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Abstract

We propose a framework for devising empiri-
cally testable algorithms for bridging the com-
munication gap between humans and robots.
We instantiate our framework in the context
of a problem setting in which humans give
instructions to robots using unrestricted natu-
ral language commands, with instruction se-
quences being subservient to building com-
plex goal configurations in a blocks world. We
show how one can collect meaningful training
data and we propose three neural architectures
for interpreting contextually grounded natural
language commands. The proposed architec-
tures allow us to correctly understand/ground
the blocks that the robot should move when
instructed by a human who uses unrestricted
language. The architectures have more diffi-
culty in correctly understanding/grounding the
spatial relations required to place blocks cor-
rectly, especially when the blocks are not eas-
ily identifiable.

1 Motivation

Much of the progress in Natural Language Process-
ing can be attributed to defining problems of broad
interest (e.g. parsing and machine translation); col-
lecting or creating publicly available corpora that en-
code meaningful 〈input, output〉 samples (e.g. Penn
TreeBank and LDC Parallel Corpora); and devising
simple, objective and computable evaluation met-
rics to automatically assess the performance of algo-
rithms designed to solve the problems of interest, in-
dependent of the approach or technology used (e.g.
ParseEval and Bleu).

As robots become increasingly ubiquituous, we
need to learn to interact with them intelligently, in
the same manner we interact with members of our
own species. To make rapid progress in this area, we
propose to use an intellectual framework that has the
same ingredients that have transformed our field: ap-
pealing science problem definitions; publicly avail-
able datasets; and easily computable, objective eval-
uation metrics.

In this paper, we study the problem of Human-
Robot Natural Language Communication in a set-
ting inspired by a traditional AI problem – blocks
world (Winograd, 1972). After reviewing previous
work (Section 2), we propose a novel Human-Robot
Communication Problem that is testable empirically
(Section 3.1) and we describe the publicly available
datasets (Section 3.2) and evaluation metric that we
devised to support our research (Section 6). We then
introduce a set of algorithms for solving our problem
and we evaluate their performance both objectively
and subjectively (Sections 4–8).

2 Previous work

Most research on Human-Robot Interac-
tion (Klingspor et al., 1997; Thompson et al.,
1993; Mavridis, 2015) bridges the gap between
natural language commands and the physical world
via a set of pre-defined templates characterized
by a small vocabulary and grammar. Progress on
language in this area has largely focused on ground-
ing visual attributes (Kollar et al., 2013; Matuszek
et al., 2014) and on learning spatial relations and
actions for small vocabularies with hard-coded ab-
stract concepts (Steels and Vogt, 1997; Roy, 2002;

751



Guadarrama et al., 2013). Language is sometimes
grounded into simple actions (MacMahon et al.,
2006; Yu and Siskind, 2013) but the data, while
multimodal, is relatively formulaic, the vocabularies
are small, and the grammar is constrained. Although
robots have significantly increased their autonomy
and ability to plan, that has not resulted, to date,
in more flexible human-robot communication
protocols that would enable robots to understand
free-er form language and/or acquire simple and
complex concepts via human-robot interactions.

Recently the connection between less formulaic
language and simple actions has been explored suc-
cessfully in the context of simulated worlds (Brana-
van et al., 2009; Goldwasser and Roth, 2011; Brana-
van et al., 2011; Artzi and Zettlemoyer, 2013; An-
dreas and Klein, 2015) and videos (Malmaud et al.,
2015; Venugopalan et al., 2015). However, to our
knowledge, there is no body of work that focuses on
understanding the relation between natural language
and complex actions and goals or on explaining flex-
ibly the actions taken by a robot in natural language
utterances. As observed by Klingspor (1997), there
is a big gap between the formulaic interactions that
are typical of state-of-the-art human-robot commu-
nications and human-human interactions, which are
more abstract.

3 A Framework for Human-Robot Natural
Language Communication Research

3.1 Problem Definition

Problem-Solution Sequences. In order to build
models that understand the ambiguous and com-
plex language used by people when communicat-
ing to solve a task, we adopt the Problem-Solution
Sequence (PSS) framework proposed by Bisk et
al. (2016). Problem-Solution Sequences provide
high and low level descriptions of actions in service
of a goal; more specifically, they are sequences of
images that encode what a robot might see as it goes
about accomplishing a goal. In this paper, we work
with PSSs specific to a simple world that has blocks
placed on a table and a robot that can visually in-
spect the table and manipulate the blocks on it.

