
Proceedings of NAACL-HLT 2016, pages 1208–1216,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Consensus Maximization Fusion of Probabilistic Information Extractors

Miguel Rodrı́guez and Sean Goldberg and Daisy Zhe Wang
University of Florida, Dept of Computer Science, Gainesville, FL, USA

{mer,sean,daisyw}@cise.ufl.edu

Abstract

Current approaches to Information Extraction
(IE) are capable of extracting large amounts
of facts with associated probabilities. Because
no current IE system is perfect, complemen-
tary and conflicting facts are obtained when
different systems are run over the same data.
Knowledge Fusion (KF) is the problem of ag-
gregating facts from different extractors. Ex-
isting methods approach KF using supervised
learning or deep linguistic knowledge, which
either lack sufficient data or are not robust
enough. We propose a semi-supervised appli-
cation of Consensus Maximization to the KF
problem, using a combination of supervised
and unsupervised models. Consensus Maxi-
mization Fusion (CM Fusion) is able to pro-
mote high quality facts and eliminate incor-
rect ones. We demonstrate the effectiveness
of our system on the NIST Slot Filler Valida-
tion contest, which seeks to evaluate and ag-
gregate multiple independent information ex-
tractors. Our system achieved the highest F1
score relative to other system submissions.

1 Introduction

The abundance of unstructured text on the web such
as news, discussion forums, wiki pages, etc. has in-
creased the interest of the research community in the
automatic extraction of information at scale. Infor-
mation extractors can be used to construct or expand
Knowledge Bases (KBs) through a process known as
Knowledge Base Population (KBP) or Construction.
Facts in a KB are typically modeled as (subject,
relation, object) triples such as (Facebook,
org:city of headquarters, Menlo Park).

No current information extractor is perfectly
accurate and different models exhibit different
strengths and weaknesses. As a result, many state-
of-the-art KBs in academia and industry employ
multiple complementary information extractors for
KBP. NELL(Mitchell and Fredkin, 2014) employs
rules, statistically-learned pattern extractors, and
context extractors among others. YAGO (Suchanek
et al., 2007) uses heuristic extractors at text and on-
tological levels and Google has multiple extractors
crawling text, tables, and HTML.

Different extraction systems may also agree or
disagree on the information they extract. Con-
sider three systems that extract the facts (Facebook,
org:city of headquarters, Menlo Park), (Facebook,
org:city of headquarters, Palo Alto), and (Face-
book, org:city of headquarters, Menlo Park) with
probabilities 0.6, 0.3, and 0.5 respectively. The Palo
Alto extraction is erroneous and should be removed.
The two Menlo Park extractions should be promoted
by agreement and have their confidences increased.

The aggregation of facts from multiple extractors
into a single probabilistic triple is known as Knowl-
edge Fusion (KF) (Dong et al., 2014) and can be
modeled as an ensemble learning problem. Previous
ensemble approaches at the output layer divide into
unsupervised and supervised methods (Gao et al.,
2010). Unsupervised methods establish a consen-
sus or majority vote among extractors without distin-
guishing the merit of each, but perform poorly if all
the extractors are weak. Supervised methods such
as stacking achieve better performance by learning
weights for each extractor and combining them as a
weighted sum. The difficulty in obtaining training

1208

data usually results in high precision, but low recall
among all facts.

As a solution to the low recall problem we present
a probabilistic ensemble fusion model based on
Consensus Maximization (CM) (Gao et al., 2009),
which is a semi-supervised learning method able to
combine the strengths of both supervised and unsu-
pervised approaches. In the knowledge fusion do-
main, where the number of unsupervised systems
can be rather large compared to those with manu-
ally labeled data, Consensus Maximization Fusion
is able to leverage both for improved performance.

We apply our CM Fusion approach to the NIST
Slot Filling Validation (SFV) task, an ensemble
learning problem that aims to combine multiple in-
formation extractors participating in the NIST En-
glish Slot Filling (ESF) task. Our experiments show
an improved F1 score relative to the current state-of-
the-art SFV systems.

