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Abstract

Information about the meaning of mathemati-
cal variables in text is useful in NLP/IR tasks
such as symbol disambiguation, topic mod-
eling and mathematical information retrieval
(MIR). We introduce variable typing, the task
of assigning one mathematical type (multi-
word technical terms referring to mathemati-
cal concepts) to each variable in a sentence of
mathematical text. As part of this work, we
also introduce a new annotated data set com-
posed of 33,524 data points extracted from sci-
entific documents published on arXiv. Our in-
trinsic evaluation demonstrates that our data
set is sufficient to successfully train and eval-
uate current classifiers from three different
model architectures. The best performing
model is evaluated on an extrinsic task: MIR,
by producing a typed formula index. Our re-
sults show that the best performing MIR mod-
els make use of our typed index, compared to
a formula index only containing raw symbols,
thereby demonstrating the usefulness of vari-
able typing.

1 Introduction

Scientific documents, such as those from Physics
and Computer Science, rely on mathematics to
communicate ideas and results. Written mathe-
matics, unlike general text, follows strong domain-
specific conventions governing how content is pre-
sented. According to Ganesalingam (2008), the
sense of mathematical text is conveyed through
the interaction of two contexts: the textual context
(flowing text) and the mathematical (or symbolic)
context (mathematical formulae).

In this work, we introduce a new task that fo-
cuses on one particular interaction: the assignment
of meaning to variables by surrounding text in the
same sentence1. For example, in the sentence

1Data for the task is available at https://www.cst.
cam.ac.uk/˜yas23/

Let P be a parabolic subgroup of GL(n) with
Levi decomposition P = MN , where N is the
unipotent radical.

the variables P and N in the symbolic context
are assigned the meaning “parabolic subgroup”
and “unipotent radical” by the textual context sur-
rounding them respectively.

We will refer to the task of assigning one
mathematical type to each variable in a sentence
as variable typing. We use mathematical types
(Stathopoulos and Teufel, 2016) as variable de-
notation labels. Types are multi-word phrases
drawn from the technical terminology of the math-
ematical discourse that label mathematical objects
(e.g., “set”), algebraic structures (e.g., “monoid”)
and instantiable notions (e.g., “cardinality of a
set”). In the sentence presented earlier, the phrases
“parabolic subgroup”, “Levi decomposition” and
“unipotent radical” are examples of types.

Typing variables may be beneficial to other nat-
ural language processing (NLP) tasks, such as
topic modeling, to group documents that assign
meaning to variables consistently (e.g., “E” is “en-
ergy” consistently in some branches of Physics).
In mathematical information retrieval (MIR), for
instance, enriching formulae with types may im-
prove precision. For example, the formulae x+ y
and a+b can be considered α-equivalent matches.
However, if a and b are matrices while x and y
are vectors, the match is likely to be a false posi-
tive. Typing information may be helpful in reduc-
ing such instances and improving retrieval preci-
sion.

Variable typing differs from similar tasks in
three fundamental ways. First, meaning – in the
form of mathematical types – is explicitly assigned
to variables, rather than arbitrary mathematical ex-
pressions. Second, variable typing is carried out
at the sentential level, with valid type assignments
for variables drawn from the sentences in which
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they occur, rather than from larger contexts, such
as documents. Third, denotations are drawn from
a pre-determined list of types, rather than from
free-form text in the surrounding context of each
variable.

As part of our work, we have constructed a new
data set for variable typing that is suitable for ma-
chine learning (Section 4) and is distributed un-
der the Open Data Commons license. We pro-
pose and evaluate three models for typing vari-
ables in mathematical documents based on current
machine learning architectures (Section 5). Our
intrinsic evaluation (Section 6) suggests that our
models significantly outperform the state-of-the-
art SVM model by Kristianto et al. (2012, 2014)
(originally developed for description extraction)
on our data set. More importantly, our intrinsic
evaluation demonstrates that our data set is suf-
ficient to successfully train and evaluate classi-
fiers from three different architectures. We also
demonstrate that our variable typing task and data
are useful in MIR in our extrinsic evaluation (Sec-
tion 7).