Figure 1 shows four intermediate block configura-
tions of a PSS the robot observes as it transforms the
initial state block configuration (random) into the fi-

1 coca cola , hp , nvidia .
2 nvidia , to the right of hp
3 place the nvidia block east of the hp block .
4 move the nvidia block to the right of the hp block
5 place the nvidia block to the east of the hp block .
6 move the nvidia block directly to the right of the

hp block .
7 move the nvidia block just to the right of the hp

block in line with the mercedes block .
8 put the nvidia block on the right end of the row of

blocks that includes the coca cola and hp blocks .
9 put the nvidia block on the same row as the coca

cola block , in the first open space to the right of
the coca cola block .

Table 1: Examples of the type of natural language instructions

seen in our corpus that verbalize the action needed to transition

from t8 to t9 in Figure 1.

nal one (the number five). The PSS makes explicit
the natural language instructions that a human may
give to a robot in order to transform the configura-
tion in an Imagei into the configuration in an Imagej

- the two configurations may correspond to one robot
action (for adjacent states in the sequence) or to a se-
quence of robot actions (for non-adjacent states). To
account for language variance, each simple action or
sequence of actions is associated with a set of alter-
native natural language instructions. For example,
nine descriptions of the same action (t8 → t9) from
Figure 1 are shown in Table 1.

We see some structural similarity between the ut-
terances, but they require different amounts of in-
ference to understand, use different (potentially syn-
onymous) language, and choose different blocks as
contextual anchors for proper interpretation. Despite
this, they each describe the action with equal preci-
sion. The natural language instructions encode im-
plicitly partial or full descriptions of the world (“in
line with” or “first open space”).

Simple Instruction/Command Understanding.
The problem definition we focus on in this paper is
that of simple instruction/command understanding:
given a state of the world, Imagei, and a human-like
natural language command, C, we would like to in-
fer the target world, Imagei+1, that a robot should
construct if it understood C. If we assume, for sim-
plicity, that only one block can be moved at a time,
command understanding has a straightforward se-
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t0: Initial state t8 t9 t20: Final drawing
Figure 1: Above are four states in a 20-action sequence for drawing the digit 5. The world state can be encoded for the learner as

IDs and locations or raw images. Annotations are provided between every adjacent state (See Table 1) or between sequences (e.g.

t8 → t20: Create a four-line diagonal which moves to the southeast. Starting with Heineken ... ) to describe multi-action plans.

mantics: understanding a command amounts to in-
ferring that the block at location (x, y, z)S needs
to be moved and the location (x, y, z)T where the
block needs to be moved. The rest of the blocks are
not affected by the move.

3.2 Data
We follow Bisk et al. (2016)’s methodology and col-
lect PSSs specific to both goal oriented and random
actions.1 Our discussion focuses primarily on the
goal oriented data, wherein blocks are used to draw
configurations/scenes that look like the digits zero
through nine. To create these abstract drawings in
a diverse and natural manner, configurations are de-
rived from actual hand-written digits in the MNIST
corpus (LeCun et al., 1998). These digits provide
an easily recognizable target goal when arranging
blocks. To create a sequence of actions that draws
out these digits, the MNIST images were sharpened
and down-sampled until each had at most 20 active
pixels which could be replaced with blocks. The
blocks were either decorated with brands (as shown
above) or with the numbers one through twenty.

These block configurations were placed into a vir-
tual world and scrambled until the board’s initial
state was unrecognizable. This was achieved by ran-
domly relocating adjacent blocks to new locations
in the world. Once every block had been placed at
a new location, the world appears random (for ex-
ample, Image0 in Figure 1), but when these random
actions are played in reverse, the sequence of moves
recreates the digit in a deliberate and ordered man-
ner. Each of these actions are then shown to Ama-
zon Mechanical Turkers. To ensure that our robot

1All data (both single actions and sequences) and
links to code are available at http://nlg.isi.edu/
language-grounding/

learns to understand human-like commands, turkers
were asked to provide instructions they would give
to another person in order to transform a block con-
figuration corresponding to a first image (ti) into a
second block configuration corresponding to an im-
age (ti+1). Each image pair was presented to three
turkers, each of whom had to provide three different
instructions for achieving the same goal.

