
Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 1334–1338,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

GPU-Friendly Local Regression for Voice Conversion

Taylor Berg-Kirkpatrick Dan Klein
Computer Science Division

University of California, Berkeley
{tberg,klein}@cs.berkeley.edu

Abstract

Voice conversion is the task of transforming
a source speaker’s voice so that it sounds like
a target speaker’s voice. We present a GPU-
friendly local regression model for voice con-
version that is capable of converting speech
in real-time and achieves state-of-the-art ac-
curacy on this task. Our model uses a new
approximation for computing local regression
coefficients that is explicitly designed to pre-
serve memory locality. As a result, our infer-
ence procedure is amenable to efficient imple-
mentation on the GPU. Our approach is more
than 10X faster than a highly optimized CPU-
based implementation, and is able to convert
speech 2.7X faster than real-time.

1 Introduction

Voice conversion is the task of transforming an ut-
terance from a source speaker’s voice into a target
speaker’s voice. The primary setup in recent work
has been to learn this transformation from a paral-
lel corpus consisting of recordings of the same se-
quence of sentences read by both source and tar-
get speakers (Stylianou et al., 1998). The converted
speech is evaluated by how well its spectral proper-
ties match those of the target voice.

While various models have been proposed
(Stylianou et al., 1998; Toda et al., 2007; Toda et al.,
2005), the most accurate ones are non-parametric
because the mapping between two voices’ spectra
can be highly non-linear (Helander et al., 2012; Popa
et al., 2012). Unfortunately, while non-parametric
methods are accurate, they are also slow – current
non-parametric approaches to voice conversion are
too compute-intensive for the real-time speed re-
quired by many voice conversion applications. In
this paper, we begin with the state-of-the-art local

linear regression (LLR) model used by by Popa et
al. (2012) for voice conversion, and present a new
GPU-based inference approach that greatly acceler-
ates it, to much faster than real-time.

LLR, in principle, requires each new model pre-
diction to be a function of the entire set of training
examples. In practice, LLR depends most strongly
on nearby points, so a standard CPU implementa-
tion will skip distant points, with limited loss of ac-
curacy. A GPU cannot exploit sparsity in the same
way (scan and skip) without suffering from memory
bottlenecks, but even a GPU will be relatively slow if
all training points are included in each computation.
Our primary algorithmic change is to make use of a
new sparsity structure that allows the GPU to skip
major sections of the training data while still using
dense memory access patterns on the points it does
process. In experiments, this inference technique is
more than 10X faster than a highly-optimized CPU-
based implementation, operates almost three times
faster than real-time, and is only slightly less accu-
rate than the CPU-based method.

2 Background and Model

Most representations of speech that are useful for
speech processing break the acoustic signal into sep-
arate components that represent the sound source
(the lungs and vocal folds) and sound filter (the vo-
cal tract) portions of the vocal apparatus. Work on
voice conversion is generally focused on transform-
ing the representation of the vocal tract. We follow
this approach and learn a transformation of a mel-
cepstral representation of the acoustic signal (Kawa-
hara, 2006).

We treat the task as a multiple regression prob-
lem. In order to produce the transformed signal, we
break the source signal into a sequence of frames,
each of which is a 24-dimensional vector of mel-

1334

cepstral coefficients. We denote a single frame of
input mel-cepstral coefficients as x. In order to
produce the transformed signal, we simply predict
frame-by-frame. Specifically, for a frame x of the
input we predict a transformed frame ŷ as the mode
of density p(y|x), which we estimate from training
data. A naive approach would be to use a linear
model:

y = Ax+ ε

Here, ε is a Gaussian noise term, and the model is
parameterized by the transformation matrix, A. For
now, we assume training data are already frame-
aligned (see Section 4). Let yi be frame i of the
target signal in the training data. Similarly, let xi

be the corresponding frame of the source signal in
the training data. Thus, using this linear model, we
would estimate the transformation as:

Â = argmin
A

∑
i

‖yi −Axi‖2

This very simple approach works, to some extent,
but, because it cannot capture important non-linear
relationships between x and y, it is far from state-of-
the-art. A more popular approach is to use a Gaus-
sian mixture model (GMM) to jointly generate both
source and target cepstral features (Stylianou et al.,
1998; Toda et al., 2007; Toda et al., 2005). This
approach essentially learns different linear transfor-
mations for different regions of the input space, cap-
turing some non-linearity. However, the GMM in-
troduces a new problem: the posterior over the la-
tent clusters learned by the GMM can be highly
peaked (Popa et al., 2012) and as a result distortion is
introduced by discontinuities at cluster boundaries.
Thus, we adopt neither the simple linear approach
nor the GMM. We instead the state-of-the-art fully
non-parametric approach introduced by Popa et al.
(2012). This method, described in the next section,
learns transformations that capture non-linearity but
vary smoothly as the input changes.

2.1 Local Regression

Like Popa et al. (2012), we use local linear regres-
sion (LLR) (Cleveland, 1979) to estimate p(y|x).
LLR is a non-parametric method that estimates
p(y|x) as a linear transformation that varies slowly

with the input x. Specifically, p(y|x) is estimated as
follows:

y = A(x) · x+ ε

Â(x) = argmin
A

∑
i

[
w(x, xi) · ‖yi −Axi‖2

]
The transformation Â is a function of x, and is com-
puted by solving a weighted least squares problem
that depends on x. w is a kernel function that mea-
sures similarity between the current input, x, and
each of the source training frames, xi. We use a
Gaussian kernel:

w(x, xi) = exp
(−‖x− xi‖2

2σ2

)
Intuitively, for each input frame x we solve a sepa-
rate least squares regression where each training da-
tum is weighted by its similarity to the input. As the
input varies, so will the weighting, and thus so will
the linear transformation.

3 Inference

Exact inference using LLR is too computationally
expensive for most applications since it means solv-
ing a least squares problem over the entire training
set for each input frame x. A common approach is
to define a neighborhood function that, for each in-
put frame x, selects K training frames xi that are
most relevant to x. Then, Â(x) is computed by only
solving the least squares problem over this neigh-
borhood. This approach can work well in practice
since the support for each local least squares prob-
lem is relatively sparse. By choosing the right neigh-
borhood function, work can be skipped without sub-
stantially impacting learning.

3.1 Inference on the CPU
The standard approach when using a CPU is to let
the neighborhood function pick out the indices of the
K training frames xi that maximize w(x, xi). We
let this particular neighborhood function be called
g(x), depicted in Figure 1. Using this approach, for
input frame x, Â(x) has the following closed form
expression:

Â(x) = H(x)>W (x)G(x)
(
G(x)>W (x)G(x)

)−1

1335

G(x) is a matrix formed by appending the train-
ing source vectors in the neighborhood of x. More
specifically, G(x) is a matrix that has the vectors x>i
s.t. i ∈ g(x) as its rows. Similarly, H(x) is a matrix
that has the vectors y>i s.t. i ∈ g(x) as its rows (in
the corresponding order). W (x) is a matrix that has
the weights w(x, xi) s.t. i ∈ g(x) along its diagonal
(also in the corresponding order).

This approach is much faster than the exhaustive
method, but at typical audio sampling frequencies,
inferring the transformation of the signal for an en-
tire sentence can take over 30 seconds on a mod-
ern CPU, which is too slow for real-time conversion.
In order to transform the signal for a new sentence,
Â(x) must be computed for each frame. This means
that for each frame x, the distance to all training
source frames must be computed, neighborhood ma-
trices G(x) and H(x) must be formed, followed by
several matrix multiplies, an LU decomposition, and
a triangular solve operation.

3.2 Inference on the GPU

The computation of Â(x) for a block of multiple in-
put frames can be done in parallel if a fixed amount
of lag is tolerated in the conversion process. The
parallel computation of large number of small dense
matrix operations (multiply, LU decomposition, tri-
angular solve) is a perfect fit for implementation
a GPU, which can achieve vastly more throughput
than modern CPUs can. However, using the CPU’s
neighborhood structure on the GPU has a crippling
bottleneck. The extraction of the neighborhood ma-
tricesG(x) andH(x) from the training data requires
a large number of memory accesses that are effec-
tively random. The indices of the closest K train-
ing source vectors to an input x are generally non-
contiguous. As a result, the K vectors in each of the
neighborhood matrices must be copied with sepa-
rate memory accesses, and since random access time
on modern GPUs is very slow, extraction becomes
a bottleneck. In initial experiments, we found that
when this approach is implemented on a GPU it is
even slower than the CPU-based implementation.

In contrast, memory bandwidth is extremely high
on modern GPUs. Thus, if it were possible to order
the training vectors xi and yi in GPU memory such
that neighborhood matrices G(x) and H(x) were
composed of contiguous blocks of training vectors,

x1

x2

surrogate
neighborhood

g̃(x)

g(x)
neighborhood input frame

x

first principal
direction

GPU

CPU

Figure 1: Depiction of standard neighborhood function g(x)
used for local regression on the CPU and surrogate neighbor-
hood function g̃(x) used for inference on the GPU, plotted for
two-dimensional input data.

extraction on the GPU could be made very effi-
cient. Unfortunately, with the current definition of
the neighborhood function, g, such an ordering does
not exist. Therefore, we define a new GPU-friendly
neighborhood function, g̃, for which an ordering that
permits contiguous extraction does exist.

Let u(x) be the projection of source vector x onto
the first principal component resulting from running
PCA on the source side of the training data. Now,
we define g̃ as follows: g̃(x) is the set of K indices
for which |u(x)− u(xi)| is the smallest, or, in other
words, the set of training indices with source projec-
tions closest to the projection of the input frame. By
ordering the training data by their projection onto
the first principal component, we can ensure that
G(x) and H(x) are contiguous in memory.

The hope is that this approach yields substantial
speedups on the GPU without negatively impacting
the learned transformation (see Section 4). Figure
1 depicts the difference between the CPU neighbor-
hood function g and the GPU function g̃. Intuitively,
when most of the variance in the training data occurs
along the first principal direction, the CPU and GPU
neighborhood functions may be similar since the
distance between projections is a good proxy for dis-
tance in the original space. The weighting function,
w, is still computed in the original space, so distant
training vectors that are inadvertently included in the
neighborhood will be severely down-weighted. The
potential pitfall is that for a fixed neighborhood size,
g̃ may be less efficient at collecting training points
that are relevant to the input.

1336

System Scottish Male to US Female US Female to Scottish Male
CD Time Frac. RT CD Time Frac. RT

GMM 7.05 1.1 3.7X 7.01 0.7 3.9X
CPU LLR 5.99 12.2 0.3X 6.51 8.75 0.3X
GPU LLR 5.98 1.4 2.7X 6.55 0.9 2.9X

Table 1: Voice conversion results for the GMM baseline system, CPU-based local linear regression baseline system, and the GPU-
based local linear regression method. The cepstral distortion (CD), average inference time per sentence in seconds (Time), and
fraction of real-time (Frac. RT) are shown. Smaller cepstral distortion corresponds to more accurate transformations and fractions
of real-time that exceed one imply faster than real-time operation.

4 Experiments

We run a series of experiments to determine whether
our GPU-based inference technique offers speeds-
ups and at what cost to accuracy.

Baselines We compare our LLR-based conversion
system that performs inference on the GPU (using
the GPU-friendly neighborhood function) with two
different baseline systems. The first baseline sys-
tem also uses LLR, but performs inference on the
CPU using the standard neighborhood function. The
second baseline is the GMM model of Toda et al.
(2007), which is known to be fast and is widely used
in practice. The size, K, of both CPU and GPU
neighborhoods was set on a development data to the
smallest value that did not show degraded perfor-
mance compared to exact local regression.

Implementation We implemented our GPU-
based LLR technique using the CUDA API
(Nickolls et al., 2008), and the CUBLAS API
which contains bindings for GPU BLAS routines.
We ran the system using an NVIDIA Tesla K40c
GPU. We built a multi-threaded implementation
of CPU-based inference for local regression using
calls to CPU BLAS routines, and ran this system on
a 4.4GHz 4-core Intel CPU.

Data We train and test on a portion of the CMU
Arctic database. The training data consists of 70
sentences spoken by both a US female speaker and
a Scottish male speaker. The testing data consists of
20 sentences spoken by the same two speakers. We
give results for converting in both directions, from
the female voice to the male voice, and from the
male voice to the female voice.

Frame Alignment Since the source and target
speakers speak at slightly different rates, our train-
ing data consist of different numbers of frames for
each training sentence. We use dynamic time warp-
ing to induce the frame alignment. Specifically, we
find the minimum cost monotonic alignment from
source frames into target frames where the cost of
each alignment edge is the L2 distance between the
corresponding vectors. We use a distortion limit of
2, and a linear distortion cost.

Analysis and Synthesis We use the CMU imple-
mentation of the STRAIGHT analysis and synthe-
sis methods introduced by Kawahara (2006). This
is the same method used many state-of-the-art voice
conversion systems, included our GMM baseline of
Toda et al. (2007). We transform the top 24 cep-
stral coefficients using our system, but process the
power coefficient and fundamental frequency sep-
arately, using simple transformations for the latter
two components.

Evaluation In order to evaluate the accuracy of
our model we measure the cepstral distortion be-
tween the predicted ceptstral frames ŷ and the actual
cepstral frames for the target voice y. The cepstral
distortion is calculated as follows:

distortion(ŷ, y) ∝ ‖ŷ − y‖

We using dynamic time warping to align the pre-
dicted frame sequence to the target frame sequence.

4.1 Results

The results of our experiments are displayed in Ta-
ble 1. For the Scottish male to US female and the US
female to Scottish male transformations the systems
that use local regression outperform the parametric

1337

GMM baseline in terms of average cepstral distor-
tion. The GMM baseline, is however, the fastest
of the compared systems. For both experiments,
it is able to produce transformations substantially
faster than real-time. The CPU-based local regres-
sion baseline achieves the best overall cepstral dis-
tortion, but is also the slowest method. In both ex-
periments, it operates at 0.3X real-time speed. The
GPU-based local regression method performs only
slightly worse overall than the exact method in terms
of cepstral distortion, yet in both experiments it op-
erates substantially faster than real-time, nearly as
fast as the parametric baseline.

5 Conclusion

We have demonstrated a method for substantially
speeding-up inference using a non-parametric es-
timator for spectral voice conversion. Related
approaches may prove useful for making non-
parametric estimators more efficient in other areas
of speech and language processing.

Acknowledgements

This work was partially supported by BBN un-
der DARPA contract HR0011-12-C-0014 and by an
NSF fellowship for the first author. Thanks to the
anonymous reviewers for their insightful comments.
We further gratefully acknowledge a hardware do-
nation by NVIDIA Corporation.

References

William S Cleveland. 1979. Robust locally weighted
regression and smoothing scatterplots. Journal of the
American statistical association, 74(368):829–836.

E. Helander, H. Silen, T. Virtanen, and M. Gabbouj.
2012. Voice conversion using dynamic kernel partial
least squares regression. IEEE transactions on audio,
speech, and language processing, 20(3):806–817.

H. Kawahara. 2006. Straight, exploitation of the other
aspect of vocoder: Perceptually isomorphic decompo-
sition of speech sounds. Acoustical science and tech-
nology, 27(6):349–353.

John Nickolls, Ian Buck, Michael Garland, and Kevin
Skadron. 2008. Scalable parallel programming with
cuda. Queue, 6(2):40–53.

Victor Popa, Hanna Silen, Jani Nurminen, and Moncef
Gabbouj. 2012. Local linear transformation for voice

conversion. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2012 IEEE International Conference
on, pages 4517–4520. IEEE.

Yannis Stylianou, Olivier Cappé, and Eric Moulines.
1998. Continuous probabilistic transform for voice
conversion. Speech and Audio Processing, IEEE
Transactions on, 6(2):131–142.

Tomoki Toda, Alan W Black, and Keiichi Tokuda. 2005.
Spectral conversion based on maximum likelihood es-
timation considering global variance of converted pa-
rameter. In ICASSP (1), pages 9–12.

T. Toda, A.W. Black, and K. Tokuda. 2007. Voice con-
version based on maximum-likelihood estimation of
spectral parameter trajectory. Audio, Speech, and Lan-
guage Processing, IEEE Transactions on, 15(8):2222–
2235.

1338

