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Abstract

This paper presents a framework to infer spa-
tial knowledge from verbal semantic role rep-
resentations. First, we generate potential spa-
tial knowledge deterministically. Second, we
determine whether it can be inferred and a
degree of certainty. Inferences capture that
something is located or is not located some-
where, and temporally anchor this informa-
tion. An annotation effort shows that infer-
ences are ubiquitous and intuitive to humans.

1 Introduction

Extracting semantic relations from text is at the core
of text understanding. Semantic relations encode se-
mantic connections between words. For example,
from (1) Bill couldn’t handle the pressure and quit
yesterday, one could extract that theCAUSE of quit
was the pressure. Doing so would help answering
questionWhy did Bill quit? and determining thatthe
pressure started before Billquit.

In the past years, computational semantics has re-
ceived a significant boost. But extracting all seman-
tic relations in text—even in single sentences—is
still an elusive goal. Most existing approaches target
either a single relation, e.g.,PART-WHOLE (Girju et
al., 2006), or relations that hold between arguments
following some syntactic construction, e.g., posses-
sives (Tratz and Hovy, 2013). Among the latter kind,
the task of verbal semantic role labeling focuses on
extracting semantic links exclusively between verbs
and their arguments. PropBank (Palmer et al., 2005)
is a popular corpus for this task, and tools to ex-
tract verbal semantic roles have been proposed for
years (Carreras and Màrquez, 2005).

Some semantic relations hold forever, e.g., the
CAUSE of eventquit in example (1) above ispres-
sure. Discussing when thisCAUSE holds is some-
what artificial: at some point Billquit, and he did so
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Figure 1: Semantic roles (solid arrows) and addi-
tional spatial knowledge (discontinuous arrow).

because ofthe pressure. But LOCATION and other
semantic relations often do not hold forever. For ex-
ample, while buildings typically have one location
during their existence, people and objects such as
cars and books do not: they participate in events and
as a result their locations change.

This paper presents a framework to infer
temporally-anchored spatial knowledge from verbal
semantic roles. Specifically, our goal is to infer
whether something is located somewhere or not lo-
cated somewhere, and temporally anchor this spa-
tial information. Consider sentence (2)John was
incarcerated at Shawshank prison and its semantic
roles (Figure 1, solid arrows). Given these roles,
we aim at inferring thatJohn hadLOCATION Shaw-
shank prison during eventincarcerated, and that he
(probably) did not have thisLOCATION before and
after (discontinuous arrow). Our intuition is that
knowing thatincarcerated hasTHEME John andLO-
CATION Shawshank prison will help making these
inferences. As we shall discuss, sometimes we have
evidence that something is (or is not) located some-
where, but cannot completely commit.

We target temporally-anchored spatial knowledge
between intra-sentential arguments of verbs, not
only between arguments of the same verb as ex-
emplified in Figure 1. The main contributions are:
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(1) analysis of spatial knowledge inferable from
PropBank-style semantic roles; (2) annotations of
temporally-anchoredLOCATION relations on top of
OntoNotes;1 (3) supervised models to infer the ad-
ditional spatial knowledge; and (4) experiments de-
tailing results using lexical, syntactic and semantic
features. The framework presented here infers over
44% spatial knowledge on top of the PropBank-style
semantic roles annotated in OntoNotes (certYES

andcertNO labels, Section 3.3).

2 Semantic Roles and Additional Spatial
Knowledge

We denote a semantic relationR betweenx and y
as R(x, y). R(x, y) could be read “x has R y”,
e.g., AGENT(moved, John) could be read “moved
hasAGENT John”. Semantic roles2 are semantic re-
lations R(x, y) such thatx is a verb andy is an ar-
gument ofx. We refer to any spatial relationLO-
CATION(x, y) where (1)x is not a verb, or (2)x is
a verb buty is not a argument ofx, as additional
spatial knowledge. As we shall see, we target addi-
tional spatial knowledge beyond plainLOCATION(x,
y) relations, which only specify the locationy of x.
Namely, we consider polarity, i.e., whether some-
thing is or is not located somewhere, and temporally
anchor this information.

