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Abstract

We propose a novel recurrent neural
network-based approach to simultane-
ously handle nested named entity recogni-
tion and nested entity mention detection.
The model learns a hypergraph represen-
tation for nested entities using features ex-
tracted from a recurrent neural network.
In evaluations on three standard data sets,
we show that our approach significantly
outperforms existing state-of-the-art meth-
ods, which are feature-based. The ap-
proach is also efficient: it operates lin-
early in the number of tokens and the num-
ber of possible output labels at any token.
Finally, we present an extension of our
model that jointly learns the head of each
entity mention.

1 Introduction

Named entity recognition (or named entity detec-
tion) is the task of identifying text spans associated
with proper names and classifying them according
to their semantic class such as person, organiza-
tion, etc. It is related to the task of mention detec-
tion (or entity mention recognition) in which text
spans referring to named, nominal or prominal en-
tities are identified and classified according to their
semantic class (Florian et al., 2004). Both named
entity recognition and entity mention detection are
fundamental components in information extrac-
tion systems: several downstream tasks such as re-
lation extraction (Mintz et al., 2009), coreference
resolution (Chang et al., 2013) and fine-grained
opinion mining (Choi et al., 2006) rely on both.

Many approaches have been successfully em-
ployed for the tasks of named entity recognition
and mention detection, including linear-chain con-
ditional random fields (Lafferty et al., 2001) and

semi-Markov conditional random fields (Sarawagi
and Cohen, 2005). However, most such methods
suffer from an inability to handle nested named
entities, nested entity mentions, or both. As a re-
sult, the downstream tasks necessarily ignore these
nested entities along with any semantic relations
among them. Consider, for example, the excerpts
below:

(S1) Employing the [EBV - transformed [human
B cell line]CELL LINE ]CELL LINE SKW6.4, we
demonstrate . . .

(S2) . . . [the burial site of [Sheikh Abbad]PERSON

]LOCATION is located . . .

S1 shows a nested named entity from the GENIA
dataset (Ohta et al., 2002): “human B cell line”
and “EBV - transformed human B cell line” are
both considered named entities of type CELL LINE

where the former is embedded inside the latter. S2,
derived from the ACE corpora1, shows a PERSON

named entity (“Sheikh Abbad”) nested in an en-
tity mention of type LOCATION (“the burial site
of Sheikh Abbad”). Most existing methods for
named entity recognition and entity mention de-
tection would miss the nested entity in each sen-
tence.

Unfortunately, nested entities can be fairly com-
mon: 17% of the entities in the GENIA corpus
are embedded within another entity; in the ACE
corpora, 30% of sentences contain nested named
entities or entity mentions, thus warranting the de-
velopment of efficient models to effectively handle
these linguistic phenomena.

Feature-based methods are the most common
among those proposed for handling nested named
entity and entity mention recognition. Alex et al.

1https://catalog.ldc.upenn.edu/
LDC2005T09 (ACE2004) and https://catalog.
ldc.upenn.edu/LDC2006T06 (ACE2005)
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(2007), for example, proposed a cascaded CRF
model but it does not identify nested named enti-
ties of the same type. Finkel and Manning (2009)
proposed building a constituency parser with con-
stituents for each named entity in a sentence. Their
approach is expensive, i.e., time complexity is cu-
bic in the number of words in the sentence. Lu and
Roth (2015) later proposed a mention hypergraph
model for nested entity detection with linear time
complexity. And recently, Muis and Lu (2017)
introduced a multigraph representation based on
mention separators for this task. All of these mod-
els depend on manually crafted features. In ad-
dition, they cannot be directly applied to extend
current state-of-the-art recurrent neural network-
based models — for flat named entity recognition
(Lample et al., 2016) or the joint extraction of en-
tities and relations (Katiyar and Cardie, 2016) —
to handle nested entities.

