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Abstract

Sentence pair modeling is critical for many
NLP tasks, such as paraphrase identification,
semantic textual similarity, and natural lan-
guage inference. Most state-of-the-art neu-
ral models for these tasks rely on pretrained
word embedding and compose sentence-level
semantics in varied ways; however, few works
have attempted to verify whether we really
need pretrained embeddings in these tasks. In
this paper, we study how effective subword-
level (character and character n-gram) rep-
resentations are in sentence pair modeling.
Though it is well-known that subword mod-
els are effective in tasks with single sentence
input, including language modeling and ma-
chine translation, they have not been systemat-
ically studied in sentence pair modeling tasks
where the semantic and string similarities be-
tween texts matter. Our experiments show that
subword models without any pretrained word
embedding can achieve new state-of-the-art re-
sults on two social media datasets and compet-
itive results on news data for paraphrase iden-
tification.

1 Introduction

Recently, there have been various neural network
models proposed for sentence pair modeling tasks,
including semantic similarity (Agirre et al., 2015),
paraphrase identification (Dolan et al., 2004; Xu
et al., 2015), natural language inference (Bow-
man et al., 2015), etc. Most, if not all, of these
state-of-the-art neural models (Yin et al., 2016;
Parikh et al., 2016; He and Lin, 2016; Tomar et al.,
2017; Shen et al., 2017) have achieved the best
performances for these tasks by using pretrained
word embeddings, but results without pretraining
are less frequently reported or noted. In fact, we
will show that, even with fixed randomized word
vectors, the pairwise word interaction model (He
and Lin, 2016) based on contextual word vector

similarities can still achieve strong performance
by capturing identical words and similar surface
context features. Moreover, pretrained word em-
beddings generally have poor coverage in social
media domain where out-of-vocabulary rate often
reaches over 20% (Baldwin et al., 2013).

We investigated the effectiveness of subword
units, such as characters and character n-grams, in
place of words for vector representations in sen-
tence pair modeling. Though it is well-known that
subword representations are effective to model
out-of-vocabulary words in many NLP tasks with
a single sentence input, such as machine transla-
tion (Luong et al., 2015; Costa-jussà and Fonol-
losa, 2016), language modeling (Ling et al., 2015;
Vania and Lopez, 2017), and sequence labeling
(dos Santos and Guimarães, 2015; Plank et al.,
2016), they are not systematically studied in the
tasks that concern pairs of sentences. Unlike
in modeling individual sentences, subword repre-
sentations have impacts not only on the out-of-
vocabulary words but also more directly on the
relation between two sentences, which is calcu-
lated based on vector similarities in many sentence
pair modeling approaches (more details in Section
2.1). For example, while subwords may capture
useful string similarities between a pair of sen-
tences (e.g. spelling or morphological variations:
sister and sista, teach and teaches), they could in-
troduce errors (e.g. similarly spelled words with
completely different meanings: ware and war).

To better understand the role of subword em-
bedding in sentence pair modeling, we performed
experimental comparisons that vary (1) the type of
subword unit, (2) the composition function, and
(3) the datasets of different characteristics. We
also presented experiments with language mod-
eling as an auxiliary multi-task learning objec-
tive, showing consistent improvements. Taken to-
gether, subword and language modeling establish
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new state-of-the-art results in two social media
datasets and competitive results in a news dataset
for paraphrase identification without using any
pretrained word embeddings.

2 Sentence Pair Modeling with Subwords

The current neural networks for sentence pair
modeling (Yin et al., 2016; Parikh et al., 2016;
He and Lin, 2016; Liu et al., 2016; Tomar et al.,
2017; Wang et al., 2017; Shen et al., 2017, etc) fol-
low a more or less similar design with three main
components: (a) contextualized word vectors gen-
erated via Bi-LSTM, CNN, or attention, as inputs;
(b) soft or hard word alignment and interactions
across sentences; (c) and the output classification
layer. Different models vary in implementation
details, and most importantly, to capture the same
essential intuition in the word alignment (also en-
coded with contextual information) – the seman-
tic relation between two sentences depends largely
on the relations of aligned chunks (Agirre et al.,
2016). In this paper, we used pairwise word in-
teraction model (He and Lin, 2016) as a represen-
tative example and staring point, which reported
robust performance across multiple sentence pair
modeling tasks and the best results by neural mod-
els on social media data (Lan et al., 2017).