This paper complements semantic role represen-
tations with additional spatial knowledge. We fol-
low a practical approach by inferring spatial knowl-
edge from PropBank-style semantic roles. We be-
lieve this is an advantage since PropBank is well-
known in the field and several tools to predict Prop-
Bank roles are documented and publicly available.3

The work presented here could be incorporated into
any NLP pipeline after role labeling without modifi-
cations to other components.

2.1 PropBank and OntoNotes

PropBank (Palmer et al., 2005) adds semantic role
annotations on top of the parse trees of the Penn

1Available athttp://hilt.cse.unt.edu/
2We usesemantic role to refer to PropBank-style (verbal)

semantic roles. NomBank (Meyers et al., 2004) and FrameNet
(Baker et al., 1998) also annotate semantic roles.

3E.g., http://cogcomp.cs.illinois.edu/page/

software , http://ml.nec-labs.com/senna/ ;

[Mr. Cray]ARG0 [will] ARGM-MOD [work]verb [for the
Colorado Springs CO company]ARG2 [as an indepen-
dent contractor]ARG1.
[I] ARG0 ’d [slept]verb [through my only previous brush
with natural disaster]ARG2 , [. . . ]

Table 1: Examples of PropBank annotations.

ARGM-LOC: location ARGM-CAU: cause
ARGM-EXT: extent ARGM-TMP: time
ARGM-DIS: discourse connective ARGM-PNC: purpose

ARGM-ADV : general-purpose ARGM-MNR: manner
ARGM-NEG: negation marker ARGM-DIR: direction
ARGM-MOD: modal verb

Table 2: Argument modifiers in PropBank.

Treebank. It uses a set of numbered arguments4

(ARG0, ARG1, etc.) and modifiers (ARGM-TMP,
ARGM-MNR, etc.). Numbered arguments do not
share a common meaning across verbs, they are de-
fined on verb-specific framesets. For example,ARG2

is used to indicate “employer” with verb work.01
and “expected terminus of sleep” with verb sleep.01
(Table 1). Unlike numbered arguments, modifiers
have the same meaning across verbs (Table 2).

The original PropBank corpus consists of (1)
3,327 framesets, each frameset defines the num-
bered roles for a verb, and (2) actual semantic role
annotations (numbered arguments and modifiers) for
112,917 verbs. On average, each verb has 1.93 num-
bered arguments and 0.66 modifiers annotated. Only
7,198 verbs have anARGM-LOC annotated, i.e., lo-
cation information is present in 6.37% of verbs. For
more information about PropBank and examples, re-
fer to the annotation guidelines.5

OntoNotes (Hovy et al., 2006) is a more re-
cent corpus that includes POS tags, word senses,
parse trees, speaker information, named entities,
PropBank-style semantic roles and coreference.
While the original PropBank annotations were done
exclusively in the news domain, OntoNotes includes
other genres as well: broadcast and telephone con-
versations, weblogs, etc. Because of the addi-
tional annotation layers and genres, we work with
OntoNotes instead of PropBank.

4Numbered arguments are also referred to ascore.
5http://verbs.colorado.edu/ ˜ mpalmer/projects/

ace/PBguidelines.pdf
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Figure 2: Semantic roles (solid arrows) and additional spatial knowledge (discontinuous arrow) of type (1b).
The additionalLOCATION(a Royal Caribbean ship, in the Mediterranean) of type (1a) is not shown.

2.2 Additional Spatial Knowledge

Sentences contain spatial information beyond
ARGM-LOC semantic role, i.e., beyond links be-
tween verbs and their arguments. There are two
main types of additionalLOCATION(x, y) relations:6

(1) those whose argumentsx and y are semantic
roles of a verb, and (2) those whose argumentsx and
y are not semantic roles of a verb.

The first kind can be further divided into (1a)
those whose arguments are semantic roles of the
same verb (Figure 1), and (1b) those whose argu-
ments are semantic roles of different verbs. Fig-
ure 2 illustrates type (1b). Semantic roles indicate
ARG1 and ARGM-DIR of vanished, and ARG0 and
ARGM-LOC of cruising. In this example, one can
infer that twenty-six year old George Smith (ARG1

of vanished) hasLOCATION in the Mediterranean
(ARGM-LOC of cruising) during thecruising event.