In this paper, we propose a recurrent neural
network-based model for nested named entity and
nested entity mention recognition. We present
a modification to the standard LSTM-based se-
quence labeling model (Sutskever et al., 2014)
that handles both problems and operates linearly
in the number of tokens and the number of pos-
sible output labels at any token. The proposed
neural network approach additionally jointly mod-
els entity mention head2 information, a subtask
found to be useful for many information extrac-
tion applications. Our model significantly outper-
forms the previously mentioned hypergraph model
of Lu and Roth (2015) and Muis and Lu (2017) on
entity mention recognition for the ACE2004 and
ACE2005 corpora. It also outperforms their model
on joint extraction of nested entity mentions and
their heads. Finally, we evaluate our approach on
nested named entity recognition using the GENIA
dataset and show that our model outperforms the
previous state-of-the-art parser-based approach of
Finkel and Manning (2009).

2 Related Work

Several methods have been proposed for named
entity recognition in the existing literature as sum-
marized by Nadeau and Sekine (2007) in their sur-
vey paper. Early techniques in the supervised do-
main have been based on hidden markov models
(e.g., Zhou and Su (2002)) or, later, conditional

2This involves identifying the headword of a named entity
or entity mention.

random fields (CRFs) (e.g., McDonald and Pereira
(2005)).

Many fewer approaches, however, have ad-
dressed the problem of nested entities. Alex
et al. (2007) presented several techniques based
on CRFs for nested named entity recognition for
the GENIA dataset. They obtained their best re-
sults from a cascaded approach, where they ap-
plied CRFs in a specific order on the entity types,
such that each CRF utilizes the output derived
from previous CRFs. Their approach could not
identify nested entities of the same type. Finkel
and Manning (2009) proposed a CRF-based con-
stituency parser for nested named entities such that
each named entity is a constituent in the parse tree.
Their model achieved state-of-the-art results on
the GENIA dataset. However, the time complexity
of their model is O(n3), where n is the number of
tokens in the sentence, making inference slow. As
a result, we do not adopt their parse tree-based rep-
resentation of nested entities and propose instead a
linear time directed hypergraph-based model sim-
ilar to that of Lu and Roth (2015). Directed hyper-
graphs were also introduced for parsing by Klein
and Manning (2001).

While most previous efforts for nested entity
recognition were limited to named entities, Lu
and Roth (2015) addressed the problem of nested
entity mention detection where mentions can ei-
ther be named, nominal or pronominal. Their
hypergraph-based approach is able to represent
the potentially exponentially many combinations
of nested mentions of different types. They
adopted a CRF-like log-linear approach to learn
these mention hypergraphs and employed several
hand-crafted features defined over the input sen-
tence and the output hypergraph structure. Our ap-
proach also learns a similar hypergraph represen-
tation with differences in the types of nodes and
edges in the hypergraph. It does not depend on any
manually crafted features. Also, our model learns
the hypergraph greedily and significantly outper-
forms their approach.

Recently, Muis and Lu (2017) introduced the
notion of mention separators for nested entity
mention detection. In contrast to the hypergraph
representation that we and Lu and Roth (2015)
adopt, they learn a multigraph representation and
are able to perform exact inference on their struc-
ture. It is an interesting orthogonal possible ap-
proach for nested entity mention detection. How-
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ever, we will show that our model also outper-
forms their approach on all tasks.

Recently, recurrent neural networks (RNNs)
have been widely applied to several sequence
labeling tasks achieving state-of-the-art results.
Lample et al. (2016) proposed neural models
based on long short term memory networks
(LSTMs) and CRFs for named entity recognition
and another transition-based approach inspired by
shift-reduce parsers. Both models achieve per-
formance comparable to a state-of-the-art model
(Luo et al., 2015), but neither handles nested
named entities.

3 Encoding Scheme

Figure 1 shows the desired sequence tagging out-
put for each of three overlapping PER entities
(“his”, “his fellow pilot” and “his fellow pi-
lot David Williams”) according to the standard
BILOU tag scheme. Our approach relies on the
fact that we can (1) represent these three tag se-
quences in the single hypergraph structure of Fig-
ure 2 and then (2) design an LSTM-based neu-
ral network that produces the correct nested en-
tity hypergraph for a given input sentence. In the
paragraphs just below we provide a general de-
scription of hypergraphs and our task-specific use
of them. Sections 3.1 and 3.2 describe the hy-
pergraph construction process; Section 4 presents
the LSTM-based sequence tagging method for au-
tomating hypergraph construction.

