
Proceedings of NAACL-HLT 2018, pages 8–15
New Orleans, Louisiana, June 1 - 6, 2018. c©2017 Association for Computational Linguistics

Neural Network based Extreme Classification and Similarity Models for
Product Matching

Kashif Shah, Selcuk Kopru, Jean-David Ruvini
eBay Research, Hamilton Avenue San Jose, CA 95125, USA
{skshah,skopru,jean-david.ruvini}@ebay.com

Abstract

Matching a seller listed item to an appropriate
product has become a fundamental and one of
the most significant step for e-commerce plat-
forms for product based experience. It has a
huge impact on making the search effective,
search engine optimization, providing prod-
uct reviews and product price estimation etc.
along with many other advantages for a bet-
ter user experience. As significant and vital it
has become, the challenge to tackle the com-
plexity has become huge with the exponen-
tial growth of individual and business sellers
trading millions of products everyday. We ex-
plored two approaches; classification based on
shallow neural network and similarity based
on deep siamese network. These models out-
perform the baseline by more than 5% in term
of accuracy and are capable of extremely effi-
cient training and inference.

1 Introduction

E-commerce marketplaces such as Amazon and
eBay provide platforms where millions of peo-
ple trade online every day. The growth of such
marketplaces has been exponential in recent years
with millions of active sellers and billions of live
items listed at any point in time, bringing new in-
teresting challenges.

On the buying side, while it provides buy-
ers with more options and flexibility, it renders
searching for a specific item and comparing items
difficult. On the selling side, it dilutes the visi-
bility of the sellers’ items both on the marketplace
and on external search engines such as Google and
Bing. Also, it requires the sellers to provide a lot
of details about the goods they are listing.

The product based experience is an enticing
search experience that helps fulfill both buyers and
sellers needs. The buyers can easily search, com-
pare and make a decision on the product they wish

to purchase while the sellers can speed up their
listing process by using product details and stock
photos from existing product catalog resulting in
a professional-looking listing, more appealing in
search results.

The process of automatically mapping items1 to
products become critical. Different sellers may
describe the same item in very different ways,
using very different terminologies. While some
business sellers provide rich, structured descrip-
tion of their listings, the vast majority only pro-
vide short and sometimes insufficient information.
The problem become even harder when informa-
tion provided is not specific enough to identify
the corresponding products. Lots of studies have
been focused on structuring the products inventory
by extracting and enriching attribute-value pairs
(Mauge et al., 2012; Ghani et al., 2006) from var-
ious sources, and feed them into a matching func-
tion. The direction towards learning automatic se-
mantic relationships on unstructured sequence of
e-commerce text has been of less focus.

Neural based methods have recently shown to
work well to capture the meanings and seman-
tic relationships among words in textual data. In
this paper, we aim at studying such approaches
for e-commerce domain. We explored two neu-
ral network architectures for our product match-
ing task; a simple shallow neural network model
based on the fastText (Joulin et al., 2016b; Bo-
janowski et al., 2016; Joulin et al., 2016a) library
and a deep siamese network model based on bidi-
rectional long short term memory (Neculoiu et al.,
2016; Mueller and Thyagarajan, 2016). We ap-
proach the problem in two ways, as a classifica-
tion task where we have access to item listings and

1An item is an offer from a seller for a specific good con-
taining seller specific information (description, condition, re-
turn, etc.). A product is the catalog (manufacturer) descrip-
tion of a good.

8

corresponding product ids, and as a similarity task
where we also have access to product informa-
tion. These approaches constitute different objec-
tive functions; classification aims at classifying an
input instance into the identity classes, while sim-
ilarity objective is to minimize the intra-class dis-
tance while maximizing the inter-class distance.

In the next section, we will discuss the chal-
lenges, section 3 contains the approaches and
models we explored, and section 4 discusses the
experiments and results. We will conclude after
briefly reviewing the related work in section 5.

2 Challenges

Product matching is a difficult task due to the
wider spectrum of products, many alike but differ-
ent products, often missing or wrong values, and
frequent variation in textual nature of products. In
the following sections, we will briefly cover the
challenges that make the task of product matching
hard.