We make the following overall contributions in
this paper:

• Present a novel probabilistic fusion system that
incorporates Consensus Maximization to solve
the Knowledge Fusion problem.

• Develop an application of our system to the
NIST Slot Filling Validation task.

• Outline an evaluation of our system that im-
proves upon the previous state-of-the-art F1
score by 28%.

Though we choose to focus on the SFV task in
this paper, there are clear applications beyond this
and to the Knowledge Fusion problem in general.
The remainder of this paper is organized as follows.
In Section 2, we discuss background material on the
ESF and SFV tasks as well as the Consensus Maxi-
mization algorithm. Section 3 outlines our CM Fu-
sion system and how it maps into the knowledge fu-
sion problem. Our experiments are detailed in Sec-
tion 4 and we conclude in Section 5.

2 Background

Here we present the appropriate background knowl-
edge on the English Slot Filling (ESF) and Slot Fill-
ing Validation (SFV) tasks that are part of the NIST
Text Analysis Conference (TAC). We also introduce

the Consensus Maximization framework that forms
the foundation of CM Fusion.

2.1 Knowledge Base Construction: Slot Filling

A knowledge base is a repository of information
about people, places, and things. The usual repre-
sentation is as (subject, relation, object)
triple. The subject and object are entities such as
Facebook or Menlo Park. The relation is some
property that holds between the subject and object
and usually adheres to a fixed ontology such as
headquarters in. Knowledge Base population in-
volves the generation of triples from unstructured
text sources.

To facilitate and encourage further research into
KBP, NIST has organized a series of workshops
known as the Text Analysis Conference (TAC). The
English Slot Filler (ESF) task involves connecting
a (subject, relation, *) pair with a set of
corresponding object attributes. Teams compete
with each other to develop the best system for the
job (Surdeanu and Ji, 2014).

Each team receives as input a set of queries
in XML format and a text corpus. The
queries are empty slots such (Facebook,
org:city of headquarters, *) and the corpus is
a formatted set of web pages, newswire, and
discussion forums. For each query slot, the systems
extract the appropriate attribute as either a single
value or list of values or NIL. Overall evaluation
is determined by final F1 score across all queries.
Query evaluation occurs after submission by a team
of human judges. Teams do not know their final
accuracy at submission time.

2.2 Ensembling ESF: Slot Filling Validation

The massive quantity of data makes manual labeling
impossible and thus system evaluation very difficult.
A parallel TAC task is Slot Filling Validation (SFV),
which aims to develop a meta-classifier for the pur-
pose of validating individual systems. SFV systems
receive as input the set of query results from each
ESF system. Without any truth information, they
must evaluate the evidence from each query and re-
turn a final slot value. The process of sorting con-
flicting and complementary information from dif-
ferent systems and aggregating into a unified KB is
equivalent to the Knowledge Fusion problem.

1209

Sys. Slot Filler Provenance Prob
03 1 Menlo Park D1:683-692 0.087
03 2 Menlo Park D1:683-692 0.197
12 4 Menlo Park D2:655-665 0.987
10 3 Menlo Park D3:683-692 1.000
13 3 San Francisco D4:974-986 1.000
07 4 San Francisco D5:3534-3544 0.210
09 1 Chinatown D6:3520-3529 0.200
16 1 California D6:7250-7258 1.000
10 2 California D7:263-267 1.000

Table 1: Slot fillers extracted by multiple systems for the query

(Facebook, org:city of headquarters). The columns represent

each system, their response, document provenance, and ex-

tracted probabilities.

Table 1 shows an example set of query re-
sults from different systems for the (Facebook,
org:city of headquarters, *) slot. Included with the
slot filler are provenance information about where
the filler was mentioned in the corpus and the sys-
tem’s confidence probability.

