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Abstract

Shallow discourse parsing enables us to study
discourse as a coherent piece of information
rather than a sequence of clauses, sentences
and paragraphs. In this paper, we identify
arguments of explicit discourse relations in
Hindi. This is the first such work carried out
for Hindi. Building upon previous work car-
ried out on discourse connective identification
in Hindi, we propose a hybrid pipeline which
makes use of both sub-tree extraction and lin-
ear tagging approaches. We report state-of-
the-art performance for this task.

1 Introduction

Units within a piece of text are not meant to be un-
derstood independently but understood by linking
them with other units in the text. These units may
be clauses, sentences or even complete paragraphs.
Establishing relations between units present in a text
allows the text to be semantically well structured and
understandable. Understanding the internal struc-
ture of text and the identification of discourse rela-
tions is called discourse analysis.

A fully automated shallow discourse parser would
greatly aid in discourse analysis and improve the
performance of Text summarization and Question
answering systems. Given a text, a shallow dis-
course parser would identify discourse relations,
consisting of two spans of text exhibiting some kind
of relationship between each other. Discourse re-
lations whose presence is marked explicitly by dis-
course connectives are called Explicit discourse re-
lations and those which are not are called Implicit
discourse relations.

At present, complete shallow discourse parsers
are only available for English (Lin et al., 2014; Wang
and Lan, 2015; Ali and Bayer, 2015). The ongo-
ing CoNLL 2016 shared task on Shallow Discourse
Parsing has included Chinese as well. Work towards
a complete shallow discourse parser in Hindi has
also begun. Jain et al. (2016) reported state-of-the-
art results for discourse connective identification in
Hindi. Our work focuses on the next part towards
a shallow discourse parser for Hindi i.e. argument
identification for Explicit discourse relations.

In this paper, we discuss current approaches for
this task and also propose a hybrid pipeline incorpo-
rating many of these approaches. We report high ac-
curacies of 93.28% for Arg2 identification, 71.09%
for Arg1 identification and 66.3% for Arg1-Arg2
identification.

The rest of the paper is organized as follows. Sec-
tion 2 briefly introduces the Hindi Discourse Rela-
tions Bank(HDRB). Related work carried out in En-
glish is discussed in Section 3. In section 4, we de-
scribe in detail our approach to argument identifica-
tion of Explicit discourse relations. Section 5 dis-
cusses the performance of the proposed pipeline and
we conclude in Section 6.

2 Hindi Discourse Relations Bank(HDRB)

The Hindi Discourse Relation Bank(HDRB) was
created broadly following the lines of Penn Dis-
course TreeBank(PDTB) (Miltsakaki et al., 2004;
Prasad et al., 2008)’s lexically grounded approach
along with a modified annotation workflow, addi-
tional grammatical categories for explicit connec-
tives, semantically driven Arg1/Arg2 labelling and
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modified sense hierarchies.(Oza et al., 2009; Ko-
lachina et al., 2012)

HDRB was annotated on a subset of the Hindi
TreeBank (Begum et al., 2008) which includes part-
of-speech, chunk and dependency parse tree anno-
tations. HDRB contains 1865 sentences and a word
count of 42K. Furthermore HDRB contains 650 ex-
plicit discourse relations and 1200 implicit discourse
relations.

In HDRB, one of the arguments occurs after the
discourse connective and the other occurs before the
connective. Discourse relations not adhering to this
rarely occur in the corpus. However, due to the se-
mantic labelling of Arg1 and Arg2, Arg2 does not
always occur after the connective. For example:

• c\dFgY m�\ b� h-pEtvAr kF s� Bh BArF vfA kF
vjh s� isk� aAspAs aOr Encl� ilAko\ m�\
bAx kF E-TEt p{dA ho gI aOr kI sd̂ko\ ,
Evf�q kr d?sFZF s�kVro\ m�i E-TtF kAPF
EbgX gI h{ ।

• Heavy rains have occurred in Chandigarh be-
cause of which there is possibility of floods in
nearby and lower areas and the condition of
roads, especially in the southern sectors, has
worsened.