2.1 Data Sparsity

While some business and professional sellers pro-
vide rich information of their item listings, a vast
majority of medium and small sellers provide
short, unstructured and sometimes incomplete de-
scriptions. This results in a lot of data sparsity due
to missing values that are important to identify the
products.

2.2 Product Duplicates

Data sparsity and erroneous information auto-
matically extracted from unstructured or semi-
structured sources may result into creation of the
same product twice or multiple times called du-
plicates. The product duplicates are not only one
of the biggest source of bad product experience,
but also makes the product matching harder as
multiple entities of the same product exists with
overlapping information. The duplicates can have
many fatal effects, including preventing machine
learning algorithms from discovering important
consistencies in product representations.

2.3 Single Source Products

There are many rare products such as antiques,
collectibles, books, sculptures, etc. that are of-
fered by only a particular single or business seller.
Such products are often referred as single source
products. In such cases, the description of the

product can not be cross-validated in the absence
of alternative sources. This causes a one-shot
learning problem, which consists of learning a
class from a single labeled example.

2.4 Product Bundles and Lots

Bundles are defined as multiple different products
being grouped together and sold as a single offer.
If the offer contains multiples of the same product
these offers are referred as a lot. They make data
ambiguous such as a number in product descrip-
tion could be a lot quantity or variation of product
edition. Such product offers exhibit another level
of complexity requiring special treatment or a sep-
arate model to identify lots and bundles.

2.5 Extreme Classification

Traditionally, multi-class classification solutions
have been scalable up-to few hundred classes. As
the number of classes grow, the time and space
complexity increase exponentially to the extent
that standard models do not scale up. For the task
of product matching, the number of products are
in millions and hence the methods that can scale
up to million classes are required.

2.6 Open Set Classification

The number of classes are usually pre-defined for
classification tasks and models are designed to
predict one of those pre-defined classes for a given
instance. For the task for product matching, new
products are created everyday and they become
part of inventory incrementing the amount of prod-
ucts daily. It either requires to re-train the models
frequently with newly created products with addi-
tional classes or to employ models capable of han-
dling unseen products.

3 Text Classification vs Similarity

The aim of text classification is to assign some
piece of text (source) to one or more predefined
classes or labels (targets). The piece of text could
be a document, news article, listing offers, email,
product review etc. Depending upon the task,
the target labels are usually topic, category, prod-
uct, sentiment id or name. Traditional classifi-
cation approaches are employed to learn feature
representation on the source and attempt to pre-
dict the target label. There are cases where in-
puts are text pairs along with their relevance score
such as question-answer, query-document, source-

9

translation pairs etc. Both input texts can be en-
coded with rich representations. For such cases
similarity based methods are natural architecture
to learn differentiation among them.

We research both classification and similar-
ity algorithms for product matching. Classifica-
tion based approach using shallow neural network
based on fastText library turns out to be very ef-
ficient with good performance but it requires to
re-train the models for newly created products
as mentioned in previous section. The similarity
based method does not have this bottle neck as it
is tailored towards open class set problem given a
sufficient amount of paired dataset. The similar-
ity based method also allows to use product side
data in more natural way to model our paired item-
product data.

3.1 Shallow Neural Network - fastText

Learning word representations has a long history
in natural language processing. These representa-
tions are typically learned from large corpora ei-
ther using count statistics or distributed semantic
representations. Recently, (Mikolov et al., 2013)
proposed simple log-bilinear models to learn con-
tinuous representations of words on very large cor-
pora efficiently using Continuous Bag Of Words
(CBOW) and Skip-gram models. Both of these
are shallow neural networks which map word(s)
to the target variable which is also a word(s). Both
of these methods learn weights which act as word
vector representations. The assumption of these
models is that semantically or grammatically re-
lated words are mapped to similar geometric lo-
cations in a high-dimensional continuous space.
The probability distribution is thus much smoother
and therefore the model has a better generalization
power on unseen events.

Recently proposed fastText (Joulin et al.,
2016b)2 library extended these models for super-
vised classification tasks. This architecture is sim-
ilar to the CBOW model of (Mikolov et al., 2013),
where the center word is replaced by a label. They
also incorporated bag-of-ngram as additional fea-
tures to capture some partial information about the
local word order. The n-grams features are ef-
ficiently implemented by using the hashing trick
(Goodman, 2001).