We express our structured prediction problem
such that it corresponds to building a hypergraph
that encodes the token-level gold labels for all en-
tities in the input sentence.3 In particular, we rep-
resent the problem as a directed hypergraph. For
those new to this formalism, directed hypergraphs
are very much like standard directed graphs except
that nodes are connected by hyperarcs that con-
nect a set of tail nodes to a set of head nodes. To
better explain our desired output structure, we fur-
ther distinguish between two types of hyperarcs
— normal edges (or arcs) that connect a single
tail node to a single head node, and hyperarcs that
contain more than one node either as the head or
as the tail. The former are shown as straight lines
in Figure 2; the latter as curved edges.

3We note that the complete hypergraph for the example
in Figure 1 would include nodes for all possible label types
at each timestep and all possible hyperarcs between them. In
this work, however, we only greedily build a sub-hypergraph
for the gold labels when training.

In our encoding of nested entities, a hyperarc is
introduced when two or more entity mentions re-
quiring different label types are present at the same
position. In Figure 2, for example, the nodes “O”
(corresponding to the input token “that”) and the
nodes “U PER” and “B PER” (corresponding to
the input token “his”) are connected by a hyper-
arc because three entity mentions start at this time
step from the tail “O” node (two of which share
the “B PER” tag).4

3.1 Hypergraph Construction

Let us first discuss how the problem of nested en-
tity recognition can be expressed as finding a hy-
pergraph. Our goal is to represent the BILOU tag
sequences associated with “his”, “his fellow pilot”
and “his fellow pilot David Williams” as the single
hypergraph structure of Figure 2. This is accom-
plished by collapsing the shared states (labels) in
the output entity label sequences into a single state
as shown in Figure 2: e.g., the three “O” labels for
“that” become a single “O”; the two “B PER” la-
bels at “his” are collapsed into one “B PER” node
that joins “U PER”, the latter of which represents
the entity mention “his”. Thus at any time step,
the representation size is bounded by the number
of possible output states instead of the potentially
exponential number of output sequences. We then
also adjust the directed edges such that they have
the same type of head node and the same type of
tail node as before in Figure 1.

If we look closely at Figure 2 then we realise
that there is an extra “O” node in the hypergraph
corresponding to the token “his” which did not ap-
pear in any entity output sequence in Figure 1:
in our task-specific hypergraph construction we
make sure that there is an “O” node at every
timestep to model the possibility of beginning of
a new entity. The need for this will become more
clear in Section 4.

Note that the hypergraph representation of our
model is similar to Lu and Roth (2015). Also, the
expressiveness of our model is exactly the same as
Lu and Roth (2015); Muis and Lu (2017). The ma-
jor difference in the two approaches is in learning.

4In contrast, note that the nodes “L PER” and “O” corre-
sponding to the input token “pilot” and the node “O” cor-
responding to the token “David” are connected by normal
edges. Hence, our hypergraph structure contains only one
special kind of hyperarc which connects a single tail node to
multiple head nodes. We do not have hyperarcs that connect
multiple tail nodes to a single head node.

863



Figure 1: Nested entity mentions in an unfolded hypergraph. Each row corresponds to an entity mention
sequence using the well known B (beginning of mention), I (inside a mention), L (last token of an
entity mention), O (outside any entity mention), U (a single-token entity mention) tagging scheme.

Figure 2: Directed hypergraph constructed for the example shown in Figure 1. Curved edges represent
hyperarcs and straight edges are normal edges.