A total of 100 digits sequences were annotated
(10 drawings for every digits). The sequences were
split so that half were decorated with numbers and
half with logos. The sides of every block have a dif-
ferent color and a logo or number is overlayed on
every side. Eight sequences for every digit are in-
cluded in Training, one for development and two for
testing. Overall, the training data has 11,871 com-
mands, while the development and test corpora each
have 1,719 and 3,177 commands, respectively.

For each learning example, we thus have access
to an input that consists of an Imagei (what the
robot sees), the (x, y, z) coordinates of each block in
Imagei (a discrete representation of the world corre-
sponding to the image), and a natural language com-
mand that a robot needs to understand in order to
operate on the world in Imagei. The output consists
of an Imagei+1 (what the robot should build) and the
(x, y, z) coordinates of each block in Imagei+1.

The training/development/test sections of the data
contain ∼177K/31K/48K tokens for the decorated
blocks. The overall lexical type and token counts
for our data are presented in Table 2. To compute
statistics all text was lower-cased and tokenized us-
ing Stanford’s CoreNLP (Manning et al., 2014). For
the MNIST configurations, digits 0-9 are present in
the test data as drawn with both logos and numbered
blocks. In contrast, only half the digits appear with
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MNIST Blank
Types Tokens Types Tokens

Train 1,506 177K 961 58K
Dev 583 31K 444 8K
Test 645 48K 575 17K

Total 1,359 / 257K 1,172 / 84K

Table 2: Type and token counts for the Logo and Number dec-

orated block data sets (left) and the Blank blocks (right).

a given decoration in the development data.
Perhaps because annotators were not constrained

or told they were giving instructions to a robot, the
breadth of constructions and variance in command
length is substantial. For example, the length of the
commands varies wildly. Table 3 shows the num-
ber of training commands in a given length range.
Some commands span multiple sentences. The av-
erage command length is 15 tokens with a standard
deviation of 8.

The free form nature of the language and task al-
lows for both utilitarian descriptions as well as more
flowery instructions which utilize the full three-
dimensional world:

take a plunger . plunge the top of the adidas
block . lift it into the air , and place it directly to
the left of the burgerking block , making sure the
right edge of the adidas block and the left edge
of the burgerking block are touching . remove the
plunger .

Random Blank Blocks. In both Table 2 and 3 we
also present statistics on a second much more chal-
lenging dataset of blank blocks used to build ran-
dom configurations. For this data, blocks were ran-
domly placed alongside each other, on top of one an-
other, or randomly scattered in the space. Addition-
ally, these blocks have no identifying labels so they
are more difficult to describe, making the ground-
ing problem difficult. This leads to more interest-
ing language with more spatial cues and counting
(e.g. third block from the top...). This manifests as
much longer descriptions averaging 23.5 words with
a standard deviation of 9 words. We see this length
bias in Table 3. Finally, this data also presents the
challenge of stack creation in the third-dimension.
As capturing the language and phenomena of this
data is largely out of the scope of our current work,
we present baseline results to demonstrate its dif-

# of Commands
Command Length (l) MNIST Random

1 ≤ l ≤ 5 81 0
5 < l ≤ 10 3,817 61
10 < l ≤ 20 5,752 995
20 < l ≤ 40 2,028 1,329
40 < l ≤ 80 192 107

Table 3: A breakdown of the number of commands in the train-

ing data by the number of tokens per sentence.

ficulty in the hope of motivating future research.
The complete blank blocks corpus consists of 2,493
training commands, 360 for development and 720
for testing or a total of ∼58K/8K/17K tokens.

4 Learning Problems of Interest

Implicitly encoded in our data are three tasks
with varying amounts of abstraction and context-
specific language: Entity grounding, Spatial Rela-
tion grounding, and Planning.

Entity Grounding. As one would expect based
on Gricean maxims, there are many ways an object
might be referred to in everyday speech. These are
context specific and depend on the perceived am-
biguity of a scene. For example, the decoration of
blocks with logos allows for easy indexing (“nvidia
block”) which uniquely identifies the referent. If a
human feels the brand is not sufficiently recogniz-
able they may choose to describe Texaco as “the star
block”, or Mercedes as “three lines in a circle”. In
these cases, the speaker is appealing to more basic
geometric knowledge in lieu of brand recognition.

The introduction of numbered blocks complicates
the grounding as many actions also contain mea-
sures of how far to move a block:

put block 10 four spaces below block 9 .