The relation sense is “Contingency cause rela-
tion”, where the situation described in Arg2 (itali-
cized) is the cause of the the situation described in
Arg1 (bolded). Due to this fact, Arg2 occurs before
Arg1. However, for the purpose of argument iden-
tification we refer to the argument occurring before
the connective as Arg1 and the argument occurring
after the connective as Arg2. We believe changing
the labels later on during sense identification to be
the simpler approach.

In the corpus, Arg1 can occur in the same sen-
tence as the connective (SS) or in the sentence pre-
ceding that of the connective (PS) with proportions
of 46% and 54% respectively, whereas Arg2 only
occurs in the same sentence as the connective.

Arg1 can cover 1,2,3 or even more than 4 sen-
tences with proportions of 89.2%, 5.4%, 2.6% and
2.8% respectively. As such in this paper, we only
consider the sentence containing the connective and
the sentence immediately preceding it for Arg1 iden-
tification.

3 Related Work

Argument identification for Hindi has not been ex-
plored before, therefore we discuss some of the ap-
proaches adopted for English.

Ghosh et al. (2011) proposed a linear tagging ap-
proach for argument identification using Conditional
random fields and n-best results.

Lin et al. (2014) proposed a sub-tree extraction
approach for argument identification. Firstly an ar-
gument position classifier was employed to decide
the location of Arg1(PS/SS). In the case of PS, Arg1
was labelled as the entire preceding sentence. For
tagging Arg1(SS) and Arg2, a argument node iden-
tifier was employed to decide which nodes were part
of Arg1(SS) or Arg2. Next sub-tree extraction was
used to extract Arg1(SS) and Arg2. However, since
it is not necessary that arguments may be dominated
entirely by a single node as pointed out by Dinesh et
al. (2005), this method has inherent shortcomings.

Kong et al. (2014) proposed a constituent based
approach where, similar to Lin, an argument iden-
tifier is employed to decide which constituents are
Arg1 and Arg2. Previous sentence was consid-
ered as a special constituent to handle Arg1(PS).
A constituent pruner was also employed to reduce
the number of candidate constituents considered for
Arg1 and Arg2. In addition, Integer Linear Program-
ming(ILP) with language specific constraints, was
employed to ensure the argument identifier made le-
gitimate global predictions.

Approaches in English can be summed up as
two sub-tasks: (1) Considering the possible con-
stituents/nodes/words to be identified as Arg1 or
Arg2 by use of subtree extraction (Lin et al., 2014),
constituent pruning (Kong et al., 2014) or simple
baseline (Ghosh et al., 2011) approaches. (2) Clas-
sification of selected constituents/nodes/words as
Arg1/Arg2/None by use of CRF(Ghosh et al., 2011)
or classifier(Lin et al., 2014; Kong et al., 2014)
based approaches.

4 A Hybrid Pipeline to Argument
Identification

We base our pipeline on the two sub tasks discussed
in the previous section. We use a method similar to
subtree extraction to extract possible candidates for
Arg1/Arg2 and use CRF tagging to further refine the

67



extent of the extracted arguments.
We approach the task of Arg1 and Arg2 identi-

fication seperately since tagging Arg1 is inherently
more difficult. We first discuss Arg2 identification
and then Arg1 identification. Features used are listed
in Table 1.

4.1 Arg2 Identification
Doing a simple analysis on HDRB, we find that
Arg2 largely lies in two positions in the dependency
tree. Arg2 can either occur in the subtree of the con-
nective node(Conn-SubTree) or in the subtree of the
first verb group node occurring as parent to the con-
nective node(Parent-VG-SubTree) as shown in Im-
age 1.