The second kind of additionalLOCATION(x, y) is
exemplified in the following sentence:[Residents
of Biddeford apartments]ARG0 can [enjoy]verb [the
recreational center]ARG1 [free of charge]MANNER.
LOCATION(recreational center, Biddeford apart-
ments) could be inferred yetBiddeford apartments
is not a semantic role of a verb.7 Inferring this kind
of relations would require splitting semantic roles;

6Both ARGM-LOC(x, y) and LOCATION(x, y) encode the
same meaning, but we useARGM-LOC for the PropBank se-
mantic role andLOCATION for additional spatial knowledge.

7Note that the head ofARG0 is residents, not the apartments.

one could also extract that theresidents haveLOCA-
TION Biddeford apartments.

In this paper, we focus on extracting additional
spatial knowledge of type (1), and reserve type (2)
for future work. More specifically, we infer spa-
tial knowledge betweenx andy, where the follow-
ing semantic roles exist:ARGi(xpred, x) andARGM-
LOC(ypred, y). ARGi indicates any numbered argu-
ment (ARG0, ARG1, ARG2, etc.) andxpred (ypred) in-
dicates the verbal predicate to whichx (y) attaches.
Targeting additional spatial knowledge exclusively
for numbered arguments is not a significant limita-
tion: most semantic roles annotated in OntoNotes
(75%) are numbered arguments, and it is pointless
to infer spatial knowledge for most modifiers, e.g.,
ARGM-EXT, ARGM-DIS, ARGM-ADV , ARGM-MOD,
ARGM-NEG, ARGM-DIR.

3 Annotating Spatial Knowledge

Annotating all additional spatial knowledge in
OntoNotes inferable from semantic roles is a daunt-
ing task. OntoNotes is a large corpus with 63,918
sentences and 9,924ARGM-LOC semantic roles an-
notated. Our goal is not to present an extensive
annotation effort, but rather show that additional
temporally-anchored spatial knowledge can be (1)
annotated reliably by non-experts following simple
guidelines, and (2) inferred automatically using su-
pervised machine learning. Thus, we focus on 200
sentences from OntoNotes that have at least one
ARGM-LOC role annotated.
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foreach sentence s do
foreach sem. role ARGM-LOC(ypred, y) ∈ s do

foreach sem. role ARGi(xpred, x) ∈ s do
if is valid(x, y) then

Is x located aty beforeypred?
Is x located aty duringypred?
Is x located aty afterypred?

Algorithm 1: Procedure to generate potential addi-
tional spatial knowledge of type (1) (Section 2.2).

Obviously, [the pilot]ARG0 , v1 did[n’t] ARGM-NEG, v1 [think]v1

[too much]ARGM-EXT, v1 [about [what]ARG1 , v2 was
[happening]v2 [on the ground]ARGM-LOC, v2 , or . . . ]ARG1, v1

Figure 3: Sample sentence and semantic roles. Pair
(x: about what was happening on the ground, y: on
the ground) is invalid becausex containsy.

All potential additional spatial knowledge is gen-
erated with Algorithm 1, and a manual annotation
effort determines whether spatial knowledge should
be inferred. Algorithm 1 loops over allARGM-LOC

roles, and generates questions regarding whether
spatial knowledge can be inferred for any numbered
argument within the same sentence.is valid(x, y)
returns True if (1)x is not contained iny and (2)y is
not contained inx. Considering invalid pairs would
be trivial or nonsensical, e.g., pair (x:about what
was happening on the ground, y: on the ground) is
invalid in the sentence depicted in Figure 3.

3.1 Annotation Process and Guidelines

In a first batch of annotations, two annotators were
asked questions generated by Algorithm 1 and re-
quired to answerYES or NO. The only information
they had available was the source sentence without
semantic role information. Feedback from this first
attempt revealed that (1) because of the nature ofx
or y, sometimes questions are pointless, and (2) be-
cause of uncertainty, sometimes it is not correct to
answerYESor NO, even tough there is some evidence
that makes either answer likely.

Based on this feedback, and inspired by previous
annotation guidelines (Saurı́ and Pustejovsky, 2012),
in a second batch we allowed five answers:
• certYES : I am certain that the answer is yes.
• probYES : It is probable that the answer is yes,

but it is not guaranteed.
• certNO : I am certain that the answer is no.