3.2 Edge Probability

In this section, we discuss our assignment of prob-
abilities to all the possible edges from a tail node
which helps in the greedy construction of the hy-
pergraph. Thus at any timestep t, let gt−1 be the
tail node and x be the current word of the sentence;
then we model probability distribution over all the
possible types of head nodes (different output tag
types) conditioned on the tail node and the current
word token. In our work we use hidden represen-
tations learned from an LSTM model as features to
learn these probability distributions using a cross-
entropy objective.

It is important to note that there are two types of
directed edges in this hypergraph – simple edges
for which there is only one head node for every
tail node which can be learned as in a traditional
sequence labeling task, or hyperarcs that connect
more than one head node to a tail node. We learn
the set of head nodes connected to a tail node by
expressing it as a multi-label learning problem as
described in Section 5.

3.3 Extracting Entity Mentions

As described in Section 3.2, we can assign prob-
abilities to the different types of edges in the hy-
pergraph and at the time of decoding we choose
for each token the (normal) edge(s) with maxi-
mum probability and the hyperarcs with probabil-
ity above a predefined threshold. Thus, we can
extract edges at the time of decoding. Ultimately,

however, we are interested in extracting nested en-
tities from the hypergraph. For this, we construct
an adjacency matrix from the edges discovered
and perform depth-first search from the sentence-
initial token to discover the entity mentions. This
is described in detail in Section 5.1.

4 Method

We use a standard LSTM-based sequence label-
ing model to learn the nested entity hypergraph
structure for an input sentence. Figure 3 shows
part of the network structure. It is a standard bi-
directional LSTM network except for a difference
in the top hidden layer. When computing the rep-
resentation of the top hidden layer L at any time
step t, in addition to making use of the hidden unit
representation from the previous time step t − 1
and hidden unit representation from the preceding
layer L− 1, we also input the label embedding of
the gold labels from the previous time step. For
the token “fellow” in Figure 3, for example, we
compute three different top hidden layer represen-
tations, conditioned respectively on the three la-
bels “U PER”, “B PER” and “O” from the previ-
ous time step t− 1. Thus, we can model complex
interactions between the input and the output. Be-
fore passing the learned hidden representation to
the next time step, we average the three different
top hidden layer representations. In this manner,
we can model the interactions between the differ-
ent overlapping labels and also it is computation-
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Figure 3: Dynamically computed network structure based on bi-LSTMs for nested entity mention ex-
traction. We show part of the structure for the entity mentions in the running example in Figure 1.

ally less expensive than storing the hidden layer
representations for each label sequence.

4.1 Multi-layer Bi-LSTM

We use a multi-layer bi-directional LSTM en-
coder, for its strength in capturing long-range de-
pendencies between tokens, a useful property for
information extraction tasks.

Using LSTMs, we can compute the hidden state−→
ht in the forward direction and

←−
ht in the backward

direction for every token, and use a linear combi-
nation of them as the token representation:

−→
h

(l)
t = LSTM(xt,

−→
h t−1)

←−
h

(l)
t = LSTM(xt,

←−
h t+1)

z
(l)
t =

−→
V
−→
h

(l)
t +

←−
V
←−
h

(l)
t + bl

4.2 Top Hidden Layer

At the top hidden layer, we have a decoder-style
model, with a crucial twist to accommodate the
hypergraph structure, which may have multiple
gold labels at the previous step. At each token t
and for each gold label at the previous step gkt−1,
our network takes the hidden representation from
the previous layer z(L−1)

t , the hidden decoder state
h

(L)
t−1, as well as the gold label embedding gk

t−1

from the previous time step, and computes:

h
(L),k
t = LSTM(z

(L−1)
t ,h

(L)
t−1, g

k
t−1)

Unlike the encoder LSTM, this decoder LSTM
is single-directional and bifurcates when multiple
gold labels are present. We use the decoder hidden
states h

(L),k
t in the output layer for prediction, as

explained in Section 4.3. However, before passing

the hidden representation to the next time step we
average h

(L),k
t over all the gold labels k:

h
(L)
t =

1

|Gt−1|
∑

k

h
(L),k
t

Thus, h(L)
t summarizes the information for all the

gold labels from the previous time step.