2 Related Work

The task of extracting semantics for variables from
the linguistic context was first proposed by Grig-
ore et al. (2009) with the intention of disambiguat-
ing symbols in mathematical expressions. Grigore
et al. took operators listed in OpenMath content
dictionaries (CDs) as concepts and used term clus-
ters to model their semantics. A bag of nouns is
extracted from the operator description in the dic-
tionary and enriched manually using terms taken
from online lexical resources. The cluster that
maximises the similarity (based on Pointwise Mu-
tual Information (PMI) and DICE) between nouns
in the cluster and the local context of a target for-
mula is taken to represent its meaning.

Wolska et al. (2011) used the Cambridge dic-
tionary of mathematics and the mathematics sub-
ject classification hierarchy to manually construct
taxonomies used to assign meaning to simple ex-
pressions. Simple expressions are defined by the
authors to be mathematical formulae taking the
form of an identifier, which may have super/sub-
scripted expressions of arbitrary complexity. Lex-
ical features surrounding simple expressions are
used to match the context of candidate expres-
sions to suitable taxonomies using a combination
of PMI and DICE (Wolska et al., 2011). Wolska et

al. report a precision of 66%.
Quoc et al. (2010) used a rule-based approach

to extract descriptions for formulae (phrases or
sentences) from surrounding context. In a simi-
lar approach, Kristianto et al. (2012) applied pat-
tern matching on sentence parse trees and a “near-
est noun” approach to extract descriptions. These
rule-based methods have been shown to perform
well for recall but poorly for precision (Kris-
tianto et al., 2012). However, Kristianto et al.
(2012) note that domain-agnostic parsers are con-
fused by mathematical expressions making rule-
based methods sensitive to parse tree errors. Both
rule-based extraction methods were outperformed
by Support Vector Machines (SVMs) (Kristianto
et al., 2012, 2014).

Schubotz et al. (2016) use hierarchical named
topic clusters, referred to as namespaces, to
model the semantics of mathematical identifiers.
Namespaces are derived from a document col-
lection of 22,515 Wikipedia articles. A vector-
space approach is used to cluster documents into
namespaces using mini-batch K-means clustering.
Clusters beyond a certain purity threshold are se-
lected and converted into namespaces by extract-
ing phrases that assign meaning to identifiers in
the selected clusters. Schubotz et al. (2016) take
a ranked approach at determining the phrase that
best assigns meaning to a particular identifier. The
authors report F1 scores of 23.9% and 56.6% for
their definition extraction methods.

In contrast, we assign meaning exclusively to
variables, using denotations from a pre-computed
dictionary of mathematical types, rather than free-
form text. Types as pre-identified, composition-
ally constructed denotational labels enable effi-
cient determination of relatedness between math-
ematical concepts. In our extrinsic MIR experi-
ment (Section 7), the mathematical concept that
two or more types are derived from is identified
by locating their common parent type – the super-
type – on a suffix trie. Topically related types that
do not share a common supertype can be identi-
fied using an automatically constructed type em-
bedding space (Stathopoulos and Teufel (2016),
Section 5.1), rather than manually curated names-
paces or fuzzy term clusters.

3 The Variable Typing Task

We define the task of variable typing as follows.
Given a sentence containing a pre-identified set of
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variables V and types T , variable typing is the task
of classifying all edges V × T as either existent
(positive) or non-existent (negative).

However, not all elements of V × T are valid
edges. Invalid edges are usually instances of type
parameterisation, where some type is parame-
terised by what appears to be a variable. For ex-
ample, the set of candidate edges for the sentence

We now consider the q-exterior algebras of V
and V ∗, cf. [21].

would include (V , exterior algebra)
and (V ∗, exterior algebra) but not
(q, exterior algebra). Such edges are identified
using pattern matching (Java regular expressions)
and are not presented to annotators or recorded in
the data set.

Our definition of “variable” mirrors that of
“simple expression” proposed by Grigore et al.
(2009): instances of formulae in the discourse are
considered to be “typeable variables” if they are
only composed of a single, potentially scripted
base identifier.

Variable typing, as defined in this work, is based
on four assumptions: (1) typings occur at the sen-
tential level and variables in a sentence can only be
assigned a type phrase occurring in that sentence,
(2) variables and types in the sentence are known a
priori, (3) edges in each sentence are independent
of one another, and (4) edges in one sentence are
independent of those in other sentences – given a
variable v in sentence s, type assignment for v is
agnostic of other typings involving v from other
sentences.