In this case, the user has decided to denote the block
IDs with the numerals 0-9, but distances by spelling
out the number. As is to be expected, most strategies
do not hold across users, and an individual user may
be very inconsistent:

move block seven two spaces to the right of block 6

This inconsistency, while difficult for a learner, in-
troduces no actual ambiguity for a fluent speaker.
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Finally, blank block descriptions use lots of spa-
cial references the involve often complicated recur-
sive structure:

Move the block that is to the [left of [ the block
closest to [ the right side of the table ]]] so that
it is on top of the block that is at the [ top of the
[ group of blocks [ closest to the [ left side of the
table ]]]].

It follows that an important subtask for our mod-
els/algorithms is to correctly ground the entities ref-
erenced in naturally occurring commands. In gen-
eral this may require a thorough understanding of
syntax and scoping.

Spatial Relation Grounding. Another subtask is
that of understanding spacial relations. Again, we
are presented with lots of linguistic ambiguity which
can be resolved by the shared context and references
of the speaker and listener. For example, the first
command in Table 1 is simply a list of three brands:

coca cola, hp, nvidia.

This statement on its own is meaningless, but in the
context of an image that contains the first two brands
in sequence from left to right, the list implies that the
final logo should be appended to the existing line.

Naturally occurring commands also assume basic
knowledge of physics. The final description in Ta-
ble 1, asks that we place a block in the “first open
space to the right ...”. Implicit in this statement is a
shared understanding that two blocks cannot occupy
the same space. This implies that a human or robot
knows to search for the open space, which may be
arbitrarily far away. Knowledge of physics or ba-
sic geometric shapes appears to be common in the
instructions and injecting this knowledge into our
models may be helpful.

use block 2 as a bridge to complete the diagonal
line formed by blocks 17 , 8 , 6 , 4 and 1 .

Finally, when analyzing the data, we found that
command givers would often create an ad hoc grid to
assist in specifying where a block should be placed.
This was particularly common when placing the first
block (t0 → t1) to start the drawing. This initial
block may need to be placed in a position that is
not near any existing blocks. Common solutions in-
clude specifying midpoints between blocks to center
a conversation:

place the adidas block in the column between
the columns that contain the mercedes and esso
blocks , but two block spaces below either .

Often the referenced blocks may be very far apart
but appear opposite one another and equidistant
from a useful reference point in space.

Plan Recognition. The third problem of interest is
plan recognition. The annotation of sequences of ac-
tions shows that natural commands are also used in a
manner that assumes the ability to plan and execute
individual and complex actions:

slide the adidas block 2 blocks straight up . then
slide it 6 block spaces to the left .

The models we introduce in this paper have diffi-
culty dealing with these kind of commands.

5 Models

In order to correctly interpret commands in context,
we need models that ground entities and understand
spatial relations, shapes, and the compositionality of
language. This is a large and fertile space for ex-
ploration. In contrast with previous work which at-
tempts to produce deep semantic interpretations of
commands (Kim and Mooney, 2012; Dukes, 2014),
in this paper we explore the degree to which we
can solve our communication problem using seman-
tic free models. We are quick to note though that
our framework can also assess the performance of
semantic-heavy approaches.

We outline here three basic neural models that
provide a set of reasonable baselines for other re-
searchers interested in solving this problem. Each
approach assumes less knowledge injection than the
previous. As discussed in Section 3.1, in all three
models, the eventual output is a tuple specifying
where to find the block to move and where to move
it: (x, y, z)S and (x, y, z)T . For each model pre-
sented below we will try both simple feed-forward
and recurrent neural network architectures for en-
coding the input utterance.

5.1 Model Architecture

The goal of our models is to convert an utterance
and world state into a location prediction in the
world. We tackle this problem by breaking the
problem into four steps: Encoding, Representation,
Grounding, Prediction. Components of this pipeline
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Figure 2: Our models all follow the above architecture. 1-Hot

word vectors (orange) are fed as input to a Feed-Forward or Re-

current Neural Network for encoding. A semantic representa-

tion is extracted (green), which in conjunction with knowledge

of the world (blue) is grounded to predict an action.

can be trained independently (Sections 5.2 and 5.3)
or jointly as a single End-to-End model (Section
5.4). This division of labor also allows for differing
amounts of human intervention both during training
and in the interpretation of actions and bears some
resemblance to (Andreas et al., 2016). Specifically,
we will first present results where the model predicts
a fixed semantic interpretation of actions which are
easily human interpretable (Encoder + Representa-
tion). In this setting, the experimenter/human then
must convert the semantics to actions in the world.
Second, we remove the human interpreter and train
a model for Grounding and Predicting from our se-
mantic representation. Finally, we maintain our ar-
chitecture but remove the human entirely, forcing
the model to both converge to and interpret its own
internal semantic representation.

