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Abstract

We examine the problem of question answer-
ing over knowledge graphs, focusing on sim-
ple questions that can be answered by the
lookup of a single fact. Adopting a straight-
forward decomposition of the problem into en-
tity detection, entity linking, relation predic-
tion, and evidence combination, we explore
simple yet strong baselines. On the popular
SIMPLEQUESTIONS dataset, we find that ba-
sic LSTMs and GRUs plus a few heuristics
yield accuracies that approach the state of the
art, and techniques that do not use neural net-
works also perform reasonably well. These re-
sults show that gains from sophisticated deep
learning techniques proposed in the literature
are quite modest and that some previous mod-
els exhibit unnecessary complexity.

1 Introduction

There has been significant recent interest in sim-
ple question answering over knowledge graphs,
where a natural language question such as “Where
was Sasha Vujacic born?” can be answered via the
lookup of a simple fact—in this case, the “place
of birth” property of the entity “Sasha Vujacic”.
Analysis of an existing benchmark dataset (Yao,
2015) and real-world user questions (Dai et al.,
2016; Ture and Jojic, 2017) show that such ques-
tions cover a broad range of users’ needs.

Most recent work on the simple QA task in-
volves increasingly complex neural network (NN)
architectures that yield progressively smaller gains
over the previous state of the art (see §2 for more
details). Lost in this push, we argue, is an under-
standing of what exactly contributes to the effec-
tiveness of a particular NN architecture. In many
cases, the lack of rigorous ablation studies further
compounds difficulties in interpreting results and
credit assignment. To give two related examples:
Melis et al. (2017) reported that standard LSTM

architectures, when properly tuned, outperform
some more recent models; Vaswani et al. (2017)
showed that the dominant approach to sequence
transduction using complex encoder–decoder net-
works with attention mechanisms work just as
well with the attention module only, yielding net-
works that are far simpler and easier to train.

In line with an emerging thread of research that
aims to improve empirical rigor in our field by fo-
cusing on knowledge and insights, as opposed to
simply “winning” (Sculley et al., 2018), we take
the approach of peeling away unnecessary com-
plexity until we arrive at the simplest model that
works well. On the SIMPLEQUESTIONS dataset,
we find that baseline NN architectures plus sim-
ple heuristics yield accuracies that approach the
state of the art. Furthermore, we show that a com-
bination of simple techniques that do not involve
neural networks can still achieve reasonable ac-
curacy. These results suggest that while NNs do
indeed contribute to meaningful advances on this
task, some models exhibit unnecessary complex-
ity and that the best models yield at most modest
gains over strong baselines.

2 Related Work

The problem of question answering on knowledge
graphs dates back at least a decade, but the most
relevant recent work in the NLP community comes
from Berant et al. (2013). This thread of work
focuses on semantic parsing, where a question is
mapped to its logical form and then translated to
a structured query, cf. (Berant and Liang, 2014;
Reddy et al., 2014). However, the more recent
SIMPLEQUESTIONS dataset (Bordes et al., 2015)
has emerged as the de facto benchmark for evalu-
ating simple QA over knowledge graphs.

The original solution of Bordes et al. (2015) fea-
tured memory networks, but over the past several
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years, researchers have applied many NN archi-
tectures for tackling this problem: Golub and He
(2016) proposed a character-level attention-based
encoder-decoder framework; Dai et al. (2016) pro-
posed a conditional probabilistic framework using
BiGRUs. Lukovnikov et al. (2017) used a hierar-
chical word/character-level question encoder and
trained a neural network in an end-to-end man-
ner. Yin et al. (2016) applied a character-level
CNN for entity linking and a separate word-level
CNN with attentive max-pooling for fact selec-
tion. Yu et al. (2017) used a hierarchical resid-
ual BiLSTM for relation detection, the results
of which were combined with entity linking out-
put. These approaches can be characterized as ex-
ploiting increasingly sophisticated modeling tech-
niques (e.g., attention, residual learning, etc.).