As stated in the introduction, previous work in
SFV has used majority voting (Sammons et al.,
2014) or stacking (Viswanathan et al., 2015) to com-
bine the output of multiple ESF systems. The lack
of ground truth motivated the majority voting ap-
proach of (Sammons et al., 2014), which performs
decently in precision and recall. Because of the an-
nual nature of the TAC-KBP competition, some sys-
tems repeat submissions in successive years. While
current truth data is not available, for a small num-
ber of systems there is data available from previous
years on a different set of queries. (Viswanathan et
al., 2015) uses those systems as training data in a
stacking ensemble. Viewing each triple as a binary
classification problem into true or false, they extract
features based on the probabilities each ESF system
gave to each fact (or 0.0 if they did not extract the
fact) and train an L1-regularized SVM with a linear
kernel. While this gives high precision, the lack of
systems participating in multiple years leads to very
low recall among all extracted facts.

2.3 Consensus Maximization

Consensus Maximization (Gao et al., 2009) is an
ensemble learning method that merges both super-
vised and unsupervised learning models into a sin-

gle cohesive framework. While unsupervised mod-
els don’t provide class labels, they do provide con-
straints that reduce the hypothesis space of the over-
all learning problem. Examples in the same cluster
are likely to receive the same class label and may im-
prove prediction accuracy through increased model
diversity.

Like majority voting and stacking, CM operates at
the output level of each individual model and aims
to predict the conditional probabilities of each ex-
ample belonging to each class. By providing class
labels, supervised models naturally partition the ex-
ample space into groups and give those groups la-
bels. Unsupervised models do the same partition-
ing, but cannot label the groups. Using the super-
vised methods and their examples as a starting point,
CM propagates labels to other unsupervised clusters
containing the same examples and to other examples
within those clusters.

Formally, the framework of Consensus Maxi-
mization is a constrained optimization problem over
a bipartite graph. The two sets of nodes are object
nodes and group nodes. Each Object node repre-
sents a single example given to each system for clas-
sification/clustering. Group nodes represent within-
system partitions. There are as many partitions as
there are classes. For c classes and m systems, there
will be v = cm total groups.

The conditional probabilities are expressed in the
form of matrices Un×c for objects and Qv×c for
groups, where rows are object or group nodes from
the graph and columns are classes. Rows or columns
of the matrix are denoted with the vector ~ui or ~qi.
Each element uiz ∈ Un×c represents the conditional
probability of object i belonging to class z. Simi-
larly, each element qjz ∈ Qn×v represents the condi-
tional probability of group j belong class z as shown
in the following equations:

uiz = P (y = z|xi) (1)

qjz = P (y = z|gi) (2)

The adjacency matrix of the bipartite graph is rep-
resented by An×v where aij = 1 when xi has been
assigned to group gj by its respective model, or 0
otherwise. Initial group label assignments are pro-
vided by supervised models and encoded in the ma-

1210

trix Yv×c, where yjz = 1 if the group gj comes from
supervised learning and belongs to class z, or 0 oth-
erwise. The sum of the rows of Y determines if a
group node belongs to a supervised or unsupervised
model. Let kj =

∑c
z=1 yjz binarily represent such

scenario. Note that kj = 0 when there is no super-
vised evidence for group j. The consensus among
models is formulated as the following optimization
problem:

min
Q,U

(
n∑

i=1

v∑
j=1

aij ‖ ~ui − ~qj ‖2

+ α

v∑
j=1

kj ‖ ~qj − ~yj ‖2

+ β

n∑
i=1

hi ‖ ~ui − ~fi ‖2)

s.t

~ui ≥ ~0, | ~ui |= 1, i = 1, . . . , n

~qj ≥ ~0, | ~qj |= 1, j = 1, . . . , v

(3)

The first term finds consensus across models by
minimizing the deviation between the conditional
probability of object i in the vector ~ui, and the con-
ditional probability of the groups, ~uj , where it has
been originally assigned by the input models. The
second term penalizes deviations of the group prob-
ability ~qj from its initial assignment ~yj , with α being
the penalization factor that has to be paid for violat-
ing supervised predictions. Consensus Maximiza-
tion does not require labeled objects to estimate the
probability matrices Q and U . Nevertheless, a small
amount known labels can help bias the optimization
and improve the model. If l objects have known la-
bels, the matrix Fn×c encodes this information such
that fiz = 1 when xi’s true label is z and 0 other-
wise. In this matrix, i is the index of an object node,
and z a class label. The sum of rows in F determine
if an object has a label assigned, hi =

∑c
z=1 fiz .