• probNO: It is probable that the answer is no, but
it is not guaranteed.

• UNK: There is not enough information to an-
swer, I can’t tell the location ofx.

The goal is to infer spatial knowledge as gath-
ered by humans when reading text. Thus, annotators
were encouraged to use commonsense and world
knowledge. While simple and somewhat open to
interpretation, these guidelines allowed as to gather
annotations with “good reliability” (Section 3.3.1).

3.2 Annotation Examples

In this section, we present annotation examples af-
ter resolving conflicts (Figure 4). These examples
show that ambiguity is common and sentences must
be fully interpreted before annotating.

Sentence 4(a) has four semantic roles for verbcol-
lecting (solid arrows), and annotators are asked to
decide whetherARG0 and ARG1 of collecting are
located at theARGM-LOC before, during or after
collecting (discontinuous arrows). Annotators inter-
preted that theFBI agents and divers (ARG0) andev-
idence (ARG1) were locatedat Lake Logan (ARGM-
LOC) during collecting (certYES ). They also anno-
tated that theFBI agents and divers were likely to be
located atLake Logan before and after (probYES ).
Finally, they determined that theevidence was lo-
catedat Lake Logan before thecollecting (certYES ),
but probably not after (probNO). These annotations
reflect the natural reading of sentence 4(a): (1) peo-
ple and whatever they collect are located where the
collecting takes place during the event, (2) people
collecting are likely to be at that location before and
after (i.e., presumably they do not arrive immedi-
ately before and leave immediately after), and (3)
the objects being collected are located at that loca-
tion before collecting, but probably not after.

Sentence 4(b) is more complex. First, potential
relation LOCATION(in sight, at the intersection) is
annotatedUNK: it is nonsensical to ask for the loca-
tion of sight. Second, theDisney symbols are never
locatedat the intersection (certNO ). Third, boththe
car andsecurity guard were locatedat the intersec-
tion during the stop for sure (certYES ). Fourth, an-
notators interpreted thatthe car was notat the in-
tersection before (certNO ), but they were not sure
about after (probNO). Fifth, they considered that the
security guard was probably locatedat the intersec-
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Today FBI agents and divers were collecting
ARG0

ARGM-TMP
ARG1

ARGM-LOC

evidence at Lake Logan . . .

(a)

However, before
[any of the

Disney symbols]ARG1, v1
[were]v1

[in sight]ARG2 , v1

the car was stopped

ARGM-DIS
ARGM-TMP

ARG1 ARG0
ARGM-LOC

by a
security guard

at the intersection
of the roads

towards Disney

(b)

x y ypred Before During After

FBI agents and divers at Lake Logan collecting probYES certYES probYES
evidence at Lake Logan collecting certYES certYES probNO

any of the Disney symbols at the intersection of the roads . . . stopped certNO certNO certNO
in sight at the intersection of the roads . . . stopped UNK UNK UNK
the car at the intersection of the roads . . . stopped certNO certYES probNO
by a security guard at the intersection of the roads . . . stopped probYES certYES probYES

Figure 4: Examples of semantic role representations (solidarrows), potential additional spatial knowledge
(discontinuous arrows) and annotations with respect to theverb to whichy attaches (collecting or stopped).

Label
certYES probYES certNO probNO UNK

# % # % # % # % # %
Before 100 15.04 225 33.83 57 8.57 248 37.29 35 5.26
During 477 71.51 36 5.40 60 9.00 59 8.85 35 5.25
After 140 21.12 344 51.89 57 8.60 87 13.12 35 5.28

All 717 35.94 605 30.33 174 8.72 394 19.75 105 5.26

Table 3: Annotation counts. Over 44% of potential spatial knowledge can be inferred (certYES andcertNO ).

tion before and after. In other words, annotators un-
derstood that (1) the car was moving down a road
and arrived at the intersection; (2) then, it was pulled
over by a security guard who is probably stationed at
the intersection; and (3) after the stop, the car prob-
ably continued with its route but the guard probably
stayed at the intersection.