The output layer consists of a softmax function
that assigns a probability distribution to each of the

2https://github.com/facebookresearch/fastText

target label. The loss function aims at minimizing
the negative log-likelihood over the classes. Be-
cause full-softmax is not scalable for large number
of classes, fastText offers hierarchical-softmax as
an alternate approach. This implementation uses
huffman tree to reduce the complexity to logarith-
mic while incurring minor performance degrada-
tion. The hierarchical softmax function is the key
factor that makes the task scalable to our million
class dataset. For full details, we refer the reader
to the original paper (Joulin et al., 2016b).

For our product matching task, these models not
only offer the benefit of the rich distributed rep-
resentation of item listings but also allow to deal
with millions of classes while reducing the train-
ing time from days to minutes, and keeping good
performance in terms of accuracy.

3.2 Siamese Networks

Siamese networks are a special type of neural net-
work architecture having two identical structure
trained simultaneously with shared weights. In-
stead of a model learning to classify its inputs,
the neural network learns to differentiate between
two inputs. In our case, we are interested in find-
ing similarity between the item listings and cor-
responding products given pairs whose semantic
similarity has been labeled. Our siamese network
consists of two parallel neural networks, each tak-
ing one of the two inputs, listings or products in
our case, along with a binary score (1 for match
and 0 for mismatch).

Different kind of parallel structures has been
explored for various tasks including Convolu-
tional Neural Networks (CNN), Skip-thought vec-
tors, Tree-LSTM etc. Recurrent Neural Networks
(RNN) have shown promising performance on
textual sequence of data for various NLP tasks.
The Long Short Term Memory (LSTM) networks
proved to be superior to basic RNNs for learn-
ing long range dependencies through its use of
memory cell units that can store/access informa-
tion across lengthy input sequences. The Bidi-
rectional LSTM networks can leverage the knowl-
edge present on both sides of the current word to
encode the text and have shown good performance
on various NLP tasks like named entity recogni-
tion (Huang et al., 2015; Wang et al., 2015) and
text similarity (Neculoiu et al., 2016).

In this work, we studied BiLSTMs for our
siamese network architecture that is very similar

10

to (Mueller and Thyagarajan, 2016) in architec-
ture but we employed BiLSTM along with the
contrastive loss function (instead of Manhattan
LSTM) 3. The network consists of three hidden
layers and each layer consists of 50 hidden units.
The LSTM units of our bidirectional network con-
tain a memory state having an input, forget and
output gate with the logistic function on the gates
and the hyperbolic tangent (tanh) on the activa-
tions:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf)

ot = σ(Wxoxt +Whoht−1 + bo)

jt = tanh(Wxjxt +Whjht−1 + bj)

ct = ft ⊗ ct−1 + it ⊗ jt
ht = tanh(ct)⊗ ot

where σ is the logistic sigmoid function,
Whi,Whf ,Who,Whj are recurrent weight ma-
trices and Wxi,Wxf ,Wxo,Wxj are projection
matrices. b are the bias terms in equations.

The inputs are represented as a sequence of
words with a maximum length of 100 and (shorter
sequences are padded). The output of the com-
bined model at each time step is simply the con-
catenation of the outputs from the forward and
backward networks. The outputs of the last layer
are averaged over time and the output vectors are
fed to the contrastive loss function:

E =
1

2N

N∑

n=1

(y)D + (1− y)max (m− d, 0)

where D = ||an − bn||22 is euclidean distance
between the outputs an and bn of the two parallel
networks. In our case, y is either 1 or 0. If the
inputs are from the same class, then the value of
y is 1, otherwise y is 0. m > 0 denotes a margin
which acts as a boundary (with the radius m). The
motivation behind this loss function is that simi-
lar pairs tend to be as close as possible and dis-
similar pairs must be separated by a distance de-
fined by the margin. The network is optimized us-
ing Adam optimizer along with dropout to prevent
over-fitting.