For instance, ~fi = ~0 represents an objects without
labeled data. The third term in the objective function
penalizes deviations of the conditional probability of
an object ~ui from its known label ~fi; when hi = 0
this term is dismissed. Labeled variables incorpo-
rated in CM are not final. The value of β is the pe-
nalization factor for violating label constraints. For

a fuller treatment of the methodology, see (Gao et
al., 2009).

3 Consensus Maximization Fusion

In this section we describe the ensemble CM Fu-
sion system we built for combining multiple infor-
mation extractors. Similar to (Viswanathan et al.,
2015), we view the slot filling problem in terms of
a binary classification task. The set of all extrac-
tions across all systems produce an initial knowl-
edge base of facts. This KB is noisy and redundant
and contains a lot of conflicting and complementary
evidence. For each fact in the KB, we fuse decisions
coming from each system into a true class and a false
class.

Figure 1 shows the architecture of the system. Of-
fline all individual extractors operate over the same
corpus and produce their extractions. A preprocess-
ing step canonicalizes strings and clusters systems
producing the same extraction. The feature extrac-
tion step converts set of probabilities about each
system’s fact into the unsupervised feature vector.
For the systems for which previous years evaluation
data is available we train 6 different meta-classifiers.
Their decisions on the same corpus comprise the su-
pervised feature vector. The supervised and unsu-
pervised data are passed into the consensus maxi-
mization component that produces a final aggregated
probability for each value. As part of a final cleaning
process, constraints are applied that remove certain
mutually exclusive conflicting facts.

For the remainder of this section we describe each
component of our Consensus Maximization Fusion
system in more detail.

3.1 Preprocessing

Our system takes as input extractions produced us-
ing a number of information extractors that differ in
their methodology and application. Their output is
uniform and their “filled slots” correspond to a set
of extracted facts. Each fact is processed by trans-
forming all text into lower case and deleting trailing
spaces. Using exact string match we map each fact
onto a cluster of the multiple systems that extracted
it.

1211

Stacked(
Ensemble(
(3.2)

Corpus

Extractions

Extractions
Preprocessing(

and(
Mapping(
(3.1)

CM
Fusion
(3.3)

Constraint(
Checking
(3.4)

ExtractionsCorpus

Corpus

Unmapped(systems

Figure 1: Consensus Maximization Fusion system components and pipeline.

3.2 Stacked Ensemble

Consensus Maximization Fusion is able to take into
account supervised and unsupervised systems for
knowledge fusion. The supervised portion is able to
weight certain systems using previously labeled data
and combine their decisions into a meta-classifier.
The unsupervised portion operating over unlabeled
data treats every system equally and is closer in spirit
to a majority vote.

Of the extractors submitting results to ESF, about
10% had participated in previous years where la-
beled data was available. This idea was used in
(Viswanathan et al., 2015) to generate a series meta-
classifiers using stacking. A meta-classifier com-
bines the outputs of multiple systems using learned
weights. (Viswanathan et al., 2015) generate a to-
tal of 6 meta-classifiers for comparison that differ
in classifier type and feature vector. The basic fea-
ture vector includes one entry for each system and
with the value being that system’s extraction prob-
ability. Two additional feature vectors were gener-
ated by adding relational information for each sys-
tem and both relational information and provenance
information. These three feature vectors were in-
dependently trained using logistic regression (LR)
and SVM for a total of 6 meta-classifiers. CM Fu-
sion runs each trained meta-classifier over the same
ESF corpus and uses their output as an additional 6
systems in the ensemble combination. Though we
use only 6 our method generalizes to any number of
meta-classifiers.