3.3 Annotation Analysis
Each annotator answered 1,995 questions generated
with Algorithm 1. Basic label counts after resolving
conflicts are shown in Table 3. First, it is worth not-
ing that annotators usedUNKto answer only 5.26%
of questions. Thus, over 94% of timesARGM-LOC

semantic role is found, additional spatial knowledge
can be inferred with some degree of certainty. Sec-
ond, annotators were certain about the additional
spatial knowledge, i.e., labelscertYES andcertNO ,
35.94% and 8.72% of times respectively. Thus,
44% of times one encountersARGM-LOC seman-

Observed Cohen Kappa
Before 89.0% 0.845
During 91.2% 0.848
After 87.8% 0.814

All 89.8% 0.862

Table 4: Inter-annotation agreements. Kappa scores
indicate “good reliability”.

tic role, additional spatial knowledge can be inferred
with certainty. Finally, annotators answered around
50% of questions withprobYES or probNO. In other
words, they found it likely that spatial information
can be inferred, but were not completely certain.

3.3.1 Inter-Annotator Agreements

Table 4 presents observed agreements, i.e., raw per-
centage of equal annotations, and Cohen Kappa
scores (Cohen, 1960) per temporal anchor and for
all questions. Kappa scores are above 0.80, indicat-
ing “good reliability” (Artstein and Poesio, 2008).
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No. Name Description

0 temporal anchor are we predictingLOCATION(x, y) before, during or afterypred?

le
xi

ca
l

1–4 first word, POS tag first word and POS tag inx andy
5–8 last word, POS tag last word and POS tag inx andy
9,10 num tokens number of tokens inx andy

11,12 subcategory concatenation of (1)x’s children and (2)y’s children
13 direction whetherx occurs before or aftery

sy
nt

ac
tic

14,15 syntactic node syntactic node ofx andy
16–19 head word, POS tag head word and POS tag ofx andy
20–23 left and right sibling syntactic nodes of the left and right siblings ofx andy
24–27 parent node and index syntactic nodes and child indices of parents ofx andy

28 common subsumer syntactic node subsumingx andy
29 syntactic path syntactic path betweenx andy

se
m

an
tic

30–33 word, POS tag predicate and POS tag ofxpred andypred

34 isRole semantic role label betweenxpred andx
35 same predicate whetherxpred andypred are the same token

36–39 firstRole, lastRole the first and last semantic roles ofxpred andypred

40–59 hasRole flags indicating whetherxpred andypred have each semantic role
60–99 role index and node for each semantic role, the order of appearance and syntactic node

100 x containedIny role semantic role ofypred that fully containsx
101 y containedInx role semantic role ofxpred that fully containsy

Table 5: Feature set to infer temporally-anchored spatial knowledge from semantic role representations.

We believe the high Kappa scores are due to the
fact that we start from PropBank-style roles instead
of plain text, and questions asked are intuitive. Note
that not all disagreements are equal, e.g., the differ-
ence betweencertYES and certNO is much larger
than the difference betweencertYES andprobYES .

4 Inferring Spatial Knowledge

We follow a standard supervised machine learning
approach. The 200 sentences were divided into
train (80%) and test (20%), and the corresponding
instances assigned to the train and test sets.8 We
trained an SVM with RBF kernel using scikit-learn
(Pedregosa et al., 2011). ParametersC andγ were
tuned using 10-fold cross-validation with the train-
ing set, and results are calculated with test instances.

4.1 Feature selection

Selected features (Table 5) are a mix of lexical, syn-
tactic and semantic features, and are extracted from
tokens (words and POS tags), full parse trees and se-
mantic roles. Lexical and syntactic features are stan-
dard in semantic role labeling (Gildea and Jurafsky,
2002) and we do not elaborate on them. Hereafter

8Splitting instances randomly would be unfair, as instances
from the same sentence would be assigned to the train and test
sets. Thank you to an anonymous reviewer for pointing this out.

Sentence: [In this laboratory]ARGM-LOC, v1 [I] ARG0, v1 ’m
[surrounded]v1 [by the remains of [20 service members
who]ARG1 , v2 are in the process of being [identified]v2 ]ARG1, v1

Potential additional spatial knowledge: x:20 service mem-
bers who, y: In this laboratory; x containedIny role =ARG1

Sentence: [Children]ARG0 , v1 can get to [know]v1 [dif-
ferent animals and plants, and [even some crops
that]ARG1 , v2 are [rarely]ARGM-ADV , v2 [seen]v2 [in our daily
life] ARGM-LOC, v2 ]ARG1 , v1 .
Potential additional spatial knowledge: x:Children, y: in
our daily life; y containedInx role = ARG1

Figure 5: Pairs (x, y) for whichx containedIn y role
andy containedIn x role features have a value.

we describe semantic features, which include any
feature derived from semantic role representations.