2.1 Pairwise Word Interaction (PWI) Model

Let wa = (wa
1 , ...,w

a
m) and wb = (wa

1 , ...,w
b
n)

be the input sentence pair consisting of m and
n tokens, respectively. Each word vector wi ∈
Rd is initialized with pretrained d-dimensional
word embedding (Pennington et al., 2014; Wiet-
ing et al., 2015, 2016), then encoded with word
context and sequence order through bidirectional
LSTMs:

−→
h i = LSTMf (wi,

−→
h i−1) (1)

←−
h i = LSTM b(wi,

←−
h i+1) (2)

←→
h i = [

−→
h i,
←−
h i] (3)

h+
i =
−→
h i +

←−
h i (4)

where
−→
h i represents forward hidden state,

←−
h i

represents backword hidden state, and
←→
h i and h+

i

are the concatenation and summation of two direc-
tional hidden states.

For all word pairs (wa
i ,w

b
j) across sentences,

the model directly calculates word pair interac-
tions using cosine similarity, Euclidean distance,

and dot product over the outputs of the encoding
layer:

D(
−→
h i,
−→
h j) = [cos(

−→
h i,
−→
h j), (5)

L2Euclid(
−→
h i,
−→
h j),

DotProduct(
−→
h i,
−→
h j)].

The above equation can also apply to other states←−
h ,
←→
h and h+, resulting in a tensor D13×m×n af-

ter padding one extra bias term. A “hard” atten-
tion is applied to the interaction tensor to further
enforce the word alignment, by sorting the inter-
action values and selecting top ranked word pairs.
A 19-layer-deep CNN is followed to aggregate the
word interaction features and the softmax layer to
predicate classification probabilities.

2.2 Embedding Subwords in PWI Model
Our subword models only involve modification of
the input representation layer in the pairwise in-
teraciton model. Let c1, ..., ck be the subword
(character unigram, bigram and trigram) sequence
of a word w. The subword embedding matrix is
C ∈ Rd′∗k, where each subword is encoded into
the d′-dimension vector. The same subwords will
share the same embeddings. We considered two
different composition functions to assemble sub-
word embeddings into word embedding:

Char C2W (Ling et al., 2015) applies Bi-LSTM
to subword sequence c1, ..., ck, then the last hid-
den state

−→
h char

k in forward direction and the first
hidden state

←−
h char

0 of the backward direction are
linearly combined into word-level embedding w:

w = Wf ·
−→
h char

k +Wb ·
←−
h char

0 + b (6)

where Wf , Wb and b are parameters.

Char CNN (Kim et al., 2016) applies a convolu-
tion operation between subword sequence matrix
C and a filter F ∈ Rd′×l of width l to obtain a
feature map f ∈ Rk−l+1:

fj = tanh(〈C[∗, j : j + l − 1],F〉+ b) (7)

where 〈A,B〉 = Tr(ABT ) is the Frobenius inner
product, b is a bias and fj is the jth element of f .
We then take the max-over-time operation to select
the most important element:

yf = max
j

fj . (8)
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Dataset Training Size Test Size # INV # OOV OOV Ratio Source
PIT-2015 11530 838 7771 1238 13.7% Twitter trends

Twitter-URL 42200 9324 24905 11440 31.5% Twitter/news
MSRP 4076 1725 16226 1614 9.0% news

Table 1: Statistics of three benchmark datasets for paraphrase identification. The training and testing sizes are in
numbers of sentence pairs. The number of unique in-vocabulary (INV) and out-of-vocabulary (OOV) words are
calculated based on the publicly available GloVe embeddings (details in Section 3.2).

After applying q filters with varied lengths, we can
get the array w = [y1, ..., yq], which is followed
by a one-layer highway network to generate final
word embedding.