In this push toward complexity, we do not be-
lieve that researchers have adequately explored
baselines, and thus it is unclear how much var-
ious NN techniques actually help. To this end,
our work builds on Ture and Jojic (2017), who
adopted a straightforward problem decomposition
with simple NN models to argue that attention-
based mechanisms don’t really help. We take this
one step further and examine techniques that do
not involve neural networks. Establishing strong
baselines allows us to objectively quantify the con-
tribution of various deep learning techniques.

3 Approach

We begin with minimal preprocessing on ques-
tions: downcasing and tokenizing based on the
Penn TreeBank. As is common in the literature,
we decompose the simple QA problem into four
tasks: entity detection, entity linking, relation pre-
diction, and evidence integration, detailed below.
All our code is available open source on GitHub.1

3.1 Entity Detection
Given a question, the goal of entity detection is to
identify the entity being queried. This is naturally
formulated as a sequence labeling problem, where
for each token, the task is to assign one of two tags,
either ENTITY or NOTENTITY.

Recurrent Neural Networks (RNNs): The most
obvious NN model for this task is to use RNNs;
we examined both bi-directional LSTM and GRU
variants over an input matrix comprised of word
embeddings from the input question. Following

1http://buboqa.io/

standard practice, the representation of each to-
ken is a concatenation of the hidden states from
the forward and backward passes. This representa-
tion is then passed through a linear layer, followed
by batch normalization, ReLU activation, dropout,
and a final layer that maps into the tag space. Note
that since we’re examining baselines, we do not
layer a CRF on top of the BiLSTM (Lample et al.,
2016; Ma and Hovy, 2016).

Conditional Random Fields (CRFs): Prior to the
advent of neural techniques, CRFs represented the
state of the art in sequence labeling, and therefore
it makes sense to explore how well this method
works. We specifically adopt the approach of
Finkel et al. (2005), who used features such as
word positions, POS tags, character n-grams, etc.

3.2 Entity Linking

The output of entity detection is a sequence of
tokens representing a candidate entity. This still
needs to be linked to an actual node in the knowl-
edge graph. In Freebase, each node is denoted by a
Machine Identifier, or MID. Our formulation treats
this problem as fuzzy string matching and does not
use neural networks.

For all the entities in the knowledge graph
(Freebase), we pre-built an inverted index over n-
grams n ∈ {1, 2, 3} in an entity’s name. At link-
ing time, we generate all corresponding n-grams
from the candidate entity and look them up in the
inverted index for all matches. Candidate entity
MIDs are retrieved from the index and appended
to a list, and an early termination heuristic similar
to Ture and Jojic (2017) is applied. We start with
n = 3 and if we find an exact match for an entity,
we do not further consider lower-order n-grams,
backing off otherwise. Once all candidate entities
have been gathered, they are then ranked by Lev-
enshtein Distance to the MID’s canonical label.

3.3 Relation Prediction

The goal of relation prediction is to identify the re-
lation being queried. We view this as classification
over the entire question.

RNNs: Similar to entity detection, we explored
BiLSTM and BiGRU variants. Since relation pre-
diction is over the entire question, we base the
classification decision only on the hidden states
(forward and backward passes) of the final token,
but otherwise the model architecture is the same
as for entity detection.
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Convolutional Neural Networks (CNNs): An-
other natural model is to use CNNs, which have
been shown to perform well for sentence clas-
sification. We adopt the model of Kim (2014),
albeit slightly simplified in that we use a single
static channel instead of multiple channels. Fea-
ture maps of widths two to four are applied over
the input matrix comprised of input tokens trans-
formed into word embeddings, followed by max
pooling, a fully-connected layer and softmax to
output the final prediction. Note this is a “vanilla”
CNN without any attention mechanism.