3.3 Fusing Systems

In total there are S systems submitting runs to be
ensemble by CM Fusion. N of these systems have
evaluation data for the training a total of M meta-
classifiers. The top half of Figure 2 shows the col-
lection of supervised meta-classifiers and remaining
unsupervised systems.

Symbol Definition
o1, ..., ok Unique facts extracted
g1, ..., g2m Group nodes from meta-classifiers
g2m+1, ..., gt Group nodes from unmapped runs
A = [aij] Indicator of fact i in group j
U = ~ui Conditional prob of oi = true
Q = ~qi Indicator of unmapped run gi = yes
Y = ~yj Indicator of meta-classifier gj = yes

F = ~fi oi label if known a priori
Table 2: CM Fusion notations mapped to the SFV task.

Consensus Maximization operates as a bipartite
graph between object nodes representing examples
to classify and group nodes representing classes
within each system. In the knowledge fusion do-
main, each object node pertains to a specific fact
triple under consideration. The two classes for each
system (Yes/No) all combined represent the set of
group nodes. The translation component of CM Fu-
sion generates the bipartite graph in Figure 2 as input
to the consensus maximization component.

The overall goal of consensus maximization is to
combine labeled predictions from the M supervised
meta-classifiers and consensus predictions from the
unsupervised systems using a constrained optimiza-
tion framework. As recalled in Section 2, CM opti-
mizes U and Q, which are conditional probabilities
between object nodes (facts) and classes (Yes/No)
and between group nodes (output classes for each
system) and classes (Yes/No) respectively. Because
we are only interested in the Yes class probabili-
ties, the matrices collapse into vectors ~u and ~q as
per equation 3. ~ui is initialized as an uninformed
prior with value 0.5 for each object node. Since un-
supervised output labels are known a priori, ~qj re-
mains unchanged in the optimization process and
encodes the pertinence of each group node j to a
Yes/No class. Finally ~yj includes the supervised
meta-classifier output for each group. Running the

1212

Run$1 Run$2 Run$N.
.
.Conf.$1 Conf.$2 Conf.$N

Meta$
Classifier$

1

Yes
g1

Meta$
Classifier$

M
.$.$.

Run$N+1 Run$N+2 Run$S

No
g2

Yes
g2m91

No
g2m

Yes
g2m+1

No
g2m+2

Yes No Yes No
gt

O1 O2 O3 Ok

.$.$. .$.$.a1,1 at,ka2m+2,ka2m+2,1

Figure 2: CM Bipartite graph for SFV. Object nodes corre-

spond to facts. Each of S systems partition facts into Yes or No

classes, which act as groups in CM translation.

optimization program generates a final ~ui that gives
a posterior probability for each fact. Table 2 maps
all CM symbols in equation 3 to their corresponding
elements in the SFV problem definition.

3.4 Enforced Constraints
After applying consensus maximization, there may
be some facts that can be eliminated using function-
ality constraints. A slot is functional when it has
only one possible value for its filler. Functional slots
with different fillers may have certain facts elimi-
nated based on mutual exclusion. As an example,
consider the various slot filler responses in Table 1.
An organization can only have its headquarters in
one city at any given time. In this case Menlo Park
should be chosen based on it having the maximum
probability and all other facts eliminated. When the
extraction probability is the same for multiple sys-
tems, one of the extractions is chosen at random.
Nevertheless, this is hardly ever the case.

4 Experiments

We evaluate our system using a collection of queries
supplied by TAC-KBP SFV. In this section we
more fully describe the dataset and our experiment
methodology. We compare to the current state-of-
the-art ESF and SFV systems and show an improve-
ment in F1 score. Finally, we provide an analysis of
our results.

4.1 Datasets
Three datasets were used for training and testing
spread across the three years that the English Slot

Filling task has been run. Each team in the compe-
tition submits multiple models vying for the highest
score on unseen training data. Each submission is
viewed as a different system in our ensemble. 2013
contains 52 systems. 2014 contains 65 and 2015
contains 69. In 2013 and 2014 we use only ESF data,
but 2015 adds Cold Start Knowledge Base (CSKB)
data. The total number of labeled queries in both
2013 and 2014 were 100 each. 2015 had 9340 un-
labeled queries. In addition, 2015 had 164 labeled
queries supplied for initial system assessment that
was incorporated into the training data for 2015 sub-
missions.

