
Proceedings of the NAACL HLT 2012 Student Research Workshop, pages 17–22,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Indexing Google 1T for low-turnaround wildcarded frequency queries

Steinar Vittersø Kaldager
University of Oslo, Department of Informatics

steinavk@ifi.uio.no

Abstract

We propose a technique to prepare the Google
1T n-gram data set for wildcarded frequency
queries with a very low turnaround time, mak-
ing unbatched applications possible. Our
method supports token-level wildcarding and
– given a cache of 3.3 GB of RAM – requires
only a single read of less than 4 KB from the
disk to answer a query. We present an index-
ing structure, a way to generate it, and sug-
gestions for how it can be tuned to particular
applications.

1 Background and motivation

The “Google 1T” data set (LDC #2006T13) is a
collection of 2-, 3-, 4-, and 5-gram frequencies ex-
tracted at Google from around 1012 tokens of raw
web text. Wide access to web-scale data being a rel-
ative novelty, there has been considerable interest in
the research community in how this resource can be
put to use (Bansal and Klein, 2011; Hawker et al.,
2007; Lin et al., 2010, among others).

We are concerned with facilitating approaches
where a large number of frequency queries (op-
tionally with token-by-token wildcarding) are made
automatically in the context of a larger natural
language-based system. Our motivating example
is Bansal and Klein (2011) who substantially im-
prove statistical parsing by integrating frequency-
based features from Google 1T, taken as indica-
tive of associations between words. In this work,
however, parser test data is preprocessed “off-line”
to make n-gram queries tractable, hampering the
practical utility of this work. Our technique elimi-
nates such barriers to application, making it feasible
to answer previously unseen wildcarded frequency
queries “on-line”, i.e. when parsing new inputs. We
devise a structure to achieve this, making each query

approximately the cost of a single random disk ac-
cess, using an in-memory cache of about 3 GB.

Our own implementation will be made available
to other researchers as open source.

2 Prior work

Sekine and Dalwini (2010) have built a high-quality
“1T search engine” that can return lists of n-
gram/frequency pairs matching various types of pat-
terns, but they operate on a wider scale of queries
that makes their reported performance (0.34 s per
query) insufficient for our desired use.

Hawker, Gardiner and Bennetts (2007) have ex-
plored the same problem and devised a “lossy com-
pression” strategy, deriving from the data set a
lookup table fitting in RAM indexed by hashes of
entries, with cells corresponding to more than one
entry in the n-gram set filled with a “compromise”
value appropriate to the application. Although they
obtain very fast queries, in our estimation the error
introduced by this method would be problematic for
our desired use. Furthermore, the authors do not ad-
dress wildcarding for this strategy.

Talbot and Osborne (2007b; 2007a) have explored
applications of Bloom filters to making compara-
tively small probabilistic models of large n-gram
data sets. Though their method too is randomized
and subject to false positives, they discuss ways of
controlling the error rate.

Finally, several researchers including Bansal and
Klein (2011) and Hawker, Gardiner and Ben-
netts (2007) describe ways of working “off-line”,
without low-turnaround querying. However, sys-
tems built along these lines will be unable to effi-
ciently solve single small problems as they arise.

3 The indexing structure

The Google 1T data set consists of entries for n-
grams for n ∈ {1, 2, 3, 4, 5}. We have not ap-

17

plied our methods to the unigrams, as these are few
enough in number that they can be held in RAM and
structured by a standard method such as a hash table.

For the n-grams for n ∈ {2, 3, 4, 5}, we use sep-
arate carefully tuned and generated B-trees(Bayer
and McCreight, 1972), caching nodes near the root
in RAM and keeping the rest on disk.

3.1 Preprocessing

We apply preprocessing to the Google 1T data in
two ways. Firstly, in almost any application of
Google 1T it will be desirable to perform prepro-
cessing to discard unimportant details, both in order
to obtain a more manageable set of data and to make
patterns evident that would otherwise be obscured
by data scarcity. We identify and collapse to class
tokens IP addresses, email addresses, prefixed hex-
adecimal numbers, and various kinds of URIs. We
also collapse all decimal numeric data by mapping
all digits to the digit zero.