The model architecture, regardless of how it is
trained, at least implicitly, encodes our beliefs about
the best way to solve the learning problem: per-
forming single actions requires identifying anchors
in the world that can be used as spacial referents
from which a target location can be offset.

5.2 Discrete Predictions of a Fixed Semantics
Our first model assumes a setup with very simple se-
mantics. Despite all blocks existing in a real-valued
world, we will assume that a final location is param-
eterized by knowledge of a reference block and the

direction from the reference to the target position.
Move the Adidas block to the right of the BMW.

For example, in the simple command above, we can
distill three pieces of relevant information:

Source: Adidas
Reference: BMW
Direction: right (east)

By assuming a grid world, BMW can be con-
verted to its location in the world (x, y, z)BMW,
which we shift east by changing the y component
to yield: (x, y + δ, z). In practice we define a set of
nine relative positions:

NW 
(x-ẟ, y+ẟ, z)

N 
(x, y+ẟ, z)

NE 
(x+ẟ, y+ẟ, z)

NW 
(x-ẟ, y, z)

TOP 
(x, y, z+ẟ)

E 
(x+ẟ, y, z)

SW 
(x-ẟ, y-ẟ, z)

S 
(x, y-ẟ, z)

SE 
(x+ẟ, y-ẟ, z)

First our model produces an encoding of the sen-
tence. We present two approaches:

Feed-Forward Neural Network (FFN): This
model produces a sentence encoding by concatenat-
ing one-hot word vectors as input to a hidden layer.
We pad sentences so all inputs are the same length.

Recurrent Neural Network (RNN): In contrast,
the RNN encoder consumes the full sentence, each
word passing through a hidden layer one at a time,
before returning a final representation.

Additionally, in both encoding approaches, words
which only occur a single time during training are
replaced with an UNK token.

We use a single hidden layer architecture with a
softmax for prediction and and train with cross en-
tropy loss. We train a separate model for each pre-
diction (The Encoder and Representation stages of
Figure 2). Once three versions of the model have
been used to predict the Source, Reference and Di-
rection, this triple is used to compute both the source
(x, y, z)S and target (x, y, z)T locations. The for-
mer is computed via a simple look-up table, while
the latter amends the reference look-up with the ap-
propriate offset from the aforementioned grid.

When the model predicts a reference block which
is not on the board (not all configurations use all 20
blocks) we set the reference location to the center of
the board and then apply the relative position trans-
formation to this hallucinated block location.
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5.3 Continuous Valued Predictions From a
Semantic Triple

At this point, we have constructed a model for pre-
dicting a specific semantic triple, but rely on the
human to convert its output to physical locations
given the current state of the world. To address this,
we train a simple architecture which is shown the
world and automatically learn direction offsets (the
Grounding and Prediction stages of Figure 2).

The model takes knowledge of the Source, Refer-
ence and Direction and passes them to two hidden
layers. One is multiplied by the world (a 3 × 20
matrix of coordinates) and then both are summed to
produce a final (x, y, z) prediction. The world ma-
trix columns are the locations of each block, with
a fixed ordering. If any block is missing from the
configuration the matrix is padded with [-1,-1,-1].
This component of the network is then trained with
a mean-square error regression loss.

Running this model on the predicted representa-
tion of Section 5.2 creates a simple pipeline from
Sentence and World representations to location pre-
dictions, with no human intervention. We are par-
ticularly interested in this model’s performance be-
cause its intermediary representation is forced to
conform to the simple, interpretable semantics we
chose for this domain and task.

5.4 End-to-End Model

Finally, we present a single model which takes as
input the sentence and world as before and predicts
either the location of the block to move or its final
location. This corresponds to training the neural ar-
chitecture (Figure 2). We train the model twice, once
to predict the source location (x, y, z)S and a second
time to predict the target location (x, y, z)T . While
the model architecture implicitly assumes the pres-
ence of an internal semantics we do not train it di-
rectly, but rather rely on the model to discover one
based solely on its prediction error in the world. This
approach is likely to allow for easier future exten-
sions that encode finer-grained direction information
and scaling (see analysis in Section 8).