We performed two distinct experiments and com-
pared multiple baselines for each. Table 3 shows
results where we trained on 2013 only and tested on
2014 data only. Table 4 results are for training on
2013 and 2014 data and testing on 2015 data.

4.2 0-Hop and 1-Hop Queries

The 2015 ESF task introduced more complex
queries into the fold. 1-hop queries use the
result of a previous query to answer a new
query. For example, consider a query ask-
ing for all companies headquartered in the same
city as Facebook. The equivalent 1-hop query
is (Facebook, org:city of headquarters, ?x), (?x,
gpe:headquarters in city, *). The second part of the
query can be seen as a join to the first part using a
common answer in both. The terminology exploits
the idea of “hopping” from one query to another. By
contrast, a regular slot filling task is a 0-hop query.

4.3 Evaluation

All systems were evaluated using the standard met-
rics of precision, recall, and F1 which is the har-
monic mean of precision and recall. Precision is
the amount of correctly extracted facts compared to
the total facts extracted by the system. Recall is
the amount of correct facts compared all facts in the
ground truth. In review:

Recall(R) =
Correct
Total

(4)

Precision(P) =
Correct

Extracted
(5)

F1 = 2
PR

P +R
(6)

1213

Method P R F1
LR 0.648 0.335 0.441

LR + REL 0.662 0.343 0.452
LR + PROV + REL 0.634 0.374 0.470

SVM 0.639 0.319 0.425
SVM + REL 0.720 0.299 0.422

SVM + PROV + REL 0.729 0.298 0.423
MV 0.467 0.447 0.457

Stanford 0.585 0.298 0.395
CM Fusion 0.549 0.538 0.544

Table 3: Result comparisons for the testing on the 2014 SFV

task with training done on 2013 ESF data. The first 6 methods

correspond to stacking while the others correspond to majority

vote, the best performing 2014 ESF system, and CM Fusion.

By increasing recall, CM Fusion has the highest F1 among all

baselines.

The 0-hop queries are scored trivially on the cor-
rectness of the slot filler. The 1-hop queries require
two verifications to undergo scoring. The 0-hop
query from which it was derived must both exist and
be correct. Any slot fillers that don’t meet this crite-
ria are omitted even if their 1-hop slot was ultimately
correct. For example, the 1-hop extraction (Palo
Alto, gpe:headquarters in city, Hewlett-Packard)
will be ignored even though it is correct because the
0-hop query (Facebook, gpe:city of headquarters,
Palo Alto) that derives it is incorrect (Facebook is
headquarted in Menlo Park).

4.4 Results

Table 3 shows results using 2013 ESF systems as
training data for the meta-classifiers and 2014 ESF
systems as testing data. The first 6 rows are a combi-
nation of classifiers and feature vectors using stack-
ing as described in (Viswanathan et al., 2015). MV
refers to the majority voting described (Sammons et
al., 2014). Majority voting accepts a fact if a cer-
tain number of systems above some learned thresh-
old have extracted it. Both of these systems show-
cased results on the 2014 SFV task. The Stanford
system (Angeli et al., 2014) was the best perform-
ing ESF system during the 2014 competition. The
final row is our CM Fusion algorithm. Only 0-hop
queries are used for these results.

Table 4 showcases two of the three runs we offi-
cially submitted as part of the recent 2015 SFV task

P R F1 Queries
2013 & 2014 0.528 0.481 0.504

2014 only 0.477 0.539 0.506 0-Hop
BBN 0.493 0.391 0.436

2013 & 2014 0.393 0.097 0.155
2014 only 0.314 0.141 0.194 1-Hop
Stanford 0.184 0.304 0.229

2013 & 2014 0.503 0.307 0.381
2014 only 0.436 0.358 0.393 ALL

BBN 0.378 0.261 0.309

Table 4: Summary of submissions to the SFV 2015 task for

different query types. We trained the meta-classifiers on 2014

ESF data or 2013 and 2014 ESF data. Comparison is made to

the highest scoring individual ESF system by F1.

for different query types. For each query, the first
two rows refer to our CM Fusion system with dif-
ferent training data and the final row the best per-
forming 2015 ESF system for that particular query
type. 2015 results are not officially published yet for
either ESF or SFV. Nevertheless, at 2015 workshop
announcing the results, CM Fusion was awarded as
the top ranked SFV system by F1 score.