2.3 Auxiliary Language Modeling (LM)
We adapted a multi-task structure, originally pro-
posed by (Rei, 2017) for sequential tagging, to fur-
ther improve the subword representations in sen-
tence pair modeling. In addition to training the
model for sentence pair tasks, we used a secondary
language modeling objective that predicts the next
word and previous word using softmax over the
hidden states of Bi-LSTM as follows:

−→
E LM = −

T−1∑

t=1

(log(P (wt+1|−→mt)) (9)

←−
E LM = −

T∑

t=2

(log(P (wt−1|←−mt)) (10)

where −→mt = tanh(
−→
W hm

−→
h t) and ←−mt =

tanh(
←−
W hm

←−
h t). The Bi-LSTM here is separate

from the one in PWI model. The language model-
ing objective can be combined into sentence pair
modeling through a joint objective function:

Ejoint = E + γ(
−→
E LM +

←−
E LM ), (11)

which balances subword-based sentence pair mod-
eling objective E and language modeling with a
weighting coefficient γ.

3 Experiments

3.1 Datasets
We performed experiments on three benchmark
datasets for paraphrase identification; each con-
tained pairs of naturally occurring sentences man-
ually labeled as paraphrases and non-paraphrases
for binary classification: Twitter URL (Lan et al.,
2017) was collected from tweets sharing the same
URL with major news outlets such as @CNN.
This dataset keeps a balance between formal and
informal language. PIT-2015 (Xu et al., 2014,

2015) comes from the Task 1 of Semeval 2015 and
was collected from tweets under the same trend-
ing topic, which contains varied topics and lan-
guage styles. MSRP (Dolan and Brockett, 2005)
was derived from clustered news articles reporting
the same event in formal language. Table 1 shows
vital statistics for all three datasets.

3.2 Settings

To compare models fairly without implementation
variations, we reimplemented all models into a
single PyTorch framework.1 We followed the se-
tups in (He and Lin, 2016) and (Lan et al., 2017)
for the pairwise word interaction model, and used
the 200-dimensional GloVe word vectors (Pen-
nington et al., 2014), trained on 27 billion words
from Twitter (vocabulary size of 1.2 milion words)
for social media datasets, and 300-dimensional
GloVe vectors, trained on 840 billion words (vo-
cabulary size of 2.2 milion words) from Common
Crawl for the MSRP dataset. For cases with-
out pretraining, the word/subword vectors were
initialized with random samples drawn uniformly
from the range [0.05, 0.05]. We used the same hy-
perparameters in the C2W (Ling et al., 2015) and
CNN-based (Kim et al., 2016) compositions for
subword models, except that the composed word
embeddings were set to 200- or 300- dimensions
as the pretrained word embeddings to make exper-
iment results more comparable. For each experi-
ment, we reported results with 20 epochs.

3.3 Results

Table 2 shows the experiment results on three
datasets. We reported maximum F1 scores of any
point on the precision-recall curve (Lipton et al.,
2014) following previous work.

Word Models The word-level pairwise inter-
action models, even without pretraining (ran-
domzied) or fine-tuning (fixed), showed strong
performance across all three datasets. This reflects

1The code and data can be obtained from the first and
second author’s websites.
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Model Variations pre-train #parameters Twitter URL PIT-2015 MSRP

Word Models

Logistic Regression – – 0.683 0.645 0.829
(Lan et al., 2017) Yes 9.5M 0.749 0.667 0.834
pretrained, fixed Yes 2.2M 0.753 0.632 0.834

pretrained, updated Yes 9.5M 0.756 0.656 0.832
randomized, fixed – 2.2M 0.728 0.456 0.821

randomized, updated – 9.5M 0.735 0.625 0.834

Subword Models

C2W, unigram – 2.6M 0.742 0.534 0.816
C2W, bigram – 2.7M 0.742 0.563 0.825
C2W, trigram – 3.1M 0.729 0.576 0.824
CNN, unigram – 6.5M 0.756 0.589 0.820
CNN, bigram – 6.5M 0.760 0.646 0.814
CNN, trigram – 6.7M 0.753 0.667 0.818