Figure 1: Arg2 Sub Tree Positions

To decide the position of Arg2, we make use of
a classifier with Conn-Str, Conn-Pos-Sentence, Is-
Leaf-Node, VG-In-SubTree, VG-In-Parent-SubTree
and Right-Word-Location as features. Once we have
the position of Arg2, all the nodes present in the sub-
tree are extracted as Arg2. Henceforth, we refer to
this step as SubTree-Extraction.

Although Arg2 lies in either in “Conn-SubTree”
or “Parent-VG-SubTree”, it does not necessarily
cover the entire subtree. Thus we need to re-
fine the extent of Arg2 extracted from the SubTree-
Extraction . We approach this as a linear tagging
task, allowing us to capture the local dependency
between nodes. We use Conn-Rel-Pos, Node-Tag,
Clause-End, Is-Conn and Part-of-Conn-Sub-Tree as
features. Henceforth, we refer to this step as Partial-
SubTree.

We find that Arg2 sometimes extends further up
into the dependency tree. For example:

• isk� alAvA , u�ho\n� r{lF BF EnkAlF aOr

Figure 2: Arg2 Extended example dependency tree

jnsBAe\ BF aAyoEjt kF\ ।

• In addition, he also took out rallies and also or-
ganized public meetings.

isk� alAvA (In addition)’s Arg2 lies in “Parent-
VG-SubTree”. However, the presence of and in-
dicates some kind of correlation between “he also
took out rallies” and “also organized rallies”. This
correlation is also indicated in the dependency tree
where both VG groups are children of and. To han-
dle these and other similar cases we employ a classi-
fier to decide whether extension beyond the current
node is necessary. The current node is either con-
nective node or the parent VG node of the connec-
tive node depending upon the decision made in the
SubTree-Extraction step. We use Conn-Str, Node-
Tag of current node, Node-Tag of parent of current
node, Conn-Rel-Pos for parent of current node as
features for this step. Henceforth we refer to this
step as SubTree-Extension.

SubTree-Extraction, Partial-SubTree and SubTree
- Extention complete the pipeline for Arg 2 identifi-
cation.

4.2 Arg1 Identification
Following the approach adopted for English (Kong
et al., 2014; Lin et al., 2014; Wang and Lan,
2015), we approach Arg1 as two distinct problems:
Arg1(SS) and Arg1(PS) identification. We employ
a classifier to decide the position of Arg1. We
use Conn-Str, Node-Tag of connective, Conn-Pos-
Sentence, Chunk-Before-Conn as features for this
step. Henceforth we refer to this step as Arg1 Pos
Identification.

The position of Arg1(SS) in the dependency
tree, similar to Arg2, shows strong correlation with
the position of the connective in the dependency
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Feature Name Feature Description Used In
Conn-Str Connective String A2 (SE1,SE2), A1(PI)

A1-SS(PI,SE1,SE2)
Conn-Pos Connective part-of-speech tag
Node-Tag Chunk tag of the node A2 (PS,SE2), A1(PI)

A1-SS(SE1,PS,SE2)
Conn-Pos Sentence Connective position in the sentence (Start/Middle) A2(SE1), A1(PI), A1-

SS(SE1)
Is-Leaf-Node Connective node is a leaf node in the dependency

tree
A2(SE1), A1-SS(SE1)

VG-In SubTree Presence of VG node in sub tree of node A2(SE1), A1-SS(SE1)
VG-In-Parent SubTree Presence of VG node in parent of node A2(SE1), A1-SS(SE1)
Right-Word Location Location of word immediately after connective in

the dependency tree w.r.t connective node
A2(SE1), A1-SS(SE1)

Conn-Rel Pos Position of chunk w.r.t connective in sentence. (Be-
fore/After)

A2(PS,SE2),
A1(PS,SE2)

Clause-End Indicates presence of clause boundary A2(PS), A1(PS)
Is-Conn Node is part of a discourse connective or not A2(PS), A1-SS(PS)

Part-Conn SubTree Indicates whether node is part of discourse connec-
tive subtree, other than the connective in question

A2(PS)
A1-SS(PS)