4 Experiments and Results

We performed a set of experiments on an eBay
dataset. The data has been collected over the years

3we adapted an open source implementation for our task:
https://github.com/dhwajraj/deep-siamese-text-similarity

and contain millions of products and billions of
listings. We divided the data into meta-categories
and models are trained on these categories sepa-
rately. This partition into categories not only keep
the data size to a affordable level given the re-
sources but also allow us to train the models in
parallel for each category being independent.

In this paper, we only report the experiments
for three categories namely Electronics, Clothes,
Shoes and Accessories (CSA), and Collectibles as
the proof-of-concept. In the next sections, we will
briefly explain how this historical data has been
created.

4.1 Dataset

Many branded items have unique identifiers that
help buyers recognize and find them, including the
items brand, Manufacturer Part Number (mpn),
and Global Trade Item Number (gtin). The gtin
can include an items Universal Product Code
(upc), European Article Number (ean), or Inter-
national Standard Book Number (isbn). Around
80% of our training data is created with these
identifiers. The remaining 20% data is either
adopted4 by sellers or made available from third
party sources. The statistics about the data used
for experiments reported in the paper are given in
table 1.

Our dataset consists of four fields, the title that
are available for all instances, gtin, brand and mpn
that are partially available as shown in Table 1.
The classification experiments are based on com-
bination of these inputs for item listings along with
product-id as label. The inputs are just concate-
nated to make a single sequence of text. For simi-
larity experiments, we made use of corresponding
product title, gtin, brand and mpn. For the test set,
we sampled the data randomly from our training
set and performed manual validation. The valida-
tion is done against multiple sources available on-
line such as other marketplaces etc. The validation
score is simply a 1/0 label, 1 if the product against
the item listing is correct, otherwise 0.

Basic data normalization is performed such as
tokenization, lower casing, removing noise words
(e.g. doesn’t apply, not applicable etc). We re-
moved the instances that contain a single word as
they do not convey any meaningful information.
Exact same listings are merged into a single in-

4The sellers chose among the existing products in the cat-
alog for their item listings.

11

Category #listings gtin brand mpn #products test
Electronics 9.38 5.60 7.19 6.45 3.17 6468
CSA 21.09 6.73 11.96 3.75 9.78 3549
Collectibles 0.80 0.28 0.58 0.38 0.58 1999

Table 1: Data Statistics (all numbers are in millions except the test set). gtin, brand and mpn column show the total
number of these fields available for item listings.

fastText Siamese
Category baseline title title+gtin title+brand+mpn title+gtin+brand+mpn all
Electronics 84.4 81.1 86.2 85.9 87.9 89.9
CSA 75.7 73.9 76.7 76.2 78.8 82.4
Collectibles 92.8 89.3 94.5 93.7 96.4 97.1

Table 2: Accuracy for 3 Meta-Categories: Electronics, CSA, and Collectibles

Category pre-emb product-data accuracy
yes - 88.4

Electronics - yes 88.2
yes yes 88.8

Table 3: Accuracy with fastText models for Electronics
using pre-embeddings and additional product data.

stance.

4.2 Results
Our baseline models are based on a waterfall ap-
proach. The first two modules are based on lookup
tables for unique identifiers. In a first module, if
the item listing has a gtin and it matches with the
product in the inventory, then the item is adopted
to matching product. The second module is based
on brand-mpn lookup tables. Finally, if none of
the unique identifiers are available, then the item
listing is adopted to a product with highest string
match5.

We trained many fastText models with various
combination of inputs. For all of our models, the
embedding dimension is set 300, learning rate to
0.5, and number of epochs to 10. The n-gram pa-
rameter is set to 3 and it brings nice improvements
than the models without these additional features.
The hierarchical-softmax has been used as a loss
function.

The results are shown in table 2. The com-
bination of features produce better results than
the models trained with title only even though
gtin, brand and mpn are partially available. The
combination of all features give the best perfor-

5any unigram overlap.

mance followed by models with combination of
title+gtin. This is because of the fact that the
brand or mpn are sometimes already available in
title while gtin rarely appear in listing title. There-
fore, inclusion of additional brand and mpn do not
bring as much additional information as gtin.

We also trained the fastText models using pre-
trained embedding and product data as additional
resource for Electronics. The pre-embeddings are
learned with fastText using unsupervised CBOW
model on all of the listings available for the re-
spective category. In a second setting, we simply
merge the product data in our training set. The
results are shown in table 3. Even though our ini-
tial dataset is quite large but it is evident from the
results that these additional resources bring fur-
ther improvements as they offer more coverage
and completeness.