Subword+LM

LM, C2W, unigram – 3.5M 0.760 0.691 0.831
LM, C2W, bigram – 3.6M 0.768 0.651 0.830
LM, C2W, trigram – 4.0M 0.765 0.659 0.831
LM, CNN, unigram – 7.4M 0.754 0.665 0.840
LM, CNN, bigram – 7.4M 0.761 0.667 0.835
LM, CNN, trigram – 7.6M 0.759 0.667 0.831

Table 2: Results in F1 scores on Twitter-URL, PIT-2015 and MSRP datasets. The best performance figure in each
dataset is denoted in bold typeface and the second best is denoted by an underline. Without using any pretrained
word embeddings, the Subword+LM models achieve better or competitive performance compared to word models.

the effective design of the BiLSTM and word in-
teraction layers, as well as the unique character
of sentence pair modeling, where n-gram over-
lapping positively signifies the extent of seman-
tic similarity. As a reference, a logistic regres-
sion baseline with simple n-gram (also in stemmed
form) overlapping features can also achieve good
performance on PIT-2015 and MSRP datasets.
With that being said, pretraining and fine-tuning
word vectors are mostly crucial for pushing out the
last bit of performance from word-level models.

Subword Models (+LMs) Without using any
pretrained word embeddings, subword-based pair-
wise word interaction models can achieve very
competitive results on social media datasets com-
pared with the best word-based models (pre-
trained, fixed). For MSRP with only 9% of
OOV words (Table 1), the subword models do
not show advantages. Once the subword mod-

Model INV Words OOV Words
any walking #airport brexit

Word

anything walk salomon bollocks
anyone running 363 misogynistic
other dead #trumpdchotel patriarchy
there around hillarys sexist

Subword

analogy waffling @atlairport grexit
nay slagging #dojreport bret

away scaling #macbookpro juliet
andy #hacking #guangzhou #brexit

Subword

any1 warming airport #brexit

+ LM

many wagging #airports brit
ang waging rapport ofbrexit

nanny waiting #statecapturereport drought-hit

Table 3: Nearest neighbors of word vectors under co-
sine similarity in Twitter-URL dataset.

els are trained with multi-task language modeling
(Subword+LM), the performance on all datasets
are further improved, outperforming the best pre-
viously reported results by neural models (Lan
et al., 2017). A qualitative analysis reveals that
subwords are crucial for out-of-vocabulary words
while language modeling ensures more semantic
and syntactic compatibility (Table 3).

3.4 Combining Word and Subword
Representations

In addition, we experimented with combining the
pretrained word embeddings and subword models
with various strategies: concatenation, weighted
average, adaptive models (Miyamoto and Cho,
2016) and attention models (Rei et al., 2016).
The weighted average outperformed all others but
only showed slight improvement over word-based
models in social media datasets; other combina-
tion strategies could even lower the performance.
The best performance was 0.763 F1 in Twitter-
URL and 0.671 in PIT-2015 with a weighted aver-
age: 0.75 × word embedding + 0.25 × subword
embedding.

4 Model Ablations

In the original PWI model, He and Lin (2016) per-
formed pattern recognition of complex semantic
relationships by applying a 19-layer deep convo-
lutional neural network (CNN) on the word pair
interaction tensor (Eq. 5). However, the SemEval
task on Interpretable Semantic Textual Similarity
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Model Variations CNN19 #parameters #hours/epoch Twitter URL PIT-2015 MSRP

Word Models
Logistic Regression – – – 0.683 0.645 0.829

pretrained, fixed Yes 2.2M 4.5h 0.753 0.632 0.834
– 1.4M 3.2h 0.741 0.602 0.827

Subword Models
C2W, unigram Yes 2.6M 5.8h 0.742 0.534 0.816

– 1.4M 4.6h 0.741 0.655 0.808

CNN, unigram Yes 6.5M 5.4h 0.756 0.589 0.820
– 5.3M 4.2h 0.759 0.659 0.809

Subword+LM
LM, C2W, unigram Yes 3.5M 6.5h 0.760 0.691 0.831

– 2.3M 5.3h 0.746 0.625 0.811

LM, CNN, unigram Yes 7.4M 5.8h 0.754 0.665 0.840
– 6.2M 4.6h 0.758 0.659 0.809

Table 4: Comparison of F1 scores between the original PWI model with 19-layer CNN for aggregation and the
simplified model without 19-layer CNN on Twitter-URL, PIT-2015 and MSRP datasets. The number of parameters
and training time per epoch shown are based on the Twitter URL dataset and a single NVIDIA Pascal P100 GPU.