The decision to constrain variable typing at the
sentential level is motivated by empirical studies
(Grigore et al., 2009; Gödert, 2012). Grigore et al.
(2009) have shown that the majority of variables
are introduced and declared in the same sentence.
In addition, mathematical text tends to be com-
posed of local contexts, such as theorems, lemmas
and proofs (Ganesalingam, 2008).

The assumptions introduced above simplify the
task of variable typing without sacrificing the gen-
eralisability of the task. For example, cases where
the same variable is assigned multiple conflicting
types from different sentences within a document
can be collected and resolved using a type disam-
biguation algorithm.

4 Variable Typing Data Set

We have constructed an annotated data set of
sentences for building variable typing classifiers.
The sentences in our corpus are sourced from the
Mathematical REtrieval Corpus (MREC) (Lı́ška
et al., 2011), a subset of arXiv (over 439,000
papers) with all LATEX formulae converted to
MathML.

Train Dev Test Total

Sentences 5,273 841 1,689 7,803
Positive edges 1,995 457 1,049 3,501
Negative edges 15,164 4,386 10,473 30,023
Total edges 17,159 4,843 11,522 33,524

Table 1: Data set statistics.

The data set is split into a standard train-
ing/development/test machine learning partition-
ing scheme as outlined in Table 1. The idea behind
this scheme is to train and evaluate new models on
standardised data partitions so that results can be
directly comparable.

4.1 Sentence Sampling

The structure and role of sentences in mathemat-
ical papers may vary according to their location
in the discourse. For example, sentences in the
“Introduction” – intended to introduce the sub-
ject matter – can be expected to differ in structure
from those in a proof, which tend to be short, for-
mal statements. Our sampling strategy is designed
to control for this diversity in sentence structure.
First, we sentence-tokenised and transformed each
document in the MREC into a graph that encodes
its section structure. Document graphs also take
into account blocks of text unique to the math-
ematical discourse such as theorems, proofs and
definitions. Then, we sampled sentences for our
data set by distribution according to their location
in the source arXiv document.

Variables in each MREC document are identi-
fied via a parser that recognises the variable de-
scription given in Section 3. Our variable parser is
designed to operate on symbol layout trees (SLTs)
(Schellenberg et al., 2012) – trees representing the
2-dimensional presentation layout of mathemati-
cal formulae. We identified 28.6 million sentences
that contain variables.

The distribution of sentences according to (a)
the type of discourse/math block of origin and (b)
the number of unique types in the sentence is re-
constructed by putting sentences into bins based

305



on the value of these features. Sentences are se-
lected from the bins at random in proportion to
their size. The training, development and test sam-
ples have been produced via repeated application
of this sample-by-distribution strategy over the set
of all sentences that contain variables.

4.2 Extended Type Dictionary

The type dictionary distributed by Stathopou-
los and Teufel (2016) contains 10,601 automat-
ically detected types from the MREC. However,
the MREC contains 2.9 million distinct technical
terms, many of which might also be types. There-
fore, the seed dictionary is too small to be used
with variable typing at scale since types from the
seed dictionary will be sparsely present in sampled
sentences. To overcome this problem, we used the
double suffix trie algorithm (DSTA) to automati-
cally expand the type dictionary. The algorithm
makes use of the fact that most types are compo-
sitional (Stathopoulos and Teufel, 2016): longer
subtypes can be constructed out of shorter super-
types by attaching pre-modifiers (e.g., a “Rieman-
nian manifold” can be considered a subtype of
“manifold”).

The DSTA takes two lists of technical terms as
input – the seed dictionary of types and the MREC
master list (2.9 million technical terms). First,
technical terms on both lists are word-tokenised.
Then, all technical terms in the seed dictionary
(the known types) are placed onto the known types
suffix trie (KTST). Additional types are generated
from single word types on the KTST by expanding
them with one of 40 prefixes observed in the cor-
pus. For example, the type “algebra” might gen-
erate the supertype “coalgebra”. These are also
added on the KTST as known types.

