Lean Question Answering over Freebase from Scratch

Xuchen Yao
kitt.ai”*
2157 N Northlake Way
Seattle, WA 98103, USA

Abstract

For the task of question answering (QA) over
Freebase on the WEBQUESTIONS dataset
(Berant et al., 2013), we found that 85% of all
questions (in the training set) can be directly
answered via a single binary relation. Thus we
turned this task into slot-filling for <question
topic, relation, answer> tuples: predicting re-
lations to get answers given a question’s topic.
We design efficient data structures to identify
question topics organically from 46 million
Freebase topic names, without employing any
NLP processing tools. Then we present a lean
QA system that runs in real time (in offline
batch testing it answered two thousand ques-
tions in 51 seconds on a laptop). The system
also achieved 7.8% better F score (harmonic
mean of average precision and recall) than the
previous state of the art.

1 Introduction

Large-scale open-domain question answering from
structured Knowledge Base (KB) provides a good
balance of precision and recall in everyday QA
tasks, executed by search engines and personal assis-
tant applications. The release of WEBQUESTIONS
dataset (Berant et al., 2013) has drawn a lot of inter-
est from both academia and industry. One tendency
to notice is that the general trend of research is be-
coming more complex, utilizing various techniques
such as semantic parsing and deep neural networks.

We took a radically different approach by head-
ing for the other direction: simplifying the task as
much as possible with no compromise on speed and
accuracy. We treat the task of QA from Freebase

* Incubated by the Allen Institute for Artificial Intelligence.

66

as a two-step problem: identifying the correct topic
(search problem) and predicting the correct answer
(prediction problem). The common approach to the
first problem is applying basic linguistic processing,
such as part-of-speech (POS) tagging and chunking
to identify noun phrases, and named entity recog-
nition (NER) for interesting topics. The common
approach to the second problem is detailed ques-
tion analysis, which usually involves parsing. In any
case, various components from the natural language
processing (NLP) pipeline are usually applied.

With an emphasis on real-time prediction (usu-
ally making a prediction within 100 milliseconds af-
ter seeing the question), we chose not to use any
NLP preprocessing — not even POS tagging. Instead
we design efficient data structures to help identify
named entities to tackle the search problem.

For the prediction problem, we found that given
a question and its topic, simply predicting the KB
relation between the topic and the answer is suffi-
cient. In other words, we turned QA from Freebase
into a slot-filling problem in the form of <topic, re-
lation, answer> tuples: given a question, the task
is to find the answer, while the search problem is to
find the topic and the prediction problem is to find
the relation. For instance, given the question what’s
sweden’s currency?, the task can be turned into a tu-
ple of <Sweden, /location/country/currency_used,
Swedish krona>. In Section 3 we address how
to identify the topic (Sweden) and in Section 4
how to predict the relation (/location/country/cur-
rency_used). There are obvious limitations in this
task format, which are discussed in Section 6.

Going beyond reporting evaluation scores, we de-
scribe in details our design principle and also report
performance in speed. This paper makes the follow-

Proceedings of NAACL-HLT 2015, pages 66-70,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics

ing technical contributions to QA from KB:

e We design and compare several data structures
to help identify question topics using the KB
resource itself. The key to success is to search
through 46 million Freebase topics efficiently
while still being robust against noise (such as
typographical or speech recognition errors).

e Our algorithm is high-performance, real-time,
and simple enough to replicate. It achieved
state-of-the-art result on the WEBQUESTIONS
dataset. Training time in total is less than 5
minutes and testing on 2032 questions takes
less than 1 minute. There are no external NLP
library dependencies: the only preprocessing is
lowercasing.

2 Related Work

The task of question answering from Freebase was
first proposed by Berant et al. (2013), who crawled
Google Suggest and annotated 5810 questions that
had answers from Freebase with Amazon Mechan-
ical Turk, thus the WEBQUESTIONS dataset. Re-
searchers have approached this problem from differ-
ent angles. Semantic parsing (Berant et al., 2013;
Berant and Liang, 2014) aims to predict the logic
forms of the question given the distant supervision
of direct answers. Their logic forms were derived
from dependency parses and then converted into
database queries. Reddy et al. (2014) conceptual-
ized semantic parsing as a graph matching prob-
lem by building graphs with Combinatory Catego-
rial Grammar parses. Edges and nodes in parsing
graphs were grounded with respect to Freebase re-
lations and entities. Other research explored the
graph nature of Freebase. For instance, Bordes et al.
(2014) learned low-dimensional word embeddings
for both the question and related topic subgraph.
A scoring function was defined over these embed-
dings so that correct answers yielded a higher score.
Yao and Van Durme (2014) treated this task as a
direct information extraction problem: each entity
node from a topic graph was ranked against others

by searching a massively generated feature space.
All of the above work resorted to using the Free-
base annotation of ClueWeb (Gabrilovich et al.,
2013) to gain extra advantage of paraphrasing QA
67

pairs or dealing with data sparsity problem. How-
ever, ClueWeb is proprietary data and costs hun-
dreds of dollars to purchase. Moreover, even though
the implementation systems from (Berant et al.,
2013; Yao and Van Durme, 2014; Reddy et al.,
2014) are open-source, they all take considerable
disk space (in tens of gigabytes) and training time
(in days). In this paper we present a system that can
be easily implemented in 300 lines of Python code
with no compromise in accuracy and speed.

3 Search

Given a question, we need to find out all named en-
tities (or fopics in Freebase terms). For instance, for
the question what character did natalie portman play
in star wars?, we are mainly interested in the topics
of natalie portman and star wars. Note that all sen-
tences in WEBQUESTIONS are lowercased.

Normal approaches require a combination of ba-
sic NLP processing. For instance, an NER tagger
might recognize natalie portman as a PERSON, but
would not recognize star wars as a movie, unless
there is a pre-defined gazetteer. Then one needs to
resort to basic chunking to at least identify star wars
as a noun phrase. Moreover, these NLP tools need
to be trained to better adapt lowercased sentences.
Even though, one is still limited to a small number
of recognizable types: noun phrases, person, loca-
tion, organization, time, date, etc.

Freebase contains 46 million topics, each of
which is annotated with one or more types. Thus
a natural idea is to use these 46 million topics as
a gazetteer and recognizes named entities from the
question (with ambiguities), with two steps:

1. enumerate all adjacent words (of various
length) of the question, an O(N?) operation
where [V is the length of question in words;

2. check whether each adjacent word block exists
in the gazetteer.

We use two common data structures to search effi-
ciently, with three design principles:

1. compact and in-memory, to avoid expensive
hard disk or solid state drive 1/O;

2. fuzzy matching, to be robust against noise;

3. easily extensible, to accommodate new topics.

3.1 Fuzzy Matching and Generation

To check whether one string is a Freebase topic, the
easiest way is to use a hash set. However, this is not
robust against noise unless a fuzzy matching hash-
ing function (e.g., locality sensitive hashing) is de-
signed. Moreover, 46 million keys in a giant hash set
might cause serious problems of key collision or set
resizing in some programming languages. Instead,
we propose to use two common data structures for
the purpose of fuzzy matching or generation.

Fuzzy Matching with Sorted List ': a sorted list
can provide basic fuzzy matching while avoiding the
key collision problem with slightly extra computing
time. The search is done via 3 steps:

1. build a sorted list of 46 million topics;

2. to identify whether a string appears in the list,
do a binary search. Since 46 million is between
225 and 226, a search would require in the worst
case 26 steps down the binary random access
ladder, which is a trivial computation on mod-
ern CPUs;

3. For each string comparison during the binary
search, also compute the edit distance. This
checks whether there is a similar string within
an edit distance of d in the list given another
string.

Note that a sorted list does not compute all similar
strings within an edit distance of d efficiently. Ad-
jacent strings in the list also wastes space since they
are highly similar. Thus we also propose to use a
prefix tree:

Fuzzy Generation with Prefix Tree (Trie): a
prefix tree builds a compact representation of all
strings where common prefixes are shared towards
the root of the tree. By careful back tracing, a prefix
tree can also output all similar strings within a fixed
edit distance to a given string. This efficiently solves
the wasted space and generation problems.

3.2 Implementation and Speed Comparison

We maximally re-used existing software for robust-
ness and quick implementation:

"We mix the notion of array vs. list as long as the actual
implementation satisfies two conditions: O(1) random access
time and O(1) appending(resizing) time.

68

d=0 d=1 d=2
Fuzzy Matching
<0.0lms 7.9 75
(Sorted List, PyPy) ms foms ms
Fuzzy Generation 29ms 210ms 1969ms

(Trie, Elasticsearch)

Table 1: Fuzzy query time per question. d is the edit
distance while d = 0 means strict matching. HTTP
roundtrip overhead from Elasticsearch was also counted.

Sorted List was implemented with vanilla Python
list, compiled with the PyPy just-in-time compiler.

Prefix Tree was implemented with Elasticsearch,
written in Java.

Both implementations held 46 million topic
names (each topic name is 20 characters long on
average) in memory. Specifically, sorted list took
2.06GB RAM while prefix tree took 1.62GB RAM.

Then we tested how fast it was to find out all
topics from a question. To do this, we used the
DEV set of WEBQUESTIONS. Enumerating all ad-
jacent words of various length is an O(N?) opera-
tion where N is a sentence length. In practice we
counted 27 adjacent words on average for one ques-
tion, thus 27 queries per question. Elasticsearch
follows the client-server model where client sends
HTTP queries to the backend database server. To
reduce HTTP roundtrip overhead, we queried the
server in burst mode: client only sends one “mega”
query to the server per question where each “mega”
query contains 27 small queries on average. Exper-
iments were conducted with an Intel Core i5-4278U
CPU @ 2.60GHz.

Table 1 shows the query time per question. Note
that this is an evaluation of real-world computing
situation, not how efficiently either search struc-
ture was implemented (or in what programming lan-
guage). Thus the purpose of comparison is to help
choose the best implementation solution.

3.3 Ranking

After identifying all possible topic names in a ques-
tion, we send them to the official Freebase Search
API to rank them. For instance, for the ques-
tion what character did natalie portman play in star
wars?, possible named entities include character,
natalie, natalie portman, play, star, and star wars.

But in general natalie portman and star wars should
be ranked higher. Due to the crowd-sourced nature,
many topics have duplicate entries in Freebase. For
instance, we counted 20 different natalie portman’s
(each one has a unique machine ID), but only one
is extensively edited. One can either locally rank
them by the number of times each topic is cross-
referenced with others, or use the Freebase Search
API in an online fashion. In our experiments the lat-
ter yielded significantly better results. The Freebase
Search API returns a ranked list of topic candidates.
Our next job is to predict answers from this list.

4 Prediction

Given a question and its topic, we directly predict
the relation that connects the topic with the answer.
Our features and model are extremely simple: we
took unigram and bigram words from the question
as our features and used logistic regression to learn
a model that associates lexical words with relations.

The training set of WEBQUESTIONS contains
3778 question and answer pairs. Each question is
also annotated with the Freebase topic used to iden-
tify the answers. Then for each of the topic-answer
pairs, we extracted a direct relation from the topic
to the answer, for instance (TOPIC: Sweden, RELA-
TION: /location/country/currency_used, ANSWER:
Swedish krona). If there were more than one rela-
tions between the topic and the answer (mostly due
to dummy “compound” nodes in between), we chose
the nearest one to the answer node as the direct re-
lation. To be more specific: we first selected the
the shortest path between the topic and answer node,
then chose the relation from the answer node to its
parent node, regardless of whether the parent node
was the topic node. In this way we found direct re-
lations for 3634 of these questions, which count as
96.2% of the whole training set.

Note that we “reverse-engineered” the slot-filling
relations that would predict the correct answers
based on annotated gold answers. It does not mean
that these relations will predict the answers with
100% accuracy. For instance, for the question what
was the first book dr. seuss wrote?, the direct
relation was /book/author/book_editions_published.
However, this relation would predict all books Dr.
Seuss wrote, instead of just the first one. Thus in

69

the training set, we further counted the number of
relations that point to the exact gold answers. In all,
62% of questions out of the whole training set can
be exactly answered by a single relation.

The remaining 38% presented a complicated case.
We sampled 100 questions and did a manual analy-
sis. There were mainly two reasons that contributed
to the 38%:

1. Noisy Annotation: questions with incomplete
answers. For instance,

(a) for the question what does bob dylan sing?,
the annotated answer was only “like a rolling
stone”, while the direct relation /music/artist/-
track gave a full list;

(b) for the question what kind of currency does
cuba use?, the annotated answer was Cuban
Peso, while the direct relation /location/coun-
try/currency_used led to two answers: Cuban
Peso and Cuban Convertible Peso.

2. Complex Questions: questions with con-
straints that cannot be answered by binary re-
lations. For instance:

(a) who does david james play for 20117

(b) which province in canada is the most pop-
ulated?

(c) who does jodelle ferland play in eclipse?

For category 1, the answers provided by direct bi-
nary relations will only hurt evaluation scores, but
not user experience. For category 2, we counted
about 40% of them from the samples. Thus in total,
complex questions constructed 38% x 40% = 15%
of the whole training set. In other words, 85% of
questions can be answered by predicting a single bi-
nary relation. This provides statistical evidence that
the task of QA on WEBQUESTIONS can be effec-
tively simplified to a tuple slot-filling task.

5 Results

We applied Liblinear (Fan et al., 2008) via its Scikit-
learn Python interface (Pedregosa et al., 2011) to
train the logistic regression model with L2 regular-
ization. Testing on 2032 questions took 51 seconds.?

This excluded the time used to call the Freebase Search
API, which is highly dependent on the network and server node.

Fl F1
(Berant) (Yao)
Yao and Van Durme (2014) 33.0 42.0
Berant and Liang (2014) 39.9 43.0
Reddy et al. (2014) 41.3 -
Bordes et al. (2014) 41.8 45.7
this work 44.3 53.5

Table 2: Results on the WEBQUESTIONS test set.

We found no difference in quality but only slightly
in speed in the search results between using sorted
list and prefix tree. Moreover, in specifically the
WEBQUESTIONS dataset, there was no difference in
strict matching and fuzzy matching — the dataset is
somehow void of typographical errors. >

We evaluated both the average F over all ques-
tions (Berant) and the F of average precision and
recall values (Yao) following Bordes et al. (2014),
shown in Table 2. Our method outperformed all
previous systems in both F] measures, with possi-
bly two reasons: 1, the simplicity of this method
minimizes error propagation down the processing
pipeline; 2, we used direct supervision while most
previous work used distant supervision.

6 Limitation and Discussion

The limitation of our method comes from the as-
sumption: most questions can be answered by pre-
dicting a direct binary relation. Thus it cannot han-
dle complex questions that require to resolve a chain
of relations. These complex questions appear about
15% of the time.

Note that WEBQUESTIONS is a realistic dataset:
it was mined off Google Suggest, which reflects
people’s everyday searches. Our manual analysis
showed that these complex questions usually only
contain one type of constraint that comes from either
a ranking/superlative describer (first, most, etc) or a
preposition phrase (in 1998, in some movie, etc). To
adapt to these questions, we can take a further step
of learning to filter a returned list of results. For in-

3This is likely due to the fact that the dataset was crawled
with the Google Suggest API, which aggregates common
queries and common queries are mostly free of typos. For real-
world everyday queries, fuzzy matching should still be applied.

70

stance, first (first husband, first novel, etc) requires
learning a time ordering; a prepositional constraint
usually picks out a single result from a list of results.
To go beyond to “crossword-like” questions with
multiple constraints, more powerful mechanisms are
certainly needed.

In summary, we have presented a system with
a focus on efficiency and simplicity. Computation
time is minimized to allow more time for network
traffic, while still being able to respond in real time.
The system is based on a simpler assumption: most
questions can be answered by directly predicting a
binary relation from the question topic to the answer.
The assumption is supported by both statistics and
observation. From this simple but verified assump-
tion we gained performance advantages of not only
speed, but also accuracy: the system achieved the
best result so far on this task.

References

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of ACL.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic Parsing on Freebase from
Question-Answer Pairs. In Proceedings of EMNLP.

Antoine Bordes, Sumit Chopra, and Jason Weston. 2014.
Question answering with subgraph embeddings. In
Proceedings of EMNLP 2014, pages 615-620.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A li-
brary for large linear classification. The Journal of
Machine Learning Research, 9:1871-1874.

Evgeniy Gabrilovich, Michael Ringgaard, , and
Amarnag Subramanya. 2013. FACCI:
Freebase annotation of ClueWeb corpora.

http://lemurproject.org/clueweb09/FACC1/.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in Python. The Journal of Machine Learning
Research, 12:2825-2830.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-answer
pairs. Transactions of the Association for Computa-
tional Linguistics, 2:377-392.

Xuchen Yao and Benjamin Van Durme. 2014. Informa-
tion extraction over structured data: Question answer-
ing with freebase. In Proceedings of ACL.