4.3 Entity Extraction
For each token t and previous gold label gkt−1, we

use the decoder state h(L),k
t to predict a probability

distribution over the possible candidate labels us-
ing a linear layer followed by a normalizing trans-
form (illustrated below with softmax). The out-
puts can be interpreted as conditional probabilities
for the next label given the current gold label:

ok
t = Uh

(L),k
t + b

êkt = softmax(ok
t )

p(yt = c|yt−1 = gkt−1) = (ekt )c

Special care is required, however, since the desired
output has hyperarcs. As shown in Figure 2, there
is an hyperarc between “I PER” corresponding to
the token “fellow” and the label set “L PER” and
“I PER” corresponding to the token “pilot”. Thus,
in our network structure conditioned on the previ-
ous label “I PER” in this case, we would like to
predict both “L PER” and “I PER” as the next la-
bels. To accommodate this, we use a multi-label
training objective, as described in Section 5.

5 Training

We train our model using two different multi-label
learning objectives. The idea is to represent the
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ACE2004 ACE2005
Method P R F1 P R F1

MH-F (Lu and Roth, 2015) 70.0 59.2 63.8 70.0 56.9 62.8

Muis and Lu (2017) 72.7 58.0 64.5 69.1 58.1 63.1

LSTM-flat 70.3 48.4 57.3 62.4 49.4 55.1

LSTM-output layer 72.0 63.3 67.4 66.3 68.2 67.2

Our model (softmax) 72.2 65.2 68.5 70.1 67.9 69.0

Our model (sparsemax) 73.6 71.8 72.7 70.6 70.4 70.5

Table 1: Performance on ACE2004 and ACE2005 test set on mention extraction and classification.

gold labels as a distribution over all possible la-
bels, encoded as a vector e. Hence, for simple
edges, the distribution has a probability of 1 for
the unique gold label (eg = 1), and 0 everywhere
else. For hyperarcs, we distribute the probability
mass uniformly over all the gold labels in the gold
label set (ekg = 1

|G| for all k). Thus, for the exam-
ple described earlier in Section 4.3, both the labels
“L PER” and “I PER” receive a probability of 0.5
in the gold label distribution ekt , conditioned on
the label “I PER” from the previous time step.

Softmax. Our first training method uses soft-
max to estimate the predicted probabilities, and
the KL-divergence multi-label loss between the
true distribution ekt and the predicted distribution
êkt = softmax(ok

t ):

`kt(softmax) = −
∑

c

(
ekt

)
c
log
(
êkt

)
c

Sparsemax. Our second training method makes
use of sparsemax, recently introduced by Martins
and Astudillo (2016) as a sparse drop-in replace-
ment to softmax, as well as a loss function. Unlike
softmax, which always outputs a nonzero proba-
bility for any output, sparsemax outputs zero prob-
ability for most of the unlikely classes, leading to
good empirical results on multi-label tasks. For
our problem, there are only a few nested entities at
any timestep in the gold labels thus using a train-
ing objective that learns a sparse distribution is
more appropriate. Sparsemax can be used to filter
part of the output space as in the case for multi-
label problems thus leaving non-zero probability
on the desired output labels.

Formally, sparsemax returns the euclidean pro-
jection of its input o onto the probability simplex:

ê = sparsemax(o) := argmin
ê∈∆

‖o− ê‖2

The corresponding loss, a sparse version of the KL
divergence, is (up to a constant):

`kt(sparsemax) = −2ekt
>
ok
t+

∑

c:(êkt )c 6=0

(
(ok

t )
2
c − τ2

)

This function is convex and differentiable, and the
quantity τ is a biproduct of the simplex projection,
as described in Martins and Astudillo (2016).

For either choice of probability estimation, the
total loss of a training sample is the sum of losses
for each token and for each previous gold label:

L =
∑

t

∑

k∈Gt−1

`kt .