Logistic Regression (LR): Before the advent of
neural networks, the most obvious solution to sen-
tence classification would be to apply logistic re-
gression. We experimented with two feature sets
over the questions: (1) tf-idf on unigrams and bi-
grams and (2) word embeddings + relation words.
In (2), we averaged the word embeddings of each
token in the question, and to that vector, we con-
catenated the one-hot vector comprised of the top
300 most frequent terms from the names of the re-
lations (e.g., people/person/place of birth), which
serve as the dimensions of the one-hot vector.
The rationale behind this hybrid representation is
to combine the advantages of word embeddings
in capturing semantic similarity with the ability
of one-hot vectors to clearly discriminate strong
“cue” tokens in the relation names.

3.4 Evidence Integration

Given the top m entities and r relations from the
previous components, the final task is to integrate
evidence to arrive at a single (entity, relation) pre-
diction. We begin by generating m × r (entity,
relation) tuples whose scores are the product of
their component scores. Since both entity detec-
tion/linking and relation prediction are performed
independently, many combinations are meaning-
less (e.g., no such relation exists for an entity in
the knowledge graph); these are pruned.

After pruning, we observe many scoring ties,
which arise from nodes in the knowledge graph
that share the exact same label, e.g., all persons
with the name “Adam Smith”. We break ties by fa-
voring more “popular” entities, using the number
of incoming edges to the entity in the knowledge
graph (i.e., entity in-degree) as a simple proxy. We
further break ties by favoring entities that have a
mapping to Wikipedia, and hence are “popular”.
Note that these heuristics for breaking scoring ties

are based on the structure of the knowledge graph,
as neither of these signals are available from the
surface lexical forms of the entities.

4 Experimental Setup

We conducted evaluations on the SIMPLEQUES-
TIONS dataset (Bordes et al., 2015), comprised
of 75.9k/10.8k/21.7k training/validation/test ques-
tions. Each question is associated with a (sub-
ject, predicate, object) triple from a Freebase sub-
set that answers the question. The subject is given
as an MID, but the dataset does not identify the
entity in the question, which is needed for our for-
mulation of entity detection. For this, we used the
names file by Dai et al. (2016) to backproject the
entity names onto the questions to annotate each
token as either ENTITY or NOTENTITY. This in-
troduces some noise, as in some cases there are
no exact matches—for these, we back off to fuzzy
matching and project the entity onto the n-gram
sequence with the smallest Levenshtein Distance
to the entity name. As with previous work, we re-
port results over the 2M-subset of Freebase.

For entity detection, we evaluate by extract-
ing every sequence of contiguous ENTITY tags
and compute precision, recall, and F1 against the
ground truth. For both entity linking and relation
prediction, we evaluate recall at N (R@N ), i.e.,
whether the correct answer appears in the top N
results. For end-to-end evaluation, we follow the
approach of Bordes et al. (2015) and mark a pre-
diction as correct if both the entity and the relation
exactly match the ground truth. The main metric
is accuracy, which is equivalent to R@1.

Our models were implemented in PyTorch
v0.2.0 with CUDA 8.0 running on an NVIDIA
GeForce GTX 1080 GPU. GloVe embed-
dings (Pennington et al., 2014) of size 300 served
as the input to our models. We used negative
log likelihood loss to optimize model parameters
using Adam, with an initial learning rate of
0.0001. We performed random search over hy-
perparameters, exploring a range that is typical of
NNs for NLP applications; the hyperparameters
were selected based on the development set.
In our final model, all LSTM and GRU hidden
states sizes and MLP hidden sizes were set to
300. For the CNNs, we used a size 300 output
channel. Dropout rate for the CNNs was 0.5 and
0.3 for the RNNs. For the CRF implementation,
we used the Stanford NER tagger (Finkel et al.,
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R@N BiLSTM CRF
1 67.8 [67.5 68.0] 66.6

5 82.6 [82.3 82.7] 81.3

20 88.7 [88.5 88.8] 87.4

50 91.0 [90.8 91.1] 89.8

Table 1: Results for entity linking on the validation set,
given the underlying entity detection model.