For Siamese Network, the models are trained
using the item-product pairs as described in sec-
tion 3.2. We set the embedding dimensions to
300, number of epochs to 100 and mini-batch size
to 128. During inference for a given item listing,
we first need to generate the item-product pairs to
measure the similarity. It is prohibitively imprac-
tical to compare each item with all the products in
the given category particularly for inference dur-
ing production. Therefore, we first reduced the
target space by generating top 500-best products
with fastText models. Then, these pairs are fed
to the Siamese network to calculate the similar-
ity. The pair having highest similarity score is
picked as matching. We also explored the n-gram
matching approach to reduce the target space but
n-best with fastText method turns out to be bet-

12

fastText Siamese
Category train infer train infer
Electronics 56s 5ms 20mins 15ms
CSA 90s 8ms 30mins 21ms
Collectibles 20s 3ms 10mins 11ms

Table 4: fastText versus Siamese training (per epoch)
and inference time (per instance), mins=minutes,
s=seconds, ms=milliseconds

ter. Siamese models show the same trend as with
fastText models on different combination of inputs
showing best performance when using all of them
(the last column in table 2).

In table 4, we present the training (per epoch)
and inference time (per instance) for both kind of
models6. The fastText models are extremely ef-
ficient to train as compared to the Siamese net-
work. These classification models can be trained
everyday to cope with open class set problem as
mentioned in section 2.6. Siamese network though
take longer training time, but they do not need ev-
eryday re-training and shown to be better in term
of performance.

4.3 Product Deduplication

Our product matching method resulted into an an-
other interesting findings for product deduplica-
tion. The fastText models produce the probability
score along with predicted product for a given item
listing. The probability score encodes the confi-
dence score for the predicted label. We have col-
lected the instances in our test set where the con-
fidence score is very high (i.e closer to 1) and pre-
dictions do not agree with the labels in our sam-
pled test set. Manual inspection of this data re-
vealed that many predictions are actually correctly
adopted to another duplicate product in the cata-
log.

For these experiments, we manually evaluated
the test set for the Electronics category and sam-
pled the data based on disagreement where the
confidence score is equal or higher than 0.99. This
yields 2% of the instances of our test set. The re-
sult showed 89% accuracy demonstrating the po-
tential of using confidence score for product dedu-
plication. As we drop the threshold, the cover-
age increases but accuracy starts to degrade as ex-

6All fastText models are trained on Intel(R) Core(TM) i7-
5930K CPU @ 3.50GHz and all Siamese models are trained
on 4 Nvidia GPUs GM200 [GeForce GTX TITAN X] with
64GB total memory.

pected. We plan to further investigate this in our
future work along with Siamese Network based
product deduplication on inter-product similarity
score.

5 Related Work

The problem of product matching has been largely
focused on attribute-value pair extraction to re-
trieve a unique set of attributes or in other words
structuring the e-commerce inventory (Mauge
et al., 2012; Ghani et al., 2006). The attribute and
feature extraction studies go from regular expres-
sion (Köpcke et al., 2012) to named entity recogni-
tion methods based on CRF models (Melli, 2014;
Ristoski and Mika, 2016). There are wide range
of matching algorithms studied from various string
matching (Vandic et al., 2012; Thor, 2010) to more
advance methods. We refer the reader to Ristoskia
et al. (2017) and Kannan et al. (2011) for a good
brief overview of these studies.

Many of these methods aim to convert the
free text into a structured representation and em-
ploy matching models by weighting the attributes
based on their significance. In this paper, we
do not model explicitly to first structure the of-
fers and products. In our case, both offers and
products are sequence of free text, and we let
the models learn representations based on large
historical data. Vector based models such as
word2vec (Mikolov et al., 2013), glove (Penning-
ton et al., 2014) and skip-thought (Kiros et al.,
2015) have shown promising results on textual
data to learn semantic representations. Sequence
models based on neural networks is a hot topic in
the NLP community and variety of models have
been researched for different kind of tasks in-
cluding more recently convolutional and recurrent
networks (RNN). Convolutional networks based
siamese network have been successful to find im-
age similarity (Chopra et al., 2005; Koch, 2015).
Many variants of siamese recurrent neural net-
works have been studies on textual sequences
including manhattan-LSTM (Mueller and Thya-
garajan, 2016) and bidirectional LSTM (Neculoiu
et al., 2016). Our work takes the motivation from
these siamese LSTM models and studied them
on e-commerce domain for product matching task
along with fastText models for extreme classifica-
tion using hierarchical softmax.