Features 30–33 correspond to the surface form
and POS tag of the verbs to whichx andy attach to.
Feature 34 indicates the semantic role betweenxpred

andx; note that the semantic role betweenypred and
y is alwaysARGM-LOC (Algorithm 1). Feature 35
distinguishes inferences of type (1a) from (1b) (Sec-
tion 2.2): it indicates whether bothx andy attach to
the same verb, as in Figure 1, or not, as in Figure
2. Features 36–39 encode the first and last seman-
tic role of xpred and ypred by order of appearance.
Features 40–59 are binary flags signalling which se-
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Before During After All
P R F P R F P R F P R F

most frequent
baseline

certYES 0.11 1.00 0.20 0.74 1.00 0.85 0.26 1.00 0.42 0.37 1.00 0.54
other labels 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

weighted avg. 0.01 0.11 0.02 0.54 0.74 0.63 0.07 0.26 0.11 0.14 0.37 0.20
most frequent
per temporal
anchor
baseline

certYES 0.00 0.00 0.00 0.75 1.00 0.86 0.00 0.00 0.00 0.75 0.62 0.68
probYES 0.00 0.00 0.00 0.00 0.00 0.00 0.45 1.00 0.62 0.45 0.56 0.50

probNO 0.38 1.00 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.62 0.47
other labels 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

weighted avg. 0.14 0.38 0.21 0.57 0.75 0.65 0.20 0.45 0.28 0.50 0.53 0.50

lexical
features

certYES 0.13 0.20 0.16 0.74 1.00 0.85 0.53 0.29 0.37 0.63 0.75 0.69
probYES 0.39 0.34 0.36 0.00 0.00 0.00 0.56 0.90 0.69 0.51 0.63 0.56

certNO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
probNO 0.39 0.53 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.37 0.38

UNK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
weighted avg. 0.31 0.35 0.32 0.54 0.74 0.63 0.44 0.56 0.47 0.47 0.55 0.50

lexical +
syntactic
features

certYES 0.41 0.47 0.44 0.74 0.99 0.85 0.27 0.09 0.13 0.67 0.72 0.70
probYES 0.53 0.34 0.41 0.00 0.00 0.00 0.54 0.90 0.67 0.54 0.63 0.58

certNO 0.33 0.10 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.04 0.06
probNO 0.38 0.64 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.44 0.41

UNK 1.00 0.12 0.22 1.00 0.12 0.22 1.00 0.12 0.22 1.00 0.12 0.22
weighted avg. 0.48 0.43 0.41 0.61 0.74 0.64 0.42 0.51 0.41 0.57 0.56 0.53

lexical +
semantic
features

certYES 0.18 0.20 0.19 0.74 1.00 0.85 0.65 0.31 0.42 0.67 0.76 0.71
probYES 0.48 0.42 0.44 0.00 0.00 0.00 0.57 0.92 0.70 0.54 0.66 0.60

certNO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
probNO 0.35 0.51 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.35 0.35

UNK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
weighted avg. 0.33 0.37 0.34 0.54 0.74 0.63 0.47 0.57 0.49 0.49 0.56 0.52

all features

certYES 0.50 0.20 0.29 0.76 0.97 0.85 0.50 0.14 0.22 0.73 0.70 0.71
probYES 0.51 0.36 0.42 0.50 0.14 0.22 0.56 0.93 0.70 0.55 0.66 0.60

certNO 0.33 0.10 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.04 0.05
probNO 0.40 0.72 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.50 0.44

UNK 1.00 0.12 0.22 0.33 0.12 0.18 0.50 0.12 0.20 0.50 0.12 0.20
weighted avg. 0.49 0.44 0.41 0.61 0.73 0.65 0.46 0.54 0.45 0.56 0.57 0.55

Table 6: Results obtained with two baselines, and training with several feature combinations. Models are
trained with all instances (before, during and after).

mantic rolesxpred andypred have, and features 60–
99 capture the index of each role (first, second, third,
etc.) and its syntactic node (NP, PP, SBAR, etc.).