Model R@1 R@5
BiGRU 82.3 [82.0 82.5] 95.9 [95.7 96.1]

CNN 82.8 [82.5 82.9] 95.8 [95.7 96.1]

LR (tf-idf) 72.4 87.6
LR (GloVe+rel) 74.7 92.2
Ture and Jojic (2017) 81.6 -

Table 2: Results for relation prediction on the valida-
tion set using different models.

2005). For LR, we used the scikit-learn package
in Python. For Levenshtein Distance, we used
the ratio function in the “fuzzywuzzy” Python
package. Evidence integration involves crossing
m candidate entities with r candidate relations,
tuned on the validation set.

5 Results

We begin with results on individual components.
To alleviate the effects of parameter initializa-
tion, we ran experiments with n different ran-
dom seeds (n = 20 for entity detection and n =
50 for relation prediction). Following Reimers
and Gurevych (2017), and due to questions about
assumptions of normality, we simply report the
mean as well as the minimum and maximum
scores achieved in square brackets.

For entity detection, on the validation set,
the BiLSTM (which outperforms the BiGRU)
achieves 93.1 [92.8 93.4] F1, compared to the CRF
at 90.2. Entity linking results (R@N ) are shown
in Table 1 for both the BiLSTM and the CRF.
We see that entity linking using the CRF achieves
comparable accuracy, even though the CRF per-
forms slightly worse on entity detection alone; en-
tity linking appears to be the bottleneck. Error
analysis shows that there is a long tail of highly-
ambiguous entities—that is, entities in the knowl-
edge graph that have the same label—and that
even at depth 50, we are unable to identify the cor-
rect entity (MID) more than 10% of the time.

Results of relation prediction are shown in Ta-
ble 2 on the validation set. Ture and Jojic (2017)
conducted the same component-level evaluation,
the results of which we report (but none else that

Entity Relation Acc.
BiLSTM BiGRU 74.9 [74.6 75.1]

BiLSTM CNN 74.7 [74.5 74.9]

BiLSTM LR (tf-idf) 68.3 [68.2 68.5]

BiLSTM LR (GloVe+rel) 70.9 [70.8 71.1]

CRF BiGRU 73.7 [73.4 73.9]

CRF CNN 73.6 [73.4 73.7]

CRF LR (tf-idf) 67.3
CRF LR (GloVe+rel) 69.9

Previous Work
Bordes et al. (2015) 62.7
Golub and He (2016) 70.9
Lukovnikov et al. (2017) 71.2
Dai et al. (2016) 75.7
Yin et al. (2016) 76.4
Yu et al. (2017) 77.0
Ture and Jojic (2017) 86.8

Table 3: End-to-end answer accuracy on the test set
with different model combinations, compared to a se-
lection of previous results reported in the literature.

we could find). We are able to achieve slightly bet-
ter accuracy. Interestingly, we see that the CNN
slightly outperforms the BiGRU (which beats the
BiLSTM slightly; not shown) on R@1, but both
give essentially the same results for R@5. Com-
pared to LR, it seems clear that for this task NNs
form a superior solution.

Finally, end-to-end results on the test set are
shown in Table 3 for various combinations of en-
tity detection/linking and relation prediction. We
found that crossing 50 candidate entities with five
candidate relations works the best. To compute
the [min, max] scores, we crossed 10 randomly-
selected entity models with 10 relation models.
The best model combination is BiLSTM (for en-
tity detection/linking) and BiGRU (for relation
prediction), which achieves an accuracy of 74.9,
competitive with a cluster of recent top results.
Ture and Jojic (2017) reported a much higher ac-
curacy, but we have not been able to replicate their
results (and their source code does not appear to be
available online). Setting aside that work, we are
two points away from the next-highest reported re-
sult in the literature.