6 Evaluation Metric

In our formulation, understanding a command C in
the context of a world configuration Imagei amounts

to inferring the block (x, y, z)S that needs to be
moved and the target location (x, y, z)T where the
block needs to be moved to. Given that we control
the manner in which the data is generated, we al-
ways have access to the gold interpretation of com-
mand C. Therefore, it is trivial to measure the per-
formance of various command understanding algo-
rithms by tracking two metrics: (i) we measure our
ability to identify the block to be moved (and ref-
erence/direction information when available) using
standard accuracy figures; (ii) and we measure our
ability to select and place the block to be moved by
measuring the distance between our predicted loca-
tions and the gold locations.

The first evaluation is presented in Table 4 under
the S, R, and D columns. The distance errors are
computed in terms of block lengths and we present
the mean and median errors both for the source
block’s initial and final location.

7 Baselines and Human Performance

Since the gold annotations make explicit only the
block to move and its target location, the Fixed Se-
mantics models do not have gold training data for
predicting the reference block used for anchoring or
the direction to offset. To remedy this, we use a
simple string matching heuristic that chooses a ref-
erence block during training and that computes a
“gold” direction from its location. The reference is
chosen as the closest block mentioned in the sen-
tence, other than the source.

Oracle. To evaluate the strength of this heuristic,
we perform an oracle evaluation (Table 4): we as-
sume perfect knowledge of the source block that is
moved; we apply our string matching heuristic to
choose a reference block; and then assume perfect
knowledge of the quadrant in which we place the
block that is moved. For the blank blocks, our string
matching heuristic fails, so we simply use the closest
block to the target location to the reference location.
This, unsurprisingly, leads to higher error.

Human Performance. We randomly sampled 50
utterances from each dataset to evaluate human per-
formance. The participants in our experiment were
not affiliated with the project and were not provided
any guidance about the task; for example, they were
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MNIST Patterns with labeled blocks Random Patterns with blank blocks
Source Target Source Target

Med Mean Med Mean S R D Med Mean Med Mean S R D

Human Performance 0.00 0.00 0.21 0.53 100 0.00 0.30 0.37 1.39 93

Oracle – – 0.00 0.45 100 100 100 – – 1.00 1.09 100 100 100

FF
N Discrete Predictions 0.00 0.49 1.09 2.17 93 69 63 5.28 5.09 5.51 5.46 9 15 32

Continuous Predictions 0.49 1.00 1.59 2.42 4.25 4.04 3.86 3.93
End-to-End 0.02 0.38 1.14 1.81 3.45 3.52 3.60 3.94

R
N

N Discrete Predictions 0.00 0.14 0.00 0.98 98 92 78 5.29 5.00 5.51 5.57 10 7 46

Continuous Predictions 0.47 0.64 1.23 1.60 4.16 4.05 3.71 3.87
End-to-End 0.03 0.19 0.53 1.05 3.29 3.47 3.60 3.70

Center Baseline – – 3.46 3.43 100 – – 4.09 4.06 100

Random Baseline 6.37 6.49 6.12 6.21 5 5 11 4.90 4.97 5.51 5.44 10 11 12

Table 4: Model error when trained on only the subset of the data with decorated blocks or blank blocks. Where appropriate S,

R, and D are the model’s predictive accuracy at identifying the Source, Reference and Direction. All models are evaluated on the

Median and Mean prediction error the source block and its final target location. Distances are presented in block-lengths.

not told about the high-level goal of drawing a num-
ber. Despite this, Table 4 shows human performance
is very similar to Oracle performance. Although hu-
mans did not place blocks in line “perfectly”, they
were comparable to or outperformed the oracle.

Baselines. Finally, Table 4 also shows the results
obtained by two baseline models. One (Center) has
perfect knowledge of the source block to move, but
always places it in the center of the table. The sec-
ond baseline (Random), chooses random values for
the source, reference, and direction. As expected,
the performance of these baselines is abysmal.

8 Results

The results in Table 4 show that there is a massive
difference in performance between block configura-
tions that use blocks marked with identifiers (logos
and digits) and those without. When the blocks are
marked with clearly identifiable logos, all models
outperform our baselines by a wide margin. How-
ever, when blocks are blank the situation is flipped.