4.5 Analysis

The main drawback between previous ensemble sys-
tems that utilize only supervised systems is high pre-
cision, but very low recall. This is evidenced in
the disproportion between precision and recall in the
first 6 systems of Table 3. Majority voting, while
learning a threshold using supervision, does include
some unsupervised consensus.

The main idea behind CM Fusion is to take into
account the answers from potentially well-ranked
extractors that stacking meta-classifiers omit due
lack of training data. CM Fusion outperforms both
approaches in terms of F1 by greatly increasing the
recall while maintaining high precision. It also pro-
duces better results than the best performing 2014
ESF system. On 2015 data in Table 4, both systems
outperform the best performing 2015 ESF system.

The benefit of using CM Fusion over other su-
pervised ensemble models is the ability to use un-
supervised systems that lack sufficient training data.
When these systems agree on extractions, their con-
sensus can be a source of discriminative power
which CM Fusion is able to harness. For our submis-

1214

Figure 3: Extracted facts among unsupervised systems that

agree with at least one supervised system using 2015 queries.

The x-axis shows the minimum number of systems used for

consensus.

sion trained only on 2014 ESF data, Figures 3 and 4
break down the difference between extracted facts
derivable only from supervised systems and those
able to be attained from unsupervised systems.

Specifically, Figure 3 measures the number of ex-
tracted facts supported by a consensus of the num-
ber of systems on the x-axis that also agree with the
output of a supervised system. Blue bars represent
the amount of correct extractions and red bars in-
correct extractions. When only supervision is used
there is good precision across the board. Figure 4
shows the number of extracted facts supported only
by a consensus of systems on the x-axis without any
supervision. The disparity in the scale of facts ex-
tracted supports the recall of supervised systems.
When only a few systems agree on an extraction,
about as many good facts are extracted as bad ones.
As consensus increases, precision greatly improves.
This idea of unsupervised consensus is exactly what
improves CM Fusion over supervised ensemble ap-
proaches.

To understand the impact of the number of unsu-
pervised systems fused and the quality of the fused
runs in the ensemble, we applied CM Fusion in
an incremental fashion by adding one unsupervised
system at a time and scored the produced ensem-
ble at each step. Techniques for ranking unsuper-
vised systems are outside the scope of this work, for
simplicity we examine the best- and worst-cases for
adding systems incrementally. Ranking each unsu-
pervised system by its final individual F1 score on

Figure 4: Extracted facts among unsupervised systems using

2015 queries using only unsupervised consensus. The x-axis

shows the minimum number of systems used for consensus.

The scale is larger than Figure 3 because agreement with a su-

pervised system is not needed.

the SFV 2015 data, we ran CM Fusion adding the
best performing run (CMF-BEST) and worst per-
forming run (CMF-WORST) at each step. The re-
sults are displayed in Figure 5. For comparison, we
also included the results of the best performing ESF
system (BBN-F1) and the score of a supervised-
only ensemble (SUP-ONLY). Fusing unsupervised
systems with lower accuracy negatively affects the
quality of the ensemble compared to supervised-
only. When ensembleing very similar runs, such as
runs submitted by the same team, the diversity of the
systems is compromised and may lower the ensem-
ble quality. On the other hand, unsupervised sys-
tems with higher accuracy can rapidly increase the
quality of the ensemble above the best individual re-
sults and reach the highest ensemble score. Never-
theless, more does not necessarily mean better, as
shown in the plateau of the best-case plot in Fig-
ure 5, when noisy systems are added to the ensemble
the F1 score is maintained. The average case would
lie somewhere in between the extremes of the best-
and worst-case. As is shown, a large number of sys-
tems are extremely error-prone, but the combination
using CM Fusion produces a result ultimately supe-
rior.