Chunk-Before Conn Number of chunks before discourse connective A1(P1)
Arg2-Pos Position of Arg2 in dependency tree A1-SS(SE1)

Conn-Two Clause Indicates the presence of two verb groups as children
to connective node. Captures possible coordination
of two verb groups by connective

A1-SS(SE1)

Verb-Group Verb group string & POS tag sequence A1-PS(VSL)
Verb-Group Compact Verb group string and POS tag sequence consisting

of main main and its corresponding auxiliary verbs
A1-PS(VSL)

Verb-Root Inflection Root and Inflection of main and auxiliary verbs A1-PS(VSL)
A1:Arg1,A2:Arg2,A1-SS:Arg1 Same Sentence, A1-PS: Arg1 Previous Sentence

SE1:SubTree Extraction, PS:Partial SubTree, SE2:SubTree Extension, PI:Position Identifier, VSL: VG SubTree Labelling

Table 1: List of features used for Argument Identification

tree. In addition to Conn-SubTree and Parent-VG-
SubTree, Arg1(SS) also lies in the subtree of the first
verb group node occurring as parent to Parent-VG
(pParent-VG-SubTree). This happens when Arg2
lies in the Parent-VG-SubTree.

To identify Arg1(SS), we use the same pipeline
used for Arg2 identification, with certain differ-
ences in choice of features. SubTree-Extraction uses
Conn-Str, Is-Leaf-Node, Arg2-Pos, Node-Tag of par-
ent node of connective, Node-Tag of parent of parent
node of connective, Conn-Two-Clause as features.
Both Patial-SubTree and SubTree-Extension use the
same set of features used for Arg2 identification.

SubTree-Extraction, Partial-SubTree and SubTree

- Extention complete the pipeline for Arg 1 (SS)
identification.

A similar pipeline for Arg1(PS) identification
cannot be used, since both Arg2 and Arg1(SS)
showed a strong correlation to the connective node
in the dependency tree. No such anchor node exists
for Arg1(PS).

We divide the dependency tree of previous sen-
tence into smaller verb group subtrees(VG Sub-
Tree). We consider each of them as candidates to
be labelled as Arg1(SS). In the case of nested verb
group sub trees, we treat them as two separate verb
group subtrees ensuring no overlap of nodes be-
tween them. We refer to this step as VG-SubTree-
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Figure 3: Argument Identication Pipeline

Extaction.
We make use of a classifier to decide whether each

VG SubTree candidate is part of Arg1(PS) or not.
We use Verb-Group, Verb-Group-Compact, Verb-
Root-Inflection as features. All the nodes present
in the VG SubTrees labelled as Arg1(PS) are ex-
tracted to form Arg1(PS). We refer to this step as
VG-SubTree-Labelling.

VG-SubTree-Extraction and VG-SubTree-
Labelling complete the pipeline for Arg1 (PS)
identification. The entire pipeline for argument
identification is shown below in Image 3.

5 Results

Firstly, we discuss the experimental setup, baselines
and performance metrics we have considered to put
the performance of our pipeline in perspective. Later
on, we discuss, in detail, the performance of Arg2
and Arg1 identification pipelines.

5.1 Experimental Setup

Maximum Entropy (Fan et al., 2008) for classifier
based steps and Conditional Random Fields (Laf-
ferty et al., 2001) for linear tagging based steps were
our choice of algorithms. L2 regularized Stochas-
tic Gradient Descent (SGD) was used while train-
ing the CRF model and LibLinear solver (Fan et al.,
2008) with L2 penalties was used to train the Max-
imum Entropy model. Maximum Entropy was im-

plemented using Nltk toolkit1 and Sklearn2 whereas
Conditional Random Fields was implemented using
a CRFsuite3(Okazaki, 2007).We used 5-fold cross
validation to arrive at the results.