The preprocessing we apply (which is used to
generate the data set described in the rest of this arti-
cle) reduces the vocabulary size by about 37.6%. It
is our belief that, seen as a whole, this preprocess-
ing is quite mild, considering the amount of almost
universally unnecessary detail in the input data (e.g.
26% of the “words” begin with a digit).

Secondly, we use preprocessing in an entirely
different way, as a brute-force approach to sup-
porting wildcarded queries. The lookup structure
constructed does not provide any wildcarding fea-
tures – instead we use the preprocessing phase to
add entries for each of the 2n possible variously-
wildcarded queries (all the possible configurations
with each position either wildcarded or not) match-
ing each of the n-grams in the data.

After this preprocessing, the wildcard token <*>
can be treated just like any other token.

3.2 Dictionary

For cheaper processing and storage, our indexing
structure deals in integers, not string tokens. The
components of the structure describing this mapping
are the dictionaries. These are associative arrays
that are kept in RAM at runtime.

The main dictionary uniquely maps preprocessed
tokens to integers (e.g., <EMAIL> −→ 137). There

are fewer than 224 unique tokens in the 1T data set,
so each integer requires only 3 bytes of storage.

During generation of the structure, we have found
a second “transforming” dictionary useful. This
dictionary maps unpreprocessed tokens to integers,
e.g., john@example.com −→ 137, avoiding
string processing entirely. Unlike the normal dictio-
nary, the transforming dictionary describes a many-
to-one mapping.

The dictionaries are stored on disk simply as text
files, with one line for each key/value pair. The ap-
propriate dictionary is preloaded into an appropriate
in-memory Judy array (Baskins, 2004) during ini-
tialization, taking up around 300 MB of memory.

The main and the transforming dictionaries have
around 8 and 13 million entries respectively.

3.3 Search tree

Our central structure is a search tree, with the keys
being fixed-length sequences of integer tokens.

Owing to the static nature of the data set, the tree
can be constructed whole. For this reason there is no
need to support insertions or deletions, and we do
not account for them. Apart from the lack of sup-
port for mutation, the structure is a conventional B-
tree (Bayer and McCreight, 1972). Our main contri-
bution is identifying what sort of B-tree solves our
problem, describing how it can be implemented ef-
fectively, and how it practically can be generated
when dealing with a very large number of entries.

The tree should be broad to account for the dif-
ference in speed between searching within an in-
memory node and retrieving the next node from
disk. We use a branching factor limit of 127. With
parameters like ours the tree will generally have a
height (counting the root and the leaves, but not
individual n-gram entries) of 5. It will be about
half-filled, meaning – due to the generation method
outlined in Subsection 4.3 – that the root will have
around 127

2 children. Figure 2 illustrates the pattern
– rightmost nodes may have fewer children.

A larger node size for the leaves would mean
lower memory requirements at the cost of having to
make larger reads from the disk.

18

P r e p r o c e s s i n g

Dict ionary Transforming d ic t ionary

U n s o r t e d l i s t # 1 U n s o r t e d l i s t # 2 U n s o r t e d l i s t # 3 .. .

Google 1T data se t

U n i g r a m c o u n t s

Sor t ed l i s t #1 Sor t ed l i s t #2 Sor t ed l i s t #3 .. .

S o r t i n g m e r g e

S e a r c h t r e e

N o d e c a c h e

Query ing

Figure 1: An overview of the steps involved in generating
the indexing structure. The dotted portions indicate how
it is later used.

4 Generating the structure

4.1 Creating the dictionaries
The dictionaries are created by simply iterating
through the 1T vocabulary file, preprocessing and
assigning integral labels.

During development we have performed it in
Python and in Common Lisp, with the complexity
of the preprocessing being on the order of 8 class-
recognizer regular expressions and a character re-
placement pass for digits. One pass over the vocab-
ulary with this setup takes around 18 minutes.

4.2 Creating sorted partial lists
We now seek to generate all the entries to be entered
into our structure, ordered lexicographically by the
numeric n-tuples that constitute the entry keys.

However, preprocessing portions of the (sorted)
raw data set disturbs its ordering and introduces du-
plicate keys. After wildcarding it is also a concern
that the list is very long – about 3.5 · 1010 entries for
the 5-grams after wildcarding and before merging.