The results in Table 4 also highlight a notice-
able gap in performance between the simplest Dis-
crete model and the two location predicting mod-
els. The comparable performance of the Con-
tinuous and End-to-End models on labeled blocks
seems to imply that the End-to-End model is captur-
ing/discovering similar anchoring information with-
out being explicitly told to do so. On the blank block

data, the End-to-End model performs best by learn-
ing its own more appropriate representation.

Parameters. Where appropriate, we used 256 unit
hidden-layers, 0.5 dropout, and the Adam optimizer
with a learning rate of 0.001. With the exception of
the FFN Discrete Predictions model, SGD parameter
grid-search did not yield an improvement.

8.1 Subjective Error Analysis

In Table 5, we collected 50 of our models worst er-
rors on the decorated blocks data and categorized
them into five classes of error. Eliminating most of
these errors require more knowledge or a richer rep-
resentation than currently afforded by our simple se-
mantic triples. This is often due to the use of multi-
ple reference blocks, but grammatical ambiguity and
a knowledge of some basic geometric primitives also
account for many of the mistakes.

8.2 Future Work on Blank Blocks

One of the most jarring results we present is the
the clear performance gap between easily grounded
blocks (MNIST data) and the Blank blocks (Ran-
dom) which require a much richer understanding of
the world. We do not believe this is due to additional
complexity in the types of relations present in the
data, but rather the difficulty in grounding the refer-
ences. When analyzing the data we see that much
of the data still follow a very simple (Source, Ref-
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Error Type Count Example

Multi-Relation Actions 20 Place block 20 parallel with the 8 block and slightly to the right of the 6 block.
Place block 15 on the same vertical column as blocks 16 and 17, and two rows

above blocks 11 and 3.

Geometric Understanding 10 Continue the diagonal row of 20, 19 and 15 downward with 13.
Put block 12 in the column between the columns with blocks 4 and 13, and on

the same row as the lowest block on the board.

Grammatical Ambiguity 10 19 moved from behind the 8 to under the 18th block.
Burger King tile should be directly above the Coca Cola tile. Move Coca Cola.

Grounding Names 5 Put the block that looks like a taurus symbol just above the bird.

Understanding Distance 5 move the texaco block 5 block lengths above the BMW block

Table 5: We performed a subjective error analysis of the results of our Fixed Semantics model using the RNN encoder. Example

sentences and the frequency of each type of error are reported above from the worst 50 errors on the development data.

Scene Utterance

Move the block that is cur-
rently located closest to the
top left corner to the bottom
left of the table, slightly
higher than the block in the
bottom right corner.

Error: 7.29 Block lengths

Move the block closest to
the top left corner so it is
above half a block length to
the right of the blocks near
the lower left corner of the
table.

Error: 0.94 Block lengths

Table 6: Above are two commands and the worlds they apply

to. Below we see the prediction error of our best model.

erence, Direction) paradigm, but automatically ex-
tracting that semantics is now more difficult and the
purview for future work with scene understanding.

To remove the possibility that this performance
difference is due to sparsity, we down-sampled the
training data from the decorated blocks to match that
of the blank ones. We found the development errors
grew (Average 0.27 and 1.35 on source and target,
respectively) but were still substantially lower than
those observed with blank block data.

Because extracting the semantics for training is so
difficult, a particularly nice result is that while the
End-to-End model was slightly weaker than the oth-
ers on the MNIST based data, it actually performs
best in this domain, where we cannot provide an ex-

plicit training signal for the representation.
The nature of the language in the blank blocks dif-

fers quite dramatically due to this grounding diffi-
culty. Table 6 shows the two sentences we perform
best (and worst) on in the development data and that
make use of a reference and direction.

9 Conclusion

We showed how human-robot communication can
be attacked within an empirical framework that
supports alternative models to be evaluated and
compared using objective metrics. We intro-
duced a set of simple algorithms for human-robot,
in-context command/instruction understanding that
should serve as strong baselines for future research
in this field. The datasets present unique and impor-
tant challenges for NLU, in which the interpretation
of the language has varying amounts of dependence
on the world in which it is uttered. The datasets we
created in support of this work are made publicly
available and should support the development of in-
creasingly sophisticated models and algorithms for
solving the problem defined in this paper, as well as
additional problems that concern human-robot com-
munication.
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