5 Conclusions

This paper presented our Consensus Maximization
Fusion of multiple probabilistic information extrac-
tors. This approach combines supervised stacking

1215

Figure 5: Incremental CM Fusion in terms of adding best-

performing (blue) and worst-performing (green) systems one-

by-one. Performance is ranked by F1 scores from the 2015 SFV

dataset. F1 scores are in the range [0.03− 0.309] with an aver-

age F1 of 0.140

meta-classifiers with unsupervised extraction out-
puts in an ensemble classifier. Our system outper-
formed the current state-of-the-art ensemble mod-
els submitted to the TAC-KBP Slot Filler Valida-
tion task in 2014. CM Fusion was also chosen as
the leading system at the 2015 TAC-KBP Workshop.
This is the first cross-model ensemble approach that
fuses multiple knowledge graphs obtained from both
supervised and unsupervised information extractors.
Optimal performance is attained when the extractors
represent different systems running over the same
corpus and the shared extraction density is high.

The canonicalization of facts in CM Fusion rep-
resents a new state-of-the-art contribution to entity-
centric information extraction compared to tradi-
tional document-centric approaches. While our ap-
proach has been experimentally verified using TAC-
KBP data, it generalizes to overlapping ensemble of
knowledge bases. Some such as NELL (Mitchell
and Fredkin, 2014) have a small supervised hu-
man feedback component and others such as Ope-
nIE (Banko et al., 2007) are entirely unsupervised.
Future work concerns using CM Fusion to to align
and canonicalize multiple such knowledge bases to
solve the knowledge fusion problem.

Acknowledgments

This work is partially supported by NSF IIS
Award #1526753, DARPA under FA8750-12-2-

0348-2 (DEFT/CUBISM) and graduate fellowships
from Fulbright and Sandia National Labs

References
Gabor Angeli, Julie Tibshirani, Jean Y Wu, and Christo-

pher D Manning. 2014. Combining distant and partial
supervision for relation extraction. In Proceedings of
the 2014 conference on empirical methods in natural
language processing (EMNLP).

Michele Banko, Michael J Cafarella, Stephen Soderland,
Matthew Broadhead, and Oren Etzioni. 2007. Open
information extraction for the web. In IJCAI, vol-
ume 7, pages 2670–2676.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 601–610. ACM.

Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, and Jiawei
Han. 2009. Graph-based consensus maximization
among multiple supervised and unsupervised models.
In Advances in Neural Information Processing Sys-
tems, pages 585–593.

Jing Gao, Wei Fan, and Jiawei Han. 2010. On the power
of ensemble: Supervised and unsupervised methods
reconciled. In Tutorial on SIAM data mining confer-
ence(SDM). Citeseer.

Tom Mitchell and E Fredkin. 2014. Never ending lan-
guage learning. In Big Data (Big Data), 2014 IEEE
International Conference on, pages 1–1. IEEE.

Mark Sammons, Yangqiu Song, Ruichen Wang, Gourab
Kundu, Chen-Tse Tsai, Shyam Upadhyay, Siddarth
Ancha, Stephen Mayhew, and Dan Roth. 2014.
Overview of ui-ccg systems for event argument extrac-
tion, entity discovery and linking, and slot filler vali-
dation. Urbana, 51:61801.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference on
World Wide Web, pages 697–706. ACM.

Mihai Surdeanu and Heng Ji. 2014. Overview of the en-
glish slot filling track at the tac2014 knowledge base
population evaluation. In Proc. Text Analysis Confer-
ence (TAC2014).

Vidhoon Viswanathan, Nazneen Fatema Rajani, Yinon
Bentor, and Raymond Mooney. 2015. Stacked en-
sembles of information extractors for knowledge-base
population. In Proceedings of ACL.

1216