5.1 Decoding

At the time of inference, we greedily decode
our hypergraph from left-to-right to find the most
likely sub-hypergraph. During training, at each
timestep the most likely label set is learned condi-
tioned on a gold label from the previous timestep.
However, gold labels are not available at test time.
Thus, we use the predicted labels from the previ-
ous time step as an input to the current time step
to find the most likely label set. We use a hard
threshold T to determine the predicted label set
P k
t = {c :

(
êkt
)
c
> T}

We can get the most likely label set P c
t for

any predicted label at the previous time step c ∈
P k
t−1 using the above decoding strategy. We now

combine these inferences to find the most likely
entity mention sequences. We construct an ad-
jacency matrix A for each time step, such that
A[êct−1][êkt ] += 1 for every c in the predicted la-
bel set P k

t at timestep t conditioned on êkt and for
every k in predicted labels Pt−1 at time step t− 1.
This can be viewed as a directed hypergraph with
several connected components. We then perform
a depth-first search on this directed hypergraph to
find all the entity mentions in the sentence.
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5.2 Modeling Entity Heads for ACE datasets

The ACE datasets also have annotations for men-
tion heads along with the entity mentions. For
example, a sentence with the entity mention “the
U.S. embassy” also contains an annotation for its
head word which is “embassy” in this case. Thus,
we modify our model to also extract the head of
the entity mentions for ACE dataset. We jointly
model the entity mentions and their heads. To
do this, we propose a simple extension to our
model by only changing the output label sequence.
We introduce new labels starting with “H” to in-
dicate that the current token in the entity men-
tion is part of its head. Thus, we only change
the output label sequence for the entity mentions
to include the head label: We train with the la-
bel sequence “B ORG I ORG H ORG” instead of
“B ORG I ORG L ORG”. Also, for all our entity
sequences we predict the “O” tag at the end, hence
we can still extract the entity mentions. At decod-
ing time, we output the sequence of words with the
“H” tag as the head words for a mention.

6 Experiments

We evaluate our model on two tasks – nested entity
mention detection for the ACE corpora and nested
named entity recognition for the GENIA dataset.

6.1 ACE Experiments

6.1.1 Data
We perform experiments on the English section of
the ACE2004 and ACE2005 corpora. There are
7 main entity types — Person (PER), Organiza-
tion (ORG), Geographical Entities (GPE), Loca-
tion (LOC), Facility (FAC), Weapon (WEA) and
Vehicle (VEH). For each entity type, there are
annotations for the entity mention and mention
heads.

6.1.2 Evaluation Metrics
We use a strict evaluation metric similar to Lu and
Roth (2015): an entity mention is considered cor-
rect if both the mention span and the mention type
are exactly correct. Similarly, for the task of joint
extraction of entity mentions and mention heads,
the mention span, head span and the entity type
should all exactly match the gold label.

6.1.3 Baselines and Previous Models
We compare our model with the feature-based
model (MH-F) on hypergraph structure (Lu and

Roth, 2015) on both entity mention detection as
well as the joint mention and mention heads ex-
traction. We also compare with Muis and Lu
(2017) on entity mention detection only as their
model cannot detect head phrases of the entity
mentions. Lu and Roth (2015) compare their
approach with CRF-based approaches such as a
linear-chain CRF, semi-markov CRF and a cas-
caded approach (Alex et al., 2007) and show that
their model outperforms them. Hence, we do not
include those results in our paper.

We also implement several LSTM-based base-
lines for comparison. Our first baseline is a stan-
dard sequence labeling LSTM model (LSTM-flat).
A sequence model is not capable of handling
the nested mentions, so we remove the embed-
ded entity mention and keep the mention longer
in length. Our second baseline is a hypergraph
model (LSTM-output layer) except that the de-
pendencies are only modeled at the output layer
and hence there are no connections to the top-
hidden layer from the label embeddings from the
previous timestep; instead, these connections are
limited to the output layer.

6.1.4 Hyperparameters and Training Details
We use Adadelta (Zeiler, 2012) for training our
models. We initialize our word vectors with
300-dimensional word2vec (Mikolov et al., 2013)
word embeddings. These word embeddings are
tuned during training. We regularize our network
using dropout (Srivastava et al., 2014), with the
dropout rate tuned on the development set. There
are 3 hidden layers in our network and the dimen-
sionality of hidden units is 100 in all our experi-
ments. And we set the threshold T as 0.3.

