± 0.61∗ 0.002
Output Layer
CRF +0.67± 0.30 0.054
Dropout (default keep probability 0.8)
keep prob. = 0.5 −2.53± 0.62∗ 0.003
keep prob. = 0.6 −1.60± 0.31∗ 0.001
keep prob. = 0.7 −0.29± 0.28 0.330
keep prob. = 0.9 +0.36± 0.25 0.176
keep prob. = 1.0 +0.63± 0.30 0.065

Table 2: Average absolute F1-score improvement
on the dev data for different LSTM variations. ∗
indicates the improvement is statistically signifi-
cant with p-value < 0.05.

natural language utterances corresponding to those
intents. Next, the generated utterances are anno-
tated by a different set of crowd workers, using
the slot schema for each domain. Inter-annotator
agreement as well as manual inspection are used
to ensure data quality in both stages.

The amount of data collected varies for each do-
main based on its complexity and business prior-
ity. Dataset size statistics for the data used in our
experiments are presented in section 4.1. Test and
dev data are sampled at 10% of the total annotated
data, with stratified sampling used in order to pre-
serve the distribution of the intents.

3.2 Reusable Domains
We experiment with two domains containing
reusable slots: timex and location. The timex do-
main consists of utterances containing the slots
date, time and duration. The location do-
main consists of utterances containing location,
location type and place name slots. Both of
these types of slots appear in more than 20 of a set
of 40 domains developed for use in our commer-
cial personal assistant, making them ideal candi-
dates for reuse.1

1Several other candidate reusable domains exist, includ-
ing: the name domain containing the slot contact name;
the number domain containing the slots rating, quantity
and price; and the reference domain containing the slots
ordinal (whose values include “first”, “second” or “third”)
and order ref (with values such as “before” or “after”). All
of these slots appear in more than 25% of the available do-
mains.
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Data for these domains was sampled from the
input utterances from our commercial digital as-
sistant. Each reusable domain contains about a
million utterances. There is no overlap between
utterances in the target domains used for our ex-
periments and utterances in the reusable domains.
The data for the reusable domains is sampled from
other domains available to the digital assistant, not
including our target domains.

Grouping the reusable slots into domains in this
way provides additional opportunities for a com-
mercial system: the trained reusable domain mod-
els can be used in other related products which
need to identify time and location related entities.
Models trained on the timex and location data have
F1-scores of 96% and 89% respectively on test
data from their respective domains.

4 Experiments

4.1 Experimental Setup

We want to verify if BoE models can improve
slot tagging performance by using the information
from reusable domains. To simulate the low data
scenario for the initial model training, we create
three training datasets by sampling 2000, 1000 and
500 training examples from every domain. We
use stratified sampling to maintain the input dis-
tribution of the intents across the three training
datasets.

For each training dataset, we train the four mod-
els as described in Section 2 and compute the pre-
cision, recall and F1-score on the test data. Fixed
seeds are used when training all models to make
the results reproducible. Table 3 summarizes these
results, with only F1-scores reported to save space.
We describe these results in Section 4.3.

4.2 LSTM architecture variants

Using the dev data set for the 10 domains, we
experimented with using different pretrained em-
beddings, dropout probabilities and a CRF output
layer in our LSTM architecture. The results are
summarized in Table 2. For each of the 10 do-
mains, we trained using each variant with 10 dif-
ferent seeds, and computed the mean F1-score for
each domain. For comparing two variants, we
computed the mean difference in the F1-scores
over the 10 domains and its p-value.

We tried word level Glove embeddings of
100, 200 and 300 dimensions as well as 500-
dimensional word embeddings trained over the ut-

terances from our commercial PDA logs. Both
100 and 200 dimensional Glove embeddings led
to statistically significant improvements, but the
word embeddings trained over our logs led to the
biggest improvement. We also tried using a CRF
output layer (Lample et al., 2016) and different
values of dropout keep probability, but none of
them gave statistically significant improvements
over the default model. Based on this, we used
PDA trained 500-dimensional word embeddings
for our final experiments on test data.

4.3 Results and Discussion

Table 3(a) shows the F1-scores obtained by the
different methods for the training data set of 2000
training instances for each of the 10 domains.
LSTM based models in general perform better
than the CRF based models. The LSTM mod-
els have a statistically significant average improve-
ment of 3.14 absolute F1-score over the CRF mod-
els. The better performance of LSTM over CRF
can be explained by the LSTM being able to use
information over longer contexts to make predic-
tions, while the CRF model is limited to at most
the previous and next 3 words.