5.2 Baseline and Performance metrics
As discussed in Section 2, Arg2 is the argument
occurring after the connective and Arg1 is the ar-
gument occurring before the connective. Therefore
Arg2 baseline is computed by labelling Arg2 as the
text span between the connective and the beginning
of the next sentence. Similarly Arg1(SS) baseline
is computed by labelling Arg1(SS) as the text span
between the connective and the end the of the pre-
vious sentence. Arg1(PS) baseline is computed by
labelling the entire previous sentence as Arg1(PS).

Ghosh et al. (2011), kong et al. (2014) and Lin
et al. (2014) have reported performance using exact
match metric. In addition to reporting performance
using exact match metric, we introduce a new metric
for measuring performance- Partial match:
| ArgResult ∪ ArgGold | − 0.5∗| ARgResult ∩ ArgGold |

| argGold |

Where ArgResult is the argument labelled by the
system, ArgGold is the argument labelled in the cor-
pus. Partial match scores between 0-1 and incorpo-
rates a penalty for each missed or erroneously la-
belled node/chunk. Partial match is thus a more le-
nient scoring metric than exact match, however the

1http://www.nltk.org/
2http://scikit-learn.org/stable/
3http://www.chokkan.org/software/crfsuite/
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penalty ensures the leniency is limited. Partial match
allows us to measure minor performance improve-
ments that are not captured by exact match metric.

5.3 Arg2 Results
We report Arg2 identification results in Table 2

Step Exact Partial
Baseline 63.2 77.95

SubTree-Extraction 58.28 69.10
Partial-SubTree 91.56 92.88

SubTree-Extension 93.28 95.37
Table 2: Arg2 identification results

We report a baseline score of 63.2 and 77.95 for
exact and partial matches respectively. SubTree-
Extraction does not reach the performance of the
baseline with scores of 58.28 for exact match and
69.10 for partial match. With an increase of 33.28
for exact match and 23.78 for partial match, Partial-
SubTree step results in the largest performance
gains. SubTree-Extension further improves perfor-
mance by 1.72 and 2.49 for exact and partial re-
spectively. For Arg2 identification, we report a final
score of 93.28 for exact match and 95.37 for partial
match.

5.4 Arg1 Results
Coming to arg1 identification, we report a high ac-
curacy of 99.1 % for Arg1 Pos Identification step.
This is similar to the performance reported by Lin et
al. (2014). We find that Conn-Pos-Sentence is suf-
ficient to decide between Arg1(PS) and Arg1(SS).
Other features used result in minor improvements.

Step Exact Partial
Baseline 43.38 71.57

SubTree-Extraction 2.05 22.63
Partial-SubTree 70.05 79.56

SubTree-Extension 71.18 80.12
Table 3: Arg1(SS) identification results

We report Arg1(SS) results in Table 3. For
Arg1(SS), we report a baseline score of 43.38 and
71.57 for exact and partial matches respectively.
SubTree-Extraction performs poorly with a score of
2.05 for exact match and 22.63 for partial match.
Similar to Arg2, we find that Partial-Subtree re-
sults in a large increase in performance of 68 for

exact match and 56.93 for partial match. SubTree-
Extension yields minor improvements of 1.13 and
0.56 for exact and partial respectively. For Arg1(SS)
we report a final score of 70.84 for exact match and
80.12 for partial match.

Step Exact Partial
Baseline 71.01 72.38
System 38.55 62.07

Table 4: Arg1(PS) identification results

For Arg1(PS) we report a baseline of 71.05 and
72.38 for exact and partial matches respectively. We
find that our system does not exceed the baseline
scores with 38.55 for exact match and 62.07 for par-
tial match. We believe more work is needed to suc-
cessfully extract Arg1(PS).

We thus report an accuracy of 93.28% for Arg2
identification, 71.09% for Arg1 identification and
66.3% for Arg1-Arg2 identification.

6 Conclusion

In this paper, we focus on argument identification
for explicit discourse relations in Hindi. In particu-
lar we propose a hybrid pipeline using both subtree
extraction and linear tagging approaches. This is the
first such work carried out in Hindi.
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