6.1.5 Results
We show the performance of our approaches in
Table 1 compared to the previous state-of-the-art
system (Lu and Roth, 2015; Muis and Lu, 2017)
on both the ACE2004 and ACE2005 datasets. We
find that our LSTM-flat baseline that ignores em-
bedded entity mentions during training performs
worse than Lu and Roth (2015); however, our
other neural network-based approaches all outper-
form the previous feature-based approach. Among
the neural network-based models, we find that our
models that construct a hypergraph perform better
than the LSTM-flat models. Also, our approach
that models dependencies between the input and
the output by passing the prediction from the pre-
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ACE2004 ACE2005
Method P R F1 P R F1

MH-F (Lu and Roth, 2015) 74.4 50.0 59.8 63.4 53.8 58.3

Our model(softmax) 68.2 60.5 64.2 67.5 62.3 64.8

Our model(sparsemax) 72.3 66.8 69.7 70.6 69.8 70.2

Table 2: Performance on ACE2004 and ACE2005 test set on joint entity mention and its head prediction.
Muis and Lu (2017) do not predict head of the nested entity mentions.

vious timestep as shown in Figure 3 performs bet-
ter than the LSTM-output layer model which only
models dependencies at the output layer. Also,
as expected, the sparsemax method that produces
a sparse probability distribution performs better
than the softmax approach for modeling hyper-
edges. In summary, our sparsemax model is the
best performing model.

Joint Modeling of Heads We report the perfor-
mance of our best performing models on the joint
modeling of entity mentions and its head in Ta-
ble 2. We show that our sparsemax model is still
the best performing model. We also find that as
the total number of possible labels at any timestep
increases because of the way we implemented the
entity heads, the gains that we get after incorporat-
ing sparsemax are significantly higher compared
to the results shown in Table 1.

6.2 GENIA Experiments

6.2.1 Data
We also evaluate our model on the GENIA dataset
(Ohta et al., 2002) for nested named entity recog-
nition. We follow the same dataset split as Finkel
and Manning (2009); Lu and Roth (2015); Muis
and Lu (2017). Thus, the first 90% of the sen-
tences were used in training and the remaining
10% were used for evaluation. We also consider
five entity types – DNA, RNA, protein, cell line
and cell type.

6.2.2 Baselines and Previous Models
We compare our model with Finkel and Manning
(2009) based on a constituency CRF-based parser
and the mention hypergraph model by Lu and Roth
(2015) and a recent multigraph model by Muis and
Lu (2017).

6.2.3 Results
Table 3 shows the performance of our different
models compared to the previous models. Interest-
ingly, our LSTM-flat model outperforms Lu and

Method P R F1

Finkel and Manning (2009) 75.4 65.9 70.3

MH-F (Lu and Roth, 2015) 72.5 65.2 68.7

Muis and Lu (2017) 75.4 66.8 70.8

LSTM-flat 75.5 63.5 68.9

LSTM-output layer 78.4 67.9 72.8

Our model (softmax) 76.7 71.1 73.8
Our model (sparsemax) 79.8 68.2 73.6

Table 3: Performance on the GENIA dataset on
nested named entity recognition.

Roth (2015). We suspect that it is because we use
pretrained word embeddings5 trained on PubMed
data (Pyysalo et al., 2013) whereas Lu and Roth
(2015) did not have access to them. We again
find that our neural network model outperforms
the previous state-of-the-art (Finkel and Manning,
2009; Muis and Lu, 2017) system. However, we
see that both softmax and sparsemax models per-
form comparably on this dataset.

7 Error Analysis

Consistent with existing results on the joint model-
ing of related tasks in NLP, we find that joint mod-
eling of heads and their entity mentions leads to an
increase in F-score by 1pt (i.e., 71.4 for the sparse-
max model on the ACE2005 dataset) on the per-
formance of the entity mentions. The precision on
extracting entity mentions is 72.1 (vs. 70.6 in Ta-
ble 1) for our sparsemax model for the ACE2005
dataset.