The results in Table 3(a) also show that both
the CRF-BoE and LSTM-BoE outperform the ba-
sic CRF and LSTM models. LSTM-BoE has a
statistically significant mean improvement of 1.92
points over LSTM. CRF-BoE also shows an av-
erage improvement of 2.19 points over the CRF
model, but the results are not statistically signif-
icant. Looking at results for individual domains,
the highest improvement for BoE models are seen
for transportation and travel. This can be ex-
plained by these domains having a high frequency
of timex and location slots, as shown in Table 4.

The shopping model shows a regression for
BoE models, and a reason could be the low fre-
quency of expert slots (Table 4). However, low
frequency of expert slots does not always mean
that BoE methods can’t help, as shown by the
improvement in the purchase domain. Finally,
for sports, social network and deals domains,
the LSTM-BoE improves over LSTM, while CRF-
BoE does not improve over CRF. Our hypothesis
is that given the query patterns for these domains,
the dense vector output used by LSTM-BoE is able
to transfer some information, while the categorical
label output used by CRF-BoE is not.

Table 3(b) shows the results with 500 and 1000
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Train size 2000
Domain CRF LSTM CRF-BoE LSTM-BoE
Fashion 79.54 82.18 80.87 83.21
Purchase 66.24 77.56 70.09 79.72
Flight Status 87.60 89.86 89.30 91.51
Deals 83.74 85.69 83.59 87.31
Travel 66.39 71.02 72.81 75.52
Transportation 79.18 80.93 89.65 85.95
Sports 75.70 77.82 75.08 79.43
Social Network 81.71 81.02 81.65 83.74
Shopping 77.16 81.67 76.07 80.65
Real Estate 96.16 97.07 96.18 97.01
Average improvement +3.14∗ +2.19 +5.06∗

(a)

Train size 500 1000
Domain CRF LSTM CRF-BoE LSTM-BoE CRF LSTM CRF-BoE LSTM-BoE
Fashion 69.05 75.31 71.52 76.85 73.81 79.63 75.49 80.07
Purchase 53.12 63.58 54.52 70.66 61.04 69.39 62.23 64.46
Flight Status 78.03 84.33 82.59 88.29 84.14 88.12 86.17 89.85
Deals 69.82 78.31 72.66 81.11 78.60 81.58 78.01 82.95
Travel 47.66 58.71 64.28 70.00 57.37 65.77 67.53 73.91
Transportation 70.37 75.02 87.12 85.59 75.03 76.53 88.21 86.68
Sports 55.93 65.71 56.88 68.94 66.92 71.78 66.52 71.96
Social Network 69.73 78.08 66.59 79.91 78.45 80.31 75.78 79.27
Shopping 59.26 66.55 57.11 71.10 70.01 76.32 69.26 77.04
Real Estate 91.04 93.66 92.59 93.15 93.76 95.07 94.29 95.34
Average improvement +7.52∗ +4.19 +12.16∗ +4.54∗ +2.44 +6.24∗

(b)

Table 3: F1-scores obtained by each of the four models for the 10 domains, with the highest score in each
row marked as bold. Table (a) reports the results for 2000 training instances, and Table (b) reports the
results for 500 and 1000 training instances. The average improvement is computed over the CRF model,
with the ones marked ∗ being statistically significant with p-value < 0.05. The average improvement
of LSTM-BoE over LSTM is +1.92∗, +1.70 and +4.63∗ for 2000, 1000, and 500 training instances
respectively.

training data instances. Note that the improve-
ments are even higher for the experiments with
smaller training data. In particular, LSTM-BoE
shows an improvement of 4.63 in absolute F1-
score over LSTM when training with 500 in-
stances. Thus, as we reduce the amount of train-
ing data in the target domain, the performance im-
provement from BoE models is even higher.

As an example, in the purchase domain,
the LSTM-BoE model achieves an F1-score of
70.66% with only 500 training instances, while
even with 2000 training instances the CRF model
achieves an F1-score of only 66.24%. Thus the
LSTM-BoE model achieves better F1-score with
only one-fourth the training data. Similarly, for
flight status, travel, and transportation domains,
the LSTM-BoE model gets better performance
with 500 training instances, compared to a CRF
model with 2000 training instances. The LSTM-
BoE architecture, therefore, allows us to reuse the
domain experts to produce better performing mod-

els with much lower data annotation costs. As the
target domain training data increases, the contri-
bution due to domain experts goes down, but more
experimentation is needed to establish the thresh-
old at which it is no longer useful to add experts.