13

6 Conclusion

We have proposed classification and similarity
based approaches for product matching task. The
inputs to our models are sequence of texts unlike
many of the previous studies where more focus has
been on structured text for such tasks. The clas-
sification approach based on the fastText models
can scale up to millions of classes, outperforms
the baseline and is extremely efficient to train.
The similarity approach based on siamese network
makes use of both item listings and product text.
They not only improves the accuracy further but
also have the advantage of avoiding frequent re-
training. As a by-product, we also have shown the
potential to use our models for product deduplica-
tion, which we plan to explore further in our future
work. Finally, our models can accommodate any
information (beyond title, gtin, brand and mpn)
easily amenable into a textual form. We are now
planning to extend them with image data.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin,

and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages
539–546. IEEE.

Rayid Ghani, Katharina Probst, Yan Liu, Marko
Krema, and Andrew Fano. 2006. Text mining for
product attribute extraction. ACM SIGKDD Explo-
rations Newsletter, 8(1):41–48.

Joshua Goodman. 2001. Classes for fast maximum
entropy training. In Acoustics, Speech, and Signal
Processing, 2001. Proceedings.(ICASSP’01). 2001
IEEE International Conference on, volume 1, pages
561–564. IEEE.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016a. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016b. Bag of tricks
for efficient text classification. arXiv preprint
arXiv:1607.01759.

Anitha Kannan, Inmar E Givoni, Rakesh Agrawal, and
Ariel Fuxman. 2011. Matching unstructured prod-
uct offers to structured product specifications. In
Proceedings of the 17th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 404–412. ACM.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.
arXiv preprint arXiv:1506.06726.

Gregory Koch. 2015. Siamese Neural Networks for
One-Shot Image Recognition. Ph.D. thesis, Univer-
sity of Toronto.

Hanna Köpcke, Andreas Thor, Stefan Thomas, and Er-
hard Rahm. 2012. Tailoring entity resolution for
matching product offers. In Proceedings of the 15th
International Conference on Extending Database
Technology, pages 545–550. ACM.

Karin Mauge, Khash Rohanimanesh, and Jean-David
Ruvini. 2012. Structuring e-commerce inventory.
In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long
Papers-Volume 1, pages 805–814. Association for
Computational Linguistics.

Gabor Melli. 2014. Shallow semantic parsing of prod-
uct offering titles (for better automatic hyperlink in-
sertion). In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 1670–1678. ACM.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
recurrent architectures for learning sentence similar-
ity. In Thirtieth AAAI Conference on Artificial Intel-
ligence.

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru.
2016. Learning text similarity with siamese recur-
rent networks. In Proceedings of the 1st Workshop
on Representation Learning for NLP, pages 148–
157.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Petar Ristoski and Peter Mika. 2016. Enriching prod-
uct ads with metadata from html annotations. In In-
ternational Semantic Web Conference, pages 151–
167. Springer.

Petar Ristoskia, Petar Petrovskia, Peter Mikab, and
Heiko Paulheima. 2017. A machine learning ap-
proach for product matching and categorization. Se-
mantic web.

14

Andreas Thor. 2010. Toward an adaptive string sim-
ilarity measure for matching product offers. In GI
Jahrestagung (1), pages 702–710.

Damir Vandic, Jan-Willem Van Dam, and Flavius
Frasincar. 2012. Faceted product search powered
by the semantic web. Decision Support Systems,
53(3):425–437.

Peilu Wang, Yao Qian, Frank K Soong, Lei He, and
Hai Zhao. 2015. A unified tagging solution: Bidi-
rectional lstm recurrent neural network with word
embedding. arXiv preprint arXiv:1511.00215.

15