Technical terms in the KTST are copied onto
the candidate type suffix trie (CTST) and are la-
beled as types. Next, the technical terms on the
master list are inserted into the CTST. Technical
terms in the master list that have known types from
the seed dictionary as their suffix on the CTST are
also marked as types. A new dictionary of types
(in the form of a list of technical terms) is pro-
duced by traversing the CTST and recording all
phrases that have a known type as their suffix. This
way, we have expanded the type dictionary from
10,601 types to approximately 1.23 million tech-
nical terms, from which an updated KTST can be
produced.

4.3 Human Annotation and Agreement

Two of the authors jointly developed the annota-
tion scheme and guidelines using sentences sam-
pled by distribution as discussed in Section 4.1.
Sentences sampled for this purpose are excluded
from subsequent sampling. The labeling scheme,
presented in Table 2, implements the assumptions
of the variable typing task – each variable in a sen-
tence is assigned exactly one label: either one type
from the sentence or one of six fixed labels for spe-
cial situations.

An annotation experiment was carried out us-
ing two authors as annotators to investigate (a)
how intuitive the task of typing is to humans and
(b) the reliability of the annotation scheme. For
this purpose, a further 1,000 sentences were sam-
pled (and removed) from the pool and organised
into two subsamples each with 554 sentences. The
subsamples have an overlap of 108 sentences with
a total of 182 edges, which are used to measure
inter-annotator agreement.

We report annotator agreement for three sepa-
rate cases. The first case reflects whether annota-
tors agree that a variable can be typed or not by
its context. A variable falls into the first category
if it is assigned a type from the sentential context
and in the latter category if it is assigned one of the
six fixed labels from Table 2. In this case, agree-
ment is substantial (Cohen’s K = 0.80, N = 182,
k = 2, n = 2). The second case is for instances
where both annotators believe a variable can be
typed by its sentential context – the variable is as-
signed a type by both annotators. In this case, Co-
hen’s Kappa is not applicable because the number
of labels varies: there are as many labels as there
are types in the sentence. Instead, we report ac-
curacy as the proportion of decisions where anno-
tators agree over all decisions: 90.9%. In the last
case where both annotators agree that a variable
is not a type (i.e., is assigned one of the six fixed
labels), agreement has been found to be moderate
(Fleiss’ K = 0.61, N = 123, k = 2, n = 6).

The bulk of the annotation was carried out by
one of the author-annotators and was produced by
repeated sampling by distribution (as described in
Section 4.1). Sentences in the bulk sample are
combined with the 554 sentences annotated by the
author during the annotation experiment to pro-
duce a final data set composed of 7,803 sentences.
The training, test and development sets have been
produced using the established 70% for training,
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Label Description

One label per type instance One label per instance of any type in the sentence.
Type Unknown The type of the variable is not in the scope of the sentence.
Type Present but Undetected The type of the variable is in the scope of the sentence but is not in the dictionary.
Parameterisation Variable is part of an instance of parameterisation.
Index Variable is an instance of indexing (numeric or non-numeric).
Number Variable is implied to be a number by the textual context (e.g., “the n-th element...”).
Formula is not a variable Label used to mark data errors. For example, in some instances end-of-proof symbols

are encoded as identifiers in the corpus and are mistaken for variables.

Table 2: Labels for special typing situations.

20% for test and 10% for development data set
partitioning strategy. Each partition is sampled by
distribution in order to model training and predict-
ing typings over complete discourse units, such as
documents.

5 Experiments

We compare three models for variable typing to
two baselines: the “nearest type” baseline and the
SVM proposed by Kristianto et al. (2014). One
of our models is an extension of the latter base-
line with both type and variable-centric features.
The other two models are based on deep neural
networks: a convolutional neural network and a
bidirectional LSTM.

We treat the task of typing as binary classifica-
tion: every possible typing in a sentence is pre-
sented to a classifier which, in turn, is expected
to make a “type” or “not-type” decision. We say
that an edge is positive if it connects a variable to
a type in the sentence and negative otherwise.

5.1 Computing a Type Embedding Space
We use the extended dictionary of types (Section
4.2) to pre-train a type embedding space. Com-
puted over the MREC, a type embedding space in-
cludes embeddings for both words and types (as
atomic lexical tokens). These vectors are used by
our deep neural networks to model the distribu-
tional meaning of words and types. The type em-
bedding space is constructed using the process de-
scribed by Stathopoulos and Teufel (2016): occur-
rences of extended dictionary type phases in the
MREC are substituted with unique atomic lexical
units before the text is passed on to word2vec.