5 Related Work

Early methods for slot-tagging used rule-based ap-
proaches (Ward and Issar, 1994). Much of the later
work on supervised learning focused on CRFs,
for example (Sarikaya et al., 2016), or neural net-
works (Deoras and Sarikaya, 2013; Yao et al.,
2013; Liu et al., 2015; Celikyilmaz and Hakkani-
Tur, 2015). Unsupervised (or weakly-supervised)
methods also were used for NLU tasks, primarily
leveraging search query click logs (Hakkani-Tur
et al., 2011a,b, 2013) and knowledge graphs (Tur
et al., 2012; Heck and Hakkani-Tur, 2012; Heck
et al., 2013); hybrid methods, for example as de-
scribed in (Kim et al., 2015a; Celikyilmaz et al.,
2015; Chen et al., 2016), also exist. Our approach
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Domain %Timex %Location
Fashion 16.08 0.00
Purchase 3.83 0.00
Flight Status 23.42 33.01
Deals 0.00 21.07
Travel 4.79 32.91
Transportation 2.08 85.87
Sports 23.30 3.29
Social Network 5.63 16.83
Shopping 1.84 0.00
Real Estate 0.00 85.74

Table 4: Percentange of queries with timex and lo-
cation slots in each of our target domains.

in this paper is a purely supervised one.
Transfer learning is a vast area of research, with

too many publications for an exhaustive list. We
discuss some of the recent work most relevant to
our methods. In (Kim et al., 2015b), the slot la-
bels from across different domains are mapped
into a shared space using Canonical Correlation
Analysis (CCA) and automatically-induced em-
beddings over the label space. These label repre-
sentations allow mapping of label types between
different domains, which makes it possible to ap-
ply standard data-driven domain adaptation ap-
proaches (Daume, 2007). They also introduce a
model-driven adaptation technique based on train-
ing a hidden unit CRF (HUCRF) on the source do-
main, which is then used to initialize the training
for the target domain. The limitation of this ap-
proach is that only one source domain can be used,
while multiple experts can be used in the proposed
BoE approach.

(Kim et al., 2016a) build a single, universal slot
tagging model, and constrain the decoding process
to subsets of slots for various domains; this pro-
cess assumes that a mapping of slot tags in the
new domain to the ones in the universal slot model
has already been generated. A related work by
(Kim et al., 2016b) directly predicts the required
schema prior to performing the constrained decod-
ing. These approaches are attractive because only
one universal model needs to be trained, but do
not work in cases when a new domain contains a
mixture of new and existing slots. Our approach
allows transfer of partial knowledge in such cases.

(Kim et al., 2016c) uses a neural version of the
approach first described in (Daume, 2007), by us-
ing existing annotated data in a variety of domains

to adapt the slot tag models of new domains where
the tag space is partly shared. The drawback of
such data-driven domain adaptation is the increase
in training time as more experts are added.

An expert-based adaptation, similar to the tech-
niques applied in this paper, was first described in
(Kim et al., 2017b). (Jaech et al., 2016) use multi-
task learning, training a bidirectional LSTM with
character-level embeddings, trained jointly to pro-
duce slot tags for a number of travel-related do-
mains. Finally, (Kim et al., 2017a) frame the prob-
lem of temporal shift in data of a single domain
(and the related problem of bootstrapping a new
domain with imperfectly-matched synthetic data)
as one of domain adaptation, applying adversarial
training approaches.

A number of researchers also investigated boot-
strapping NLU systems using zero-shot learning.
(Dauphin et al., 2014; Kumar et al., 2017) both in-
vestigated domain classification; most relevant to
us is the work by (Bapna et al., 2017), who studied
full semantic frame tagging using zero-shot learn-
ing, by projecting the tags into a shared embedding
space, similar to work done by (Kim et al., 2015b).

6 Conclusion

We experimented with Bag of Experts (BoE) ar-
chitectures for CRF and LSTM based slot tagging
models. Our experimental results over a set of
10 domains show that BoE architectures are able
to use the information from reusable expert mod-
els to perform significantly better than their non-
expert counterparts. In particular, the LSTM-BoE
model shows a statistically significant improve-
ment of 1.92% over the LSTM model on aver-
age when training with 2000 instances. When
training with 500 instances, the improvement of
LSTM-BoE model over LSTM is even higher at
4.63%. For multiple domains, an LSTM-BoE
model trained on only 500 instances is able to
outperform a baseline CRF model trained over 4
times the data. Thus, the BoE approach produces
high performing models for slot tagging at much
lower annotation costs.
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