(Agirre et al., 2016) in part demonstrated that the
semantic relationship between two sentences de-
pends largely on the relations of aligned words or
chunks. Since the interaction tensor in the PWI
model already encodes word alignment informa-
tion in the form of vector similarities, a natural
question is whether a 19-layer CNN is necessary.

Table 4 shows the results of our systems with
and without the 19-layer CNN for aggregating the
pairwise word interactions before the final soft-
max layer. While in most cases the 19-layer
CNN helps to achieve better or comparable perfor-
mance, it comes at the expense of ∼25% increase
of training time. An exception is the character-
based PWI without language model, which per-
forms well on the PIT-2015 dataset without the 19-
layer CNN and comparably to logistic regression
with string overlap features (Eyecioglu and Keller,
2015). A closer look into the datasets reveals that
PIT-2015 has a similar level of unigram overlap as
the Twitter URL corpus (Table 5),2 but lower char-
acter bigram overlap (indicative of spelling varia-
tions) and lower word bigram overlap (indicative
of word reordering) between the pairs of sentences
that are labeled as paraphrase.

The 19-layer CNN appears to be crucial for the
MSRP dataset, which has the smallest training size

Twitter URL PIT-2015 MSRP
#char unigrams in shorter sentence (all) 67.5 36.2 109.0
#char unigrams in longer sentence (all) 97.7 50.5 128.5
#char unigrams of the union (all) 101.1 53.0 130.0
#char unigrams of the intersection (all) 64.1 33.7 107.4
char unigram overlap (all) 63.4% 63.5% 82.6%
char unigram overlap (paraphrase-only) 68.8% 67.0% 84.7%
char bigram overlap (all) 30.8% 33.6% 67.4%
char bigram overlap (paraphrase-only) 48.2% 42.4% 71.6%
word unigram overlap (all) 13.3% 21.7% 54.8%
word unigram overlap (paraphrase-only) 32.0% 30.2% 59.1%
word bigram overlap (all) 5.3% 8.4% 33.2%
word bigram overlap (paraphrase-only) 17.9% 12.3% 36.8%

Table 5: Character and word overlap comparison.

and is skewed toward very high word overlap.2

For the two social media datasets, our subword
models have improved performance compared to
pretrained word models regardless of having or not
having the 19-layer CNN.

5 Conclusion

We presented a focused study on the effective-
ness of subword models in sentence pair model-
ing and showed competitive results without using
pretrained word embeddings. We also showed that
subword models can benefit from multi-task learn-
ing with simple language modeling, and estab-
lished new start-of-the-art results for paraphrase
identification on two Twitter datasets, where out-
of-vocabulary words and spelling variations are
profound. The results shed light on future work
on language-independent paraphrase identifica-
tion and multilingual paraphrase acquisition where
pretrained word embeddings on large corpora are
not readily available in many languages.
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ing named entity recognition with neural character
embeddings. In Proceedings of the Fifth Named En-
tity Workshop.

Asli Eyecioglu and Bill Keller. 2015. ASOBEK: Twit-
ter paraphrase identification with simple overlap fea-
tures and SVMs. In Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation (SemEval).

Hua He and Jimmy Lin. 2016. Pairwise word interac-
tion modeling with deep neural networks for seman-
tic similarity measurement. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT).

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence (AAAI).

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017.
A continuously growing dataset of sentential para-
phrases. In Proceedings of The 2017 Conference on
Empirical Methods on Natural Language Process-
ing (EMNLP).

Wang Ling, Tiago Luı́s, Luı́s Marujo, Rámon Fernan-
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