5.2 Models for Variable Typing
Nearest Type baseline (NT) Given a variable v,
the nearest type baseline takes the edge that min-
imises the word distance between v and some type
in the sentence to be the positive edge. This base-
line is intended to approximate the “nearest noun”

baseline (Kristianto et al., 2012, 2014) which we
cannot directly compute due to the fact that noun
phrases in the text become parts of types.

Support Vector Machine (Kristianto et al.)
(SVM) This is an implementation of the fea-
tures and linear SVM described by Kristianto et al.
(2012). Furthermore, we use the same value for
hyperparameter C (the soft margin cost param-
eter) used by Kristianto et al. (2012). Due to
the class imbalance in our data set we have used
inversely proportional class weighting (as imple-
mented in scikit-learn). L2-normalisation is also
applied.

Extended Support Vector Machine (SVM+)
We have extended the SVM proposed by Kris-
tianto et al. (2012) with the features that are type
and variable-centric, such as the ‘base symbol of
a candidate variable’ and ‘first letter in the candi-
date type’. A description of these extended fea-
tures are listed in Table 4. We applied automatic
class weighting and L2-normalisation. We have
found that C = 2 is optimal for this model by
fine-tuning over the development set.

Convolutional Neural Network (Convnet) We
use a Convnet to classify each of the V ×T assign-
ment edges as either positive or negative, where V
are the variables in the input text and T are the
types. Unlike the SVM models, we do not use any
hand-crafted features, but only the inputs (Table
3), and the pre-trained embeddings (Section 5.1).

The input is a tensor that encodes the input de-
scribed in Table 3. We use the embeddings to rep-
resent the input tokens. In addition, we concate-
nate two dimensions to the input for each token
: one dimension to denote (using 1 or 0) whether
a given token is a type and another dimension to
denote if a token is a variable.

The model has a set of different sized filters,
and each filter size has an associated number of
filters to be applied (all are hyperparameters to
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Name Description

Token A word in the sentence. If the token is a formula (including a variable), the token is ‘@@@’.
Types are represented by the key of their embedding vector.

Token class An integer – 0 for normal word, 1 for type, 2 for variable and 3 to indicate that a variable
token is part of the edge being considered.

Type of Interest If the token is a type and it is part of the edge being considered, this field takes the value
‘TYPE’ or ‘-’ otherwise.

Table 3: Input and features to neural network typing models.

Orientation Description

Type Number of words in the candidate type.
Type The base type of each candidate type.
Type and Variable The first letter in the type and base symbol of the candidate variable.
Type The grammatical number of the type as it appears in the sentence.
Variable The variables and symbols in the candidate variable layout graph (one string per symbol).
Variable The number of distinct symbols in the candidate variable layout graph.
Variable The base symbol of the candidate variable layout graph.
Variable The directions (Above, Below,Up-left, Up-right, Down-left, Down-right, Next)

in which a candidate symbol has neigbouring symbols.
Variable Operators in the mathematical context of the candidate variable layout graph.
Sentence Prefix sequence: tokens from start of sentence to a (exclusive)
Sentence Middle sequence: tokens between a and b (exclusive)
Sentence Suffix sequence: tokens between b (exclusive) and end of sentence.

Table 4: SVM+ features. For each edge e, let a be the position of its left-most component (variable or type) and b
the position of its rightmost component (variable or symbol).

the model). The filters are applied to the input
text (i.e. convolutions), and then max-pooled, flat-
tened, concatenated, and a dropout layer (p = 0.5)
is then applied before being fed into a multilayer
perceptron (MLP), with the number of hidden lay-
ers and their hidden units as hyperparameters. Fi-
nally, a softmax layer is used to output a binary
decision.

The model is implemented using the Keras li-
brary using binary cross-entropy as loss function,
and the ADAM optimizer (Kingma and Ba, 2014).
We tune the aforementioned hyperparameters on
the development data and we use balanced over-
sampling with replacement in order to adjust for
the class imbalance in the data.