As directly sorting a list of this size is impractical,
we use an external sorting (Knuth, 1998) technique,
dividing the input of length N into sections of K
entries, then sort and merge duplicates in each one
separately, producing dN

K e separately sorted lists.
For sorting and merging, we use nested integer-

based Judy arrays. For each batch of input we first

fill such a structure – merging duplicate keys as they
are encountered – and then traverse it in order, writ-
ing a sorted list.

We have found 1.5 · 108 to be a suitable value for
K, using about 4.2 GB of memory per list-sorting
process. In our development environment we use 10
such processes and produce 160 lists in 130 wall-
clock minutes (1233 CPU minutes) for the full data
set with full wildcarding.

4.3 Merging and creating the tree

The next step encompasses two subtasks – merging
the sorted lists generated into one large sorted list
(with duplicate entries merged), and using that large
sorted list to generate an indexing tree.

The merging task involves, in our configuration,
a P -way merge with P ≈ 160. We perform this
merge using a binary heap for replacement selec-
tion in logP time as outlined in Knuth (1998). Each
node in the heap consists of a file handle, one “ac-
tive” entry (which determines the value of the node),
and a read buffer. After being popped from the heap,
a node is reinserted if a next entry can be read from
the read buffer or the file.

As they emerge in order from the merging sec-
tion of the program, entries with duplicate keys are
merged with their values added.

The tree-building routine receives all the entries to
be stored correctly ordered and merged. It proceeds
according to the following algorithm:

1. Space is left for the root node at the beginning
of the file. We note the offset after this space
as the “current generation offset”. An empty
“current node” is created.

2. For each input entry:
(a) The entry is added as the last entry in the

current node.
(b) If the current node is now full, or if there

are no more input entries, it is written to
disk and then cleared.

3. We note down the current file offset (as used
for writing) as the “next generation offset”. We
seek back to the current generation offset, and
begin reading through the nodes until we reach
the next generation offset, obtaining an in-order
sequence of all nodes in the current generation

19

Figure 2: Illustration of the “all but leaves” caching strat-
egy. Filled nodes are kept in memory, unfilled ones are
left on disk. The maximal branching factor is 3 here (as
compared to 127 in our trees).

(initially all leaf nodes). The sequence is read
in lazily.

4. If this sequence is shorter than the number of
entries in a node, it is used to construct the root
node, which is then written to disk, and the pro-
cess returns.

5. Otherwise, we repeat the process from the sec-
ond step, with the following value replace-
ments:
• The next generation offset becomes the

new current generation offset.
• Each node read in from the file generates a

new “input entry”, with the key of the first
entry of the node as the key, and the file
offset pointing to the node as the value.

In our development environment this task cur-
rently takes around 283 minutes.

5 Using the indexing structure

5.1 Initialization and caching

The dictionary is loaded into a Judy array in RAM.
The unigram counts are loaded into an integer array.

Finally, the upper levels of the trees are loaded
into memory to be used as a cache. Since it is pos-
sible with only 3.3 GB of RAM, we recommend
caching all nodes that are not leaves, as seen in
Figure 2. Since we use broad trees, the number of
leaves we can reach is relatively large compared to
the number of internal nodes we need to cache.

5.2 Performing a query

The querying machinery assumes that queries are
formulated in terms of integer tokens, and offers
an interface to the dictionary so the caller can per-
form this transformation. This enables the caller to
reuse integer mappings over multiple queries, and

leaves the querying system loosely coupled to the
application-specific preprocessing.

When a query arrives, all the tokens are first
mapped to integers (using preprocessing and/or a
dictionary). If this process fails for any token, the
query returns early with frequency zero.

Otherwise, a conventional B-tree lookup is per-
formed. This entails performing a binary search
through the children of each node (with the value of
each node considered as the value of its first entry,
with entries in leaves identified by keys). In an in-
ternal node, after such a search, the node which has
been located is loaded (from disk or memory cache)
and the process repeats. In a leaf, it is checked
whether the match found is exact, returning either
its associated frequency value or 0 accordingly.

Empirically we have found usage of lseek(2)
and read(2) to be the most performant way to per-
form the disk reads practically. For threaded appli-
cations mmap(2) may be more appropriate, as our
method would require synchronization.