Replacing the BiLSTM with the CRF for en-
tity detection/linking yields 73.7, which is only
a 1.2 absolute decrease in end-to-end accuracy.
Replacing the BiGRU with the CNN for rela-
tion prediction has only a tiny effect on accu-
racy (0.2 decrease at most). Results show that
the baselines that don’t use neural networks (CRF
+ LR) perform surprisingly well: combining LR
(GloVe+rel) or LR (td-idf) for relation prediction
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with CRFs for entity detection/linking achieves
69.9 and 67.3, respectively. Arguably, the former
still takes advantages of neural networks since it
uses word embeddings, but the latter is unequivo-
cally a “NN-free” baseline. We note that this fig-
ure is still higher than the original Bordes et al.
(2015) paper. Cast in this light, our results sug-
gest that neural networks have indeed contributed
to real and meaningful improvements in the state
of the art according to this benchmark dataset, but
that the improvements directly attributable to neu-
ral networks are far more modest than previous pa-
pers may have led readers to believe.

One should further keep in mind an impor-
tant caveat in interpreting the results in Table 3:
As Reimers and Gurevych (2017) have discussed,
non-determinism associated with training neural
networks can yield significant differences in accu-
racy. Crane (2018) further demonstrated that for
answer selection in question answering, a range
of mundane issues such as software versions can
have a significant impact on accuracy, and these
effects can be larger than incremental improve-
ments reported in the literature. We adopt the
emerging best practice of reporting results from
multiple trials, but this makes comparison to pre-
vious single-point results difficult.

It is worth emphasizing that all NN models
we have examined can be characterized as “Deep
Learning 101”: easily within the grasp of a student
after taking an intro NLP course. Yet, our strong
baselines compare favorably with the state of the
art. It seems that some recent models exhibit un-
necessary complexity, in that they perform worse
than our baseline. State-of-the-art NN architec-
tures only improve upon our strong baselines mod-
estly, and at the cost of introducing significant
complexity—i.e., they are “doing a lot” for only
limited gain. In real-world deployments, there are
advantages to running simpler models even if they
may perform slightly worse. Sculley et al. (2014)
warned that machine-learned solutions have a ten-
dency to incur heavy technical debt in terms of on-
going maintenance costs at the systems level. The
fact that Netflix decided not to deploy the winner
of the Netflix Prize (a complex ensemble of many
different models) is a real-world example.

6 Conclusions

Moving forward, we are interested in more for-
mally characterizing complexity–accuracy trade-

offs and their relation to the amount of training
data necessary to learn a model. It is perhaps
self-evident that our baseline CNNs and RNNs
are “less complex” than other recent models de-
scribed in the literature, but how can we compare
model complexity objectively in a general way?
The number of model parameters provides only a
rough measure, and does not capture the fact that
particular arrangements of architectural elements
make certain linguistic regularities much easier to
learn. We seek to gain a better understanding of
these tradeoffs. One concrete empirical approach
is to reintroduce additional NN architectural ele-
ments in a controlled manner to isolate their con-
tributions. With a strong baseline to build on, we
believe that such studies can be executed with suf-
ficient rigor to yield clear generalizations.

To conclude, we offer the NLP community three
points of reflection: First, at least for the task of
simple QA over knowledge graphs, in our rush
to explore ever sophisticated deep learning tech-
niques, we have not adequately examined simple,
strong baselines in a rigorous manner. Second, it
is important to consider baselines that do not in-
volve neural networks, even though it is easy to
forget that NLP existed before deep learning. Our
experimental results show that, yes, deep learning
is exciting and has certainly advanced the state of
the art, but the actual improvements are far more
modest than the literature suggests. Finally, in our
collective frenzy to improve results on standard
benchmarks, we may sometimes forget that the ul-
timate goal of science is knowledge, not owning
the top entry in a leaderboard.
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