Example S1 below compares the output from a
softmax vs. a sparsemax model on the joint mod-
eling of an entity mention and its head on the
ACE2005 dataset. Gold-standard annotations are
shown in red.

(S1) [[[ They]]]PERSON don’t abandon [[[[[
their]]]PERSON patients] ]PERSON, except

5Word vectors trained on PubMed data are available at
http://bio.nlplab.org/#source-data.
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for the high premiums of a few specialities?

Based on the gold standard, the models are re-
quired to extract “their” — an entity mention of
type PER as well as its head — and “their pa-
tients”, which overlaps with the previous entity
mention “their” and has the head word “patients”.
This means that the models are required to pre-
dict a hyperedge from “O” to “H PER; B PER”.
We find that the softmax model shown in blue
can only predict the entity mention “their” omit-
ting completely the entity mention “their patients”
whereas the sparsemax model shown in green can
predict both nested entities. Overall then, sparse-
max seems to allow the modeling of hyperedges
more efficiently compared to the softmax model
and performance gains are due to extracting more
nested entities with the help of sparsemax model.

7.1 Limitations and Future Directions
We also manually scanned the test set predictions
on ACE dataset for our sparsemax model to under-
stand its current limitations.

Document Context. Given the following sen-
tence

(S2) [They]VEHICLE roar, [they]VEHICLE screech.

the sparsemax model predicts both entity mentions
of “they” as PER entity type. Only if the previous
sentence in the corpus is accessible — “And if you
ride inside that tank, it is like riding in the bowels
of a dragon” — can we understand that “they” in
S2 refers to the tank and hence is a VEH. Thus, our
model can be improved by providing additional
context for each sentence rather than making pre-
dictions on each sentence in the corpus indepen-
dently.

Pronominal Entity Mention (It). Next, con-
sider examples S3 and S4:

(S3) [It]FACILITY also seemed to be [some kind of
monitoring station]FACILITY.

(S4) It does not matter to [these people]PERSON that
crime has skyrocketed . . .

In the example sentences, “It” refers to a facility
and an event, respectively. Our model does not
distinguish between the two cases and always pre-
dicts the token “It” as a non-entity. We found this
true for all occurrences of the token “It” in our test
set. The incorporation of coreference information
can potentially overcome this limitation.

Inconsistency in Gold-standard Annotations.
We also identified potential inconsistencies in the
gold-standard annotations.

(S5) . . . results may affect what happens to [both
of these teams]ORG, but in just . . .

For S5, the gold-standard annotation for “both of
these teams” is an ORG entity mention with the
token “teams” as its head word. Our sparsemax
model identifies the entity mention correctly but
instead predicts the token “both” as the head. It
also identifies “these teams” as another nested en-
tity mention with the head word “teams”. In con-
trast, however, we also found entity mentions such
as “all of the victims that get a little money” for
which the gold-standard has “all” annotated as its
head and another nested mention “the victims that
get a little money” with “victims” as the head.
We recognize this as an inconsistency in the gold-
standard annotation.

8 Conclusion and Future Work

In this paper, we present a novel recurrent
network-based model for nested named entity
recognition and nested entity mention detection.
We propose a hypergraph representation for this
problem and learn the structure using an LSTM
network in a greedy manner. We show that our
model significantly outperforms a feature based
mention hypergraph model (Lu and Roth, 2015)
and a recent multigraph model (Muis and Lu,
2017) on the ACE dataset. Our model also outper-
forms the constituency parser-based approach of
Finkel and Manning (2009) on the GENIA dataset.

In future work, it would be interesting to learn
global dependencies between the output labels for
such a hypergraph structure and training the model
globally. We can also experiment with different
representations such as the one in Finkel and Man-
ning (2009) and use the recent advances in neural
network approaches (Vinyals et al., 2015) to learn
the constituency parse tree efficiently.
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