6 Performance

6.1 Testing setup

The development environment referred to else-
where, A, is a high-performance computer with four
eight-core 2.2GHz CPUs, 256 GB of RAM, and a
number of 10 000 RPM hard disk drives. We also
tested on B which is the same system augmented
with 500 GB of solid state storage, and C which is
an off-the-shelf PC with 8 GB of RAM, a 7200 RPM
HDD and a single 2.93GHz CPU.

In development and preliminary testing, however,
we discovered that the impact of disk caching made
straightforward time measurements misleading. As
seen in Figure 3, these measurements tended to be
drastically affected by accumulation of large parts
of the disk structure into cache, and as such showed
ever-decreasing query times.

However, we have also observed that the required
random disk access (a potentially “far” seek, fol-
lowed by a read) dominates all other factors in the
querying process in terms of cost. Our performance
in terms of required random read accesses need not
be measured: as noted in Subsection 5.1 we use
a caching strategy which makes it self-evident that
exactly one read access is required per query. Our

20

0 2000000 6000000 10000000

20
00

60
00

12
00

0

Queries performed

T
im

e
pe

r
qu

er
y

(m
ic

ro
se

co
nd

s)

Figure 3: A test run of around 10 000 000 queries in
A, illustrating how caching distorts timing information in
lengthy tests. The wide line is cumulative average, the
narrow one query-time average for the last 1 000 queries.
The test run does not reach the stable state of a fully
cached file.

performance testing, then, focuses on justifying our
assertion that random disk access time is dominant.
With this shown, we will have justified random-disk-
access-count as a valid way to measure performance,
and thus established our chief result.

We generated lists of test queries from the 1T data
set with the same distribution as the preprocessed
and merged entries in our structure.

6.2 Results

Table 1 shows measurements of time required for
queries vs. time required to read a random leaf node
(selected from a uniform distribution) without any
querying logic. The random-read tests were inter-
leaved with the querying tests, alternating batches
of 100 queries with batches of 100 random reads.
This process was chosen to avoid distorting factors
such as differences in fragmentation and size of the
area of the disk being read, memory available and
used for caching it, as well as variable system load
over time.

As can be seen in Table 1, the measurements in-
dicate that time per random read times number of
random reads is a very good approximation for time
per query. The querying overhead seems to be on
the order of 15µs, which is around 5% of the time
per node access on the SSD, and less than 0.2% of
the access time on the hard drives. It seems justi-
fied to measure the performance of our system by
random disk access count.

N µR µQ σ|Q−R|

A 10 6 089.41 6 069.55 260.05
A 100 6 135.54 6 149.60 640.05
A 1 000 6 094.83 6 097.82 477.35
B 10 299.50 313.59 11.09
B 100 298.43 317.14 15.02
B 1 000 308.39 326.00 9.62
C 10 14 763.60 14 924.81 818.90
C 100 14 763.11 14 769.24 634.99
C 1 000 14 776.43 14 708.51 817.47

Table 1: Performance measurements. N is test size, in
batches of 100 queries and 100 random node-reads. All
measurements in µs. µQ is mean time to make a test
query. µR is mean time to read a random leaf node.
σ|Q−R| is the sample standard deviation for the difference
Qi −Ri between corresponding samples. (By definition,
µ|Q−R| = µQ − µR.)

Tree breadth 127
Caching strategy All but leaves
Total memory use 3.3 GB
Disk accesses per search 1
Leaf size 2 923 bytes
Generation time 431 minutes

Table 2: Vital numbers for our implementation. Genera-
tion time is based on adding up the measured wall-clock
times reported elsewhere and is of course dependent on
our development environment.

We have justified our central assertion that our in-
dexing structure can answer queries using exactly
one random disk access per query, as well as the un-
derlying assumption that this is a meaningful way to
measure its performance. The performance of our
system on any particular hardware can then be es-
timated from the time the system uses for normal
random disk accesses.

In terms of random reads per search, our result
is clearly the best worst-case result achievable with-
out loading the entire data set into memory: a single
disk read (well below the size of a disk sector on
a modern disk) per search. Naturally, further im-
provements could still be made in average-case per-
formance, as well as in achieving equivalent results
while using less resources.

The disk space required for the lookup structure

21

Wildcarding 2 3 4 5 Total
Full 3.6 23 80 221 327
None 3.4 15 24 24 65

Table 3: Disk space, in gigabytes, required for trees with
and without wildcarding, by n and in total.

as a