Finally, features 100 and 101 capture the semantic
role of xpred andypred which fully containy andx
respectively, if such roles exists. These features are
especially designed for our inference task and are
exemplified in Figure 5.

5 Experiments and Results

Results obtained with the test set using two base-
lines and models trained with several feature com-
binations are presented in Table 6. Themost fre-
quent baseline always predictscertYES , and the
most frequent per temporal anchor baseline pre-

dicts probNO, certYES and probYES for instances
with temporal anchorbefore, during and after re-
spectively. Themost frequent baseline obtains a
weighted F-measure of0.20, andmost frequent per
temporal anchor baseline0.50. Results with su-
pervised models are better, but we note that always
predictingcertYES for during instances obtains the
same F-measure than using all features (0.65).

The bottom block of Table 6 presents results us-
ing all features. The weighted F-measure is0.55,
and the highest F-measures are obtained with labels
certYES (0.71) and probYES (0.60). Results with
certNO and probNO are lower (0.05 and0.44), we
believe this is due to the fact that few instances are
annotated with this labels (8.72% and19.75%, Ta-
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ble 3). Results are higher (0.65) with during in-
stances than withbefore and after instances (0.41
and0.45). These results are intuitive: certain events
such aspress andwrite require participants to be lo-
cated where the event occurs only during the event.

5.1 Feature Ablation and Detailed Results

The weighted F-measure using lexical features is the
same than with themost frequent per temporal an-
chor baseline (0.50). F-measures go up withbefore
(0.21 vs. 0.32, 52.38%) andafter (0.28 vs. 0.47,
67.85%) instances, but slightly down withduring in-
stances (0.65 vs. 0.63, −3.08%).

Complementing lexical features with syntactic
and semantic features brings the overall weighted F-
measure slightly up:0.53 with syntactic and0.52
with semantic features (+0.03 and+0.02, 6% and
4%). Before instances benefit the most from syn-
tactic features (0.32 vs. 0.41, 28.13%), andafter
instances benefit from semantic features (0.47 vs.
0.49, 4.26%). During instances do not benefit from
semantic features, and only gain0.01 F-measure
(1.59%) with syntactic features.

Finally, combining lexical, syntactic and seman-
tic features obtains the best overall results (weighted
F-measure:0.55 vs. 0.53 and 0.52, 3.77% and
5.77%). We note, however, thatbefore instances do
not benefit from including semantic features (same
F-measure,0.41), and the best results forafter in-
stances are obtained with lexical and semantic fea-
tures (0.49 vs. 0.45, 8.16%),

6 Related Work

Tools to extract the PropBank semantic roles we in-
fer from have been studied for years (Carreras and
Màrquez, 2005; Hajič et al., 2009; Lang and Lapata,
2010). These systems only extract semantic links
between predicates and their arguments, not be-
tween arguments of predicates. In contrast, this pa-
per complements semantic role representations with
spatial knowledge for numbered arguments.

There have been several proposals to extract se-
mantic links not annotated in well-known corpora
such as PropBank (Palmer et al., 2005), FrameNet
(Baker et al., 1998) or NomBank (Meyers et al.,
2004). Gerber and Chai (2010) augment Nom-
Bank annotations with additional numbered argu-

ments appearing in the same or previous sentences;
posterior work obtained better results for the same
task (Gerber and Chai, 2012; Laparra and Rigau,
2013). The SemEval-2010 Task 10: Linking Events
and their Participants in Discourse (Ruppenhofer
et al., 2009) targeted cross-sentence missing num-
bered arguments in PropBank and FrameNet. We
have previously proposed an unsupervised frame-
work to compose semantic relations out of previ-
ously extracted relations (Blanco and Moldovan,
2011; Blanco and Moldovan, 2014a), and a super-
vised approach to infer additional argument mod-
ifiers (ARGM) for verbs in PropBank (Blanco and
Moldovan, 2014b). Unlike the current work, these
previous efforts (1) improve the semantic represen-
tation of verbal and nominal predicates, or (2) in-
fer relations between arguments of the same predi-
cate. None of them target temporally-anchored spa-
tial knowledge or account for uncertainty.