Our tuned hyperparameters are as follows: filter
window sizes (2 to 12, then 14,16,18,20) with an
associated number of filters (300 for the first five,
200 for the next four, 100 for the next three, then
75,70,50). One hidden layer of the MLP with 512
units is used with batch size 50.

Bidirectional LSTM (BiLSTM) The architec-
ture takes as input a sequence of words, which are
then mapped to word embeddings. For each token
in the input sentence, we also include the inputs
described in Table 3. In addition, the model uses
one string feature we refer to as “supertype”. If the
token is a type, then this feature is the string key of

the embedding vector of its supertype or “NONE”
otherwise.
These features are mapped to a separate embed-
ding space and then concatenated with the word
embedding to form a single task-specific word rep-
resentation. This allows us to capture useful infor-
mation about each word, and also designate which
words to focus on when processing the sentence.

We use a neural sequence labeling architecture,
based on the work of Lample et al. (2016) and Rei
and Yannakoudakis (2016). The constructed word
representations are given as input to a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997), and
a context-specific representation of each word is
created by concatenating the hidden representa-
tions from both directions.

A hidden layer is added on top to combine the
features from both directions. Finally, we use a
softmax output layer that predicts a probability
distribution over positive or negative assignment
for a given edge.

We also make use of an extension of neural
sequence labeling that combines character-based
word representations with word embeddings us-
ing a predictive gating operation (Rei et al., 2016).
This allows our model to capture character-level
patterns and estimate representations for previ-
ously unseen words.

In this framework, an alternative word repre-
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sentation is constructed from individual charac-
ters, by mapping characters to an embedding space
and processing them with a bidirectional LSTM.
This representation is then combined with a reg-
ular word embedding by dynamically predicting
element-wise weights for a weighted sum, allow-
ing the model to choose for each feature whether
to take the value from the word-level or character-
level representation.

The LSTM layer size was set to 200 in each di-
rection for both word- and character-level compo-
nents; the hidden layer d was set to size 50. Dur-
ing training, sentences were grouped into batches
of size 64. Performance on the development set
was measured at every epoch and training was
stopped when performance had not improved for
10 epochs; the best-performing model on the de-
velopment set was then used for evaluation on the
test set.

6 Intrinsic Evaluation

Evaluation is performed over edges, rather than
sentences, in the test set. We measure performance
using precision, recall and F1-score. We use the
non-parametric paired randomisation test to de-
tect significant differences in performance across
classifiers.

The convnet and BiLSTM models are trained
and evaluated with as many sentences as there are
edges: the source sentence is copied for each input
edge, with inputs modified to reflect the relation of
interest. We employed early stopping and dropout
to avoid overfitting with these models.

Table 5 shows the performance results of all
classifiers considered. All three proposed mod-
els have significantly outperformed the NT base-
line and Kristianto et al.’s (Kristianto et al., 2014)
state-of-the-art SVM. The best performing model
is the bidirectional LSTM (F1 = 78.98%) which
has significantly outperformed all other models
(α = 0.01).

According to the results in Table 5, both deep
neural network models have significantly outper-
formed classifiers based on other paradigms. This
is consistent with the intuition that the language
of mathematics is formulaic: we expect deep neu-
ral networks to effectively recognise patterns and
identify correlations between tokens.

The neural models outperform SVM+ despite
the fact that the latter is a product of laborious
manual feature engineering. In contrast, no man-

Precision (%) Recall (%) F1-score (%)

NT 30.30 82.94 44.39
SVM 55.39 76.36 64.21
SVM+ 71.11 72.74 71.91
Convnet 80.11 70.26 74.86
BiLSTM 83.11 74.77 78.98

Table 5: Model performance summary. All figures are
statistically significant (p < 0.01) according to the ran-
domisation test.

ual feature engineering has been performed on the
Convnet model (or indeed on any of the deep neu-
ral network models).

The nearest type (NT) baseline demonstrates
high recall but low precision. This is not surpris-
ing since the NT baseline is not capable of making
a negative decision: it always assigns some type to
all variables in a given sentence.

7 Extrinsic Evaluation

We demonstrate that our data set and variable
typing task are useful using a mathematical infor-
mation retrieval (MIR) experiment. The hypothe-
sis for our MIR experiment is two-fold: (a) types
identified in the textual context for the variable
typing task are also useful for text-based mathe-
matical retrieval and (b) substituting raw symbols
with types in mathematical expressions will have
an observable effect to MIR.

In order to motivate the second hypothesis, con-
sider the following natural language query:

Let x be a vector. Is there another vector y such
that x+ y will produce the zero element?

In the context of MIR, mathematical expres-
sions are represented using SLTs (Pattaniyil and
Zanibbi, 2014) that are constructed by parsing pre-
sentation MathML. The expression “x+ y” is rep-
resented by the SLT in figure 1(a). The variable
typing classifier and the type disambiguation al-
gorithm determine the types of the variables x and
y as “vector”. Thus, the variable nodes in figure
1(a) will be substituted with their type, producing
the SLT in figure 1(b).

The example query can be satisfied by identify-
ing a vector y such that when added to x will pro-
duce the zero vector. This operation is abstract in
mathematics and extends to objects beyond vec-
tors, including integers. In an untyped formula
index, there is no distinction between instances
of x + y where the variables are integers or vec-
tors. As a result, documents where both variables
are integers might also be returned. In contrast,
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x +ADJ yADJ

LINEAR FORM

WITHIN

VAR OP VAR

WITHIN WITHIN

vector +ADJ ADJ

LINEAR FORM

WITHIN

VAR OP VAR

WITHIN WITHIN

vector

(a) Symbol Layout Tree (b) Symbol Layout Tree with type substitution

Figure 1: (a) SLT representation of the expression x+ y, (b) typed SLT for the expression x+ y.

a typed formula index will return instances of the
typed SLT in figure 1(b) where the variables are
vectors, as opposed to integers. Therefore, a typed
index can reduce the number of false positives and
increase precision.

Four MIR retrieval models are introduced in
Section 7.3 designed to control for text index-
ing/retrieval so that the effects of type-aware vs
type-agnostic formula indexing and scoring can be
isolated. These models make use of the Tangent
formula indexing and scoring functions (Pattaniyil
and Zanibbi, 2014), which we have implemented.

We use the Cambridge University Math IR Test
Collection (CUMTC) (Stathopoulos and Teufel,
2015) which is composed of 120 research-level
mathematical information needs and 160 queries.
The CUMTC is ideal for our evaluation for two
reasons. First, topics in the CUMTC are expressed
in natural language and are rich in mathematical
types. This allows us to directly apply our best
performing variable typing model (BiLSTM) in
our retrieval experiment in order to extract vari-
able typings for documents and queries. Second,
the CUMTC uses the MREC as its underlying doc-
ument collection, which enables downstream eval-
uation in an optimal setting for variable typing.

7.1 Tangent Formula Indexing and Scoring

Given a mathematical formula, the Tangent index-
ing algorithm starts from the root node of an SLT
and generates symbol pair tuples in a depth-first
manner. Symbol pair tuples record parent/child
relationships between SLT nodes, the distance
(number of edges) and vertical offset between
them. At each step in the traversal, the index is
updated to record one tuple representing the rela-
tionship between the current node and every node
in the path to the SLT root. We have also im-
plemented Tangent’s method of indexing matrices,
but we refer the reader to Pattaniyil and Zanibbi

(2014) for further details.
Tangent scoring proceeds as follows. For each

query formula, the symbol pair tuples are gener-
ated and matched exactly to those in the document
index. Let C denote the set of matched index for-
mulae and |s| the number of symbol pairs in any
given expression s inC. For each s inC, recall (R)
is said to be |C|

|Q| , where |C| and |Q| are the num-
bers of tuples in C and the query formula Q re-
spectively, and precision (P) is |C|

|s| . Candidate s is
assigned the F score of these precision and recall
values. The mathematical context score for a given
document d and query with formulae e1, . . . , en is

m(d, e1, . . . , en) =

n∑

j=1

|ej | · t1(d, ej)∑n
i=1 |ei|

where |ej | represents the number of tuples in ex-
pression ej and t1(d, ej) represents the top F-score
for expression ei in document d. The final score
for document d is a linear combination of the
math context score above and its Lucene text score
(L(d)):

λ× L(d) + (1− λ)×m(d, e1, . . . , en)

7.2 Typed Tangent Indexing and Scoring
We have applied the BiLSTM variable typing
model to obtain variable typings for all symbols in
the documents in the MREC. For each document
in the collection our adapted Tangent formula in-
dexer first groups the variable typing edges for that
document according to the variable identifier in-
volved. Subsequently, our typed indexing process
applies a type disambiguation algorithm to deter-
mine which of the candidate types associated with
the variable will be designated as its type.

For a variable v in document d, our type dis-
ambiguation algorithm first looks at the known
types suffix trie (KTST) containing all 1.23 mil-
lion types in order to find a common parent be-
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tween the candidate types. If a common super-
type T is discovered, then v is said to be of type
T . Otherwise, the type disambiguation algorithm
uses simple majority vote amongst the candidates
to determine the final type for variable v.

The type disambiguation algorithm is applied to
every typing group until all variable typings have
been processed. Variable groups with no type can-
didates (e.g., no variable typings have been ex-
tracted for a variable) are assigned a missing type
symbol (“*”). Subsequently, variables in the SLT
of each formula in d are replaced with their type
or the missing type symbol. An index, referred to
as the typed index, is generated by applying the
tangent indexing process on the modified SLTs.

The same process is applied to query formu-
lae during query time in order to facilitate typed
matching and scoring.

7.3 Results

We have replicated runs of the Lucene vector-
space model (VSM) and BM25 models pre-
sented by Stathopoulos and Teufel (2016) on the
CUMTC. Furthermore, we introduce four models
based on Tangent indexing and scoring that rep-
resent different strategies in handling types in text
and formulae. We refer to a model as typed if it
uses the type-substituted version of the Tangent in-
dex and untyped otherwise.

Text with types removed (RT): The Lucene
score L(d) is computed over a text index with type
phrases completely removed. This model is in-
tended to isolate the performance of retrieval on
the formula index alone. We consider both typed
and untyped instances of this model.

Text with types(TY): The Lucene score is com-
puted over a text index that treats type phrases as
atomic lexical tokens. This model is intended to
simulate type-aware text that enables the applica-
tion of variable typing. Both typed and untyped
instances of this model are considered.

Optimal values for the linear combination pa-
rameter λ are obtained using 13 queries in the “de-
velopment set” of the CUMTC. We report mean
average precision (MAP) for our models com-
puted over all 160 queries in the main CUMTC.
MAPs obtained over the CUMTC are low due to
the difficulty of the queries rather than an unstable
evaluation (Stathopoulos and Teufel, 2016). The
paired randomisation test is used to test for signif-

icance in retrieval performance gains between the
models.

VSM BM25
MAP .076 .079

RT RT TY TY
typed untyped typed untyped

MAP .046 .052 .139 .083
λopt .9 .9 .9 .4

Table 6: MIR model performance summary.

The results of our MIR experiments are pre-
sented in Table 6. The best performing model
is TY/typed which significantly outperforms all
other baselines (p − value < 0.05 for compari-
son with BM25 and p − value < 0.01 with all
other models). The TY/typed model yields al-
most double the MAP performance of its untyped
counterpart (TY/untyped, .083 MAP). In con-
trast, the RT/typed and RT/untyped models per-
form comparably (no significant difference) but
poorly. This drop in MAP performance suggests
that type phrases are beneficial for text-based re-
trieval of mathematics. Retrieval models employ-
ing formula indexing seem to be affected by both
the presence of types in the text as well as in the
formula index. The TY/typed model outperforms
the TY/untyped model, which in turn outperforms
RT/untyped. This suggests that gains in retrieval
performance are strongest when types are used in
both text and formula retrieval – models using ei-
ther approach alone do not perform as well. These
results demonstrate that variable typing is a valu-
able task in MIR.

8 Conclusions

This work introduces the new task of variable typ-
ing and an associated data set containing 33,524
labeled edges in 7,803 sentences. We have con-
structed three variable typing models and have
shown that they outperform the current state-
of-the-art methods developed for similar tasks.
The BiLSTM model is the top performing model
achieving 79% F1-score. This model is then
evaluated in an extrinsic downstream task–MIR,
where we augmented Tangent formula indexing
with variable typing. A retrieval model employing
the typed Tangent index outperforms all consid-
ered retrieval models demonstrating that our vari-
able typing task, data and trained model are useful
in downstream applications. We make our variable
typing data set available through the Open Data
Commons license.
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