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Abstract
We present a computational model to detect
and distinguish analogies in meaning shifts
between German base and complex verbs.
In contrast to previous corpus-based studies,
a novel dataset demonstrates that “regular”
shifts represent the smallest class. Classifica-
tion experiments relying on a standard simi-
larity model successfully distinguish between
four types of shifts, with verb classes boosting
the performance, and affective features for ab-
stractness, emotion and sentiment representing
the most salient indicators.

1 Introduction

German particle verbs are complex verb struc-
tures such as anstrahlen ‘to beam/smile at’ that
combine a prefix particle (an) with a base verb
(strahlen ‘to beam’). They are highly ambiguous,
and they often trigger meaning shifts of the base
verbs (Springorum et al., 2013; Köper and Schulte
im Walde, 2016). More specifically, Springorum
et al. (2013) presented a manual corpus explo-
ration suggesting regular mechanisms in mean-
ing shifts from base verbs (BVs) to particle verbs
(PVs) that apply across a semantically coherent
set of BVs. For example, the two sound BVs
brummen ’to hum’ and donnern ’to rumble’ both
describe a displeasing loud noise. Combining
them with the particle auf, the PVs aufbrummen
and aufdonnern are near-synonyms in one of their
senses, roughly meaning ’to forcefully assign a
task’. In a similar vein, Morgan (1997) used
schematic diagrams to illustrate meaning shifts of
English complex verbs with the particle out.

The goal of this work is to provide a computa-
tional model of meaning shifts for German parti-
cle verbs. We define our task from the perspec-
tive of an analogy, comparing a BV pair with a
PV pair, cf. Figure 1. A BV–PV model of regu-
lar meaning shifts expects (i) semantic coherence

sim(BV1,BV2) between the two BVs (i.e., overlap
in a selected set of semantically salient features),
(ii) strong semantic similarity sim(PV1,PV2) be-
tween the PVs, and (iii) low semantic similarity
sim(BVi,PVi) between the corresponding BV–PV
pairs, where the shifts take place.

sim(BV2,PV2)

sim(BV1,PV1)

sim(BV1,BV2) sim(PV1,PV2)

BV1brummen PV1aufbrummen

PV2aufdonnernBV2donnern

Figure 1: Analogy model applied to BV–PV shifts.

In a similar vein, a rich tradition on computa-
tional work on analogies focuses on finding a re-
lational analogy in multiple choices as required by
the SAT Scholastic Aptitude Test (Turney, 2006,
2012; Speer et al., 2017). While the SAT questions
provide a limited set of possible answers, more re-
cent attention has been spent on open vocabulary
tasks of the form A:B::C:? (Mikolov et al., 2013;
Levy and Goldberg, 2014).

The contribution of our analogy model is two-
fold: (i) it makes a step forward from hand-
selected manual datasets of meaning shifts to
larger-scale automatic classification; and (ii) it
aims to deepen the linguistic insights into com-
plex verb meaning shifts. While we focus on Ger-
man particle verbs, we expect our explorations to
be applicable also to other types of meaning shifts
or languages. Most importantly, we show that (a)
there are variants of (ir)regular meaning shifts that
go beyond what was found in corpus-based explo-
rations; (b) generalisation via classification boosts
the strengths of salient verb features; and (c) affec-
tive features (i.e., abstractness, emotion and senti-
ment) play the predominant role in similarity mod-
els of meaning shifts.
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2 A Collection of BV–PV Analogies

As to our knowledge, no datasets of human-
annotated complex verb meaning shifts are avail-
able, apart from small-scale case studies (Springo-
rum et al., 2013). We therefore collected human
judgements for analogy combinations of BV–PV
pairs of the form

BV1 : PV1 :: BV2 : PV2

such as klappern:abklappern::klopfen:abklopfen.
We aimed for ≈200 analogies per particle type,
focusing on the four highly frequent particle types
ab, an, auf, aus. The target selection was re-
stricted to PV1/PV2 combinations with identical
particles, and where the two PVs were deemed
(near-)synonyms according to the German stan-
dard dictionary DUDEN1 or the German Wik-
tionary2, as we were interested in BV–PV analo-
gies with semantically highly similar PVs.

In total, we collected 794 analogy questions.3

The BV–PV pairs were distributed over four lists
according to the four particle types, and annotated
by five German native speakers with a background
in linguistics. To avoid a sense-specific bias, we
provided no contextual information and therefore
conducted the annotation on the type level. The
annotators were asked to classify the analogies
into four categories to distinguish between mean-
ing shifts in no/one/both BV–PV pairs:

1. COMP: no BV–PV pair has a mean-
ing shift, i.e., both PVs are composi-
tional regarding their BVs, and therefore all
four verbs are (near-)synonyms; example:
(ab)feilen::(ab)schleifen ‘to grind (off)’

2. ASYMCOMP: only one of the BV–PV pairs
undergoes a meaning shift; in this case, the
annotators also indicated that pair; example:
(auf)wühlen::(auf)graben lit. ‘to churn::dig
(up)’, where aufwühlen includes a strong
emotion component

3. SHIFTDIFF: both BV–PV pairs show
a meaning shift, but the BVs are
not semantically similar; example:
(aus)baden::(aus)bügeln ‘to pay for an
error’ with baden ‘to take a bath’ and bügeln
‘to iron’

1www.duden.de/suchen/dudenonline/
2https://www.wiktionary.org/
3The dataset is publicly available at www.ims.

uni-stuttgart.de/data/pv-meaning-shift.

4. SHIFTREG: both BV–PV pairs undergo a
meaning shift, and the BVs are semantically
similar; example: (an)graben::(an)baggern
‘to hit on so.’ with both graben and baggern
‘to dig’

For practical reasons, we merged the left/right
asymmetric cases ASYMCOMP such that the an-
notated meaning shift was always on the left-hand
side (by swapping the asymmetric-right pairs),
since these cases represent instances of the same
phenomenon, i.e., where just one of the pairs un-
derwent a meaning shift.

Despite a distinction into four categories per in-
stance, we obtained a moderate Fleiss’ κ agree-
ment of 0.43 as the mean across the four particles:
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Figure 2: Number of majority class instances for four
meaning shift categories by particle type.

We transformed the annotations to actual class
assignments by removing all instances from the
dataset without a category majority, i.e., we only
included BV–PV analogy pairs where at least 3 out
of 5 annotators agreed on the shift category. We
assigned the majority decision as class label. The
final collection still contains 685 analogy pairs.

The distribution across the four particles and the
four categories is illustrated in Figure 2, examples
are listed in Table 1. While meaning shifts have
been observed across all four particle types, the
analogical case SHIFTREG mentioned in previous
corpus explorations represents the smallest class
overall (8.5%). For the particle an, the cases with
two meaning shifts (SHIFTDIFF+SHIFTREG) are
especially rare (16.2%).

A manual inspection revealed that etymology
and semantic change often led to opaque PVs an-
notated as SHIFTDIFF; an example is abkupfern
‘to plagiarise’. The origin of this meaning is based
on the 18th century engravers who etched replicas
of text and images into copper (Kupfer) plates.
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COMP ASYMCOMP SHIFTDIFF SHIFTREG

abfeilen::abschleifen abbauen::abmontieren abschreiben::abkupfern abstottern::abrattern
abkuppeln::abhängen abchecken::abprüfen abschweifen::abdriften abrauschen::abzischen
aneignen::anlernen anfeuern::anbrennen ankreiden::anlasten anheizen::anfeuern
anbrüllen::anschreien anhängen::anheften anfechten::angreifen anwerfen::anschmeißen
auftupfen::auftropfen aufdrehen::aufzwirbeln auftreiben::aufspüren aufwirbeln::aufrühren
auffuttern::aufessen aufmotzen::aufstylen aufkreuzen::auftauchen aufbrummen::aufdonnern
aufritzen::aufschlitzen aufwühlen::aufgraben auferlegen::aufbrummen aufkeimen::aufblühen
ausrupfen::ausjäten ausposaunen::ausplaudern ausfeilen::ausbrüten ausweinen::ausheulen
ausschnaufen::ausatmen aussaugen::auspumpen ausstechen::ausbremsen auskochen::ausbrüten

Table 1: Example of BV–PV analogies across the four meaning shift categories.

3 Representations of BV–PV Analogies

The parallelogram in Figure 1 illustrates the (dis-)
similarities between BVs and PVs that come into
play when distinguishing between the four types
of (non-)shifts in our dataset: COMP requires all
four sides in the parallelogram to provide strong
similarites; SHIFTREG requires the BVi–BVj and
the PVi–PVj sides to provide strong similarities,
and both BVi–PVi sides to provide strong dissim-
ilarities; etc. An obvious option to address the
classification of the BV–PV analogies is thus by
relying on standard cosine scores, when represent-
ing the verbs in a distributional semantic model
(DSM). The following paragraphs describe such
a basic cosine-similarity model that we used as a
baseline, as well as alternative features which we
added as potentially salient regarding our task.

3.1 Basic Distributional Similarity Model

We created a basic DSM to represent all BVs
and all PVs by using a corpus-derived 300-
dimensional vector representation. As corpus re-
source we relied on DECOW14AX, a German
web corpus containing 12 billion tokens (Schäfer
and Bildhauer, 2012; Schäfer, 2015). The verb
vectors were obtained by looking at all context
words within a symmetrical window of size 3.
We applied positive pointwise mutual information
(PPMI) feature weighting together with singular
value decomposition (SVD). Measuring the cosine
similarities between the BVs and PVs as suggested
by Figure 1 then represents our basic distributional
similarity model containing four cosine values.

Figure 3 looks into cosine values across com-
binations of meaning shift categories. Figure 3
(a) shows box plots for BV-PV pairs in the two
compositional categories vs. the meaning-shifted
categories. It illustrates that BV-PV combinations

with a meaning shift indeed have lower cosine val-
ues between BVs and PVs than BV-PV combina-
tions without meaning shifts. The similarity be-
tween BVs is expected to be higher for the reg-
ularly shifted cases, where the base verbs have
something in common, in contrast to the irregu-
lar cases. This is also confirmed, cf. Figure 3 (b).
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Figure 3: Cosine distributions across categories.

3.2 Generalisation Models

Classes and clusters are powerful techniques to
generalise over unseen or infrequent events. We
therefore extended the basic similarity model by
adding class label features for the four involved
verbs. We compared three different classifica-
tions. (1) We used the 15 verb classes from Ger-
maNet (Hamp and Feldweg, 1997; Kunze, 2000).
For particle verbs not covered by GermaNet, we
used the existing verbs as a seed set and applied a
nearest-prototype (centroid) classifier to all other
BVs and PVs, with a centroid for each of the 15
classes. Thus we were able to assign class labels
to all verbs in our dataset. (2) For three out of our
four particle types (ab, an, auf ), we found existing
manual semantic classifications with 9, 8 and 11
classes, respectively (Lechler and Roßdeutscher,
2009; Kliche, 2011; Springorum, 2011). To ob-
tain class labels for all verbs, we applied the same
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nearest-centroid technique as for the GermaNet
classes. (3) We compared the two resource-based
methods with an unsupervised k-Means clustering
based on the verbs’ vector representations. Unlike
the other methods, k-Means learns the centroids
without manually defined seed assignments. We
set the number of clusters to k = 10, as this gran-
ularity was similar to the manual classifications.

3.3 Affect Models

A BV–PV meaning shift often involves a change
in emotion and/or sentiment. For example, while
the BV servieren ‘to serve’ is perceived as rather
neutral or slightly positive, the PV abservieren ‘to
dump sb.’ has a clearly negative meaning and cor-
relates with the emotion sadness. On the other
hand, the BV motzen ‘to grumble’ is associated
with a negative sentiment and the emotion anger,
while its PV aufmotzen ‘to shine up, soup up’ in-
dicates a positive change.

In a slightly different vein, non-literal word us-
age often correlates with the degree of abstract-
ness of the word’s contexts (Turney et al., 2011;
Tsvetkov et al., 2014; Köper and Schulte im
Walde, 2016). For example, the PV abschminken
with the BV schminken ‘to put on make-up’ has a
literal, very concrete meaning (‘to remove make-
up’) and also a shifted, very abstract non-literal
meaning (‘to forget about something’).

We enriched the basic similarity model by inte-
grating affective information from human-created
lexicons. Since affective datasets are typically
small-scale and mostly exist for English, we ap-
plied a cross-lingual approach (Smith et al., 2017)
to learn a linear transformation that aligns mono-
lingual vectors from two languages in a single vec-
tor space. We took off-the-shelf word represen-
tations4 for German and English that live in the
same semantic space, learned a regression model
based on the English data, and applied it to the
German data by relying on findings from Köper
and Schulte im Walde (2017), who showed that a
feed-forward neural network obtained a high cor-
relation with human-annotated ratings.

The procedure was applied to a range of affec-
tive norm datasets in isolation: The NRC Hashtag
Emotion Lexicon (Mohammad and Kiritchenko,
2015) contains emotional ratings for 17k words;
we used anger, disgust, fear, joy, and sadness.

4https://github.com/Babylonpartners/
fastText_multilingual

Warriner et al. (2013) collected 14k ratings for va-
lence and arousal. For concreteness, we relied on
the 40k ratings from Brysbaert et al. (2014). Fi-
nally, we used the 10k ratings for happiness from
Dodds et al. (2011). In total, we obtained nine af-
fective values for 2.2 million words.5

We added the affective features to our basic sim-
ilarity model by first looking up the 9-dimensional
affect vectors for all four verbs involved in an anal-
ogy, and then calculating for each of the four simi-
larities in the analogy parallelogram (Figure 1) the
element-wise differences between the nine affec-
tive dimensions of the respective two verbs, result-
ing in 4× 9 = 36 extra vector dimensions.

In addition to looking at the verbs’ affective val-
ues we also looked at the affect of the respective
context words: For each verb we created a second
9-dimensional vector with average affective values
across the 500 most associated context words, ac-
cording to PPMI. With respect to the four verbs in
the analogy, this resulted in another 4 × 9 = 36
extra vector dimensions.

We further added affect information restricted
to the common context words of the involved
verbs (red and blue intersections in Figure 4):
For each intersection of the two BVs and the
two PVs as well as the two BV–PV combina-
tions, we learned another 9-dimensional emotional
centroid, now only based on the shared context
words, and provided the element-wise differences
between the two centroids as a feature.

PV1 ∩ PV2 −BV1 ∩BV2.

BV1 BV2

PV1 PV2

PV1 ∩BV1 − PV2 ∩BV2.

BV1 BV2

PV1 PV2

Figure 4: Venn diagrams with intersections.

4 Experiments on BV–PV Analogies

Two classification scenarios were implemented: a
four-class distinction between our four shift cat-
egories (4-Classes), and a binary distinction be-
tween cases where both BV–PV pairs include a

5These ratings are also available at www.ims.
uni-stuttgart.de/data/pv-meaning-shift.
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COMP: (ab)montieren

(to mount → to dismount)
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SHIFT: (ab)frühstücken

(to have breakfast → to fob sb. off)
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Anger
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SHIFT: (ab)servieren

(to serve → to dump sb.)

Figure 5: Changes in affect and emotion for one compositional and two shifted BV–PV pairs. The affect/emotion
values are based on the top associated context words according to PPMI.

meaning shift vs. BV–PV pairs including cases of
compositionality (Shift-vs-Comp).

We applied a supervised classification setting
based on support vector machines (SVMs) with an
RBF kernel (Chang and Lin, 2011), using 10-fold
cross-validation. Next to the similarity, generali-
sation and affect features, we provided the particle
type as a feature in all settings. Table 2 reports the
results across feature sets. As evaluation metric
we report accuracy and a macro-average (equally-
weighted) f-score (F1) over all classes.

4-Classes Shift-vs-Comp
Acc F1 Acc F1

Majority baseline 31.24 .12 60.29 .38
Basic Sim 40.73 .32 65.10 .60

Sim+GermaNet 43.36 .34 67.15 .59
Sim+ManClass 45.55 .36 69.05 .62
Sim+k-Means 52.99 .37 70.51 .66

Affect (full) 57.08 .44 76.49 .74
Affect only verbs 47.73 .37 69.05 .65
Affect only context 58.39 .45 78.54 .77

Combination 56.20 .44 77.08 .75

Table 2: Results for 4- and 2-class distinctions, re-
porting accuracy and macro-F1.

All models perform significantly6 better than
the majority baseline. In addition, the full and
the context-only affective models perform signif-
icantly better than the similarity models with and
without generalisation, even though the unsuper-
vised k-Means clustering improves the basic simi-
larity model significantly (Sim+k-Means). Finally,
the context-only affective model outperforms the
verb-only affective model. Interestingly, a combi-
nation of all features (Combination) does not per-
form better than the context-only affective model

6Significance relies on χ2 with p < 0.001.

in isolation.

A leave-one-out classification using the best
classifier Affect only context as starting point re-
vealed that most performance (accuracy) is lost
when removing the emotion fear (-2.77), followed
by the emotion joy (-1.46) and arousal (-0.88). In
contrast, features related to disgust showed no im-
pact on the overall performance.

Figure 5 illustrates that we can spot changes in
affect and emotion even on the verb level: For
three BV–PV verb pairs with particle ab, it plots
the nine affective and emotion ratings for both
verbs, after rescaling to an interval of [0, 10]. In
the compositional case (a) the PV is highly similar
to the BV in all dimensions, creating roughly the
same shape as the BV. In the shift cases (b) and (c),
the PVs are less concrete and evoke less happiness
and joy than the BVs, while they evoke more fear,
anger and sadness in comparison to their BVs.

5 Conclusion

This paper presented a computational model of
meaning shifts for German particle verbs. Re-
lying on a novel dataset, we found that shifts
were observed across all our four particle types,
but the analogical case mentioned in previous
corpus explorations only represented the smallest
class overall (8.5%). SVM models successfully
distinguished between shift categories, with verb
classes boosting standard cosine similarity perfor-
mance, and affective context features representing
the most salient indicators.
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otr Bański, Hanno Biber, Evelyn Breiteneder, Marc
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