Attaching temporal information to semantic rela-
tions is uncommon. In the context of the TAC KBP
temporal slot filling track (Garrido et al., 2012; Sur-
deanu, 2013), relations common in information ex-
traction (e.g.,SPOUSE, COUNTRY OF RESIDENCY)
are assigned a temporal interval indicating when
they hold. The task proved very difficult, and
the best system achieved 48% of human perfor-
mance. Unlike this line of work, the approach pre-
sented in this paper starts from semantic role repre-
sentations, targets temporally-anchoredLOCATION

relations, and accounts for degrees of uncertainty
(certYES / certNO vs. probYES / probNO).

The task of spatial role labeling (Hajič et al.,
2009; Kolomiyets et al., 2013) aims at thoroughly
representing spatial information with so-called spa-
tial roles, i.e., trajector, landmark, spatial and motion
indicators, path, direction, distance, and spatial rela-
tions. Unlike us, the task does not consider temporal
spans nor certainty. But as the examples through-
out this paper show, doing so is useful because (1)
spatial information for most objects changes over
time, and (2) humans sometimes can only state that
an object isprobably located somewhere. In con-
trast to this task, we infer temporally-anchored spa-
tial knowledge as humans intuitively understand it,
and purposely avoid following any formalism.
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7 Conclusions

Semantic roles encode semantic links between a
verb and its arguments. Among other role labels,
PropBank uses numbered arguments (ARG0, ARG1,
etc.) to encode the core arguments of a verb, and
ARGM-LOC to encode the location. This paper ex-
ploits these numbered arguments andARGM-LOC

in order to infer temporally-anchored spatial knowl-
edge. This knowledge encodes whether a numbered
argumentx is or is not located in a locationy, and
temporally anchors this information with respect to
the verb to whichy attaches.

An annotation effort with 200 sentences from
OntoNotes has been presented. First, potential addi-
tional spatial knowledge is generated automatically
(Algorithm 1). Then, annotators following straight-
forward guidelines answer questions asking for intu-
itive spatial information, including uncertainty. The
result is annotations with high inter-annotator agree-
ments that encode spatial knowledge as understood
by humans when reading text.

Experimental results show that inferring addi-
tional spatial knowledge can be done with a mod-
est weighted F-measure of0.55. Results are higher
for certYES andprobYES (0.71 and0.60), the labels
that indicate that something is certainly or probably
located somewhere. Simple majority baselines pro-
vide strong results, but combining lexical, syntactic
and semantic features yields the best results (0.50
vs. 0.55). Inferring spatial knowledge for numeric
arguments before and after an event occurs is harder
than during the event (0.41 and0.45 vs. 0.65).

The most important conclusion of this work is
the fact that given anARGM-LOC semantic role,
temporally-anchored spatial knowledge can be in-
ferred for numbered arguments in the same sen-
tence. Indeed, annotators answered 44% of ques-
tions withcertYES or certNO , and 50% of questions
with probYES or probNO. Another important obser-
vation is that spatial knowledge can be inferred from
most verbs, not only motion verbs. While it is fairly
obvious to infer fromJohn went to Paris that he had
LOCATION Paris after went but not before or dur-
ing, we have shown that verbs such asincarcerated
(Figure 1) also grant spatial inferences.
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andÁlvaro Rodrigo. 2012. Temporally anchored re-
lation extraction. InProceedings of the 50th Annual
Meeting of the Association for Computational Linguis-
tics: Long Papers - Volume 1, ACL ’12, pages 107–
116.

Matthew Gerber and Joyce Chai. 2010. Beyond Nom-
Bank: A Study of Implicit Arguments for Nominal
Predicates. InProceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1583–1592, Uppsala, Sweden, July.

Matthew Gerber and Joyce Chai. 2012. Semantic role
labeling of implicit arguments for nominal predicates.
Computational Linguistics, 38:755–798, 2012.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles.Computational Linguistics,
28(3):245–288, September.

Roxana Girju, Adriana Badulescu, and Dan Moldovan.
2006. Automatic discovery of part-whole relations.
Computational Linguistics, 32(1):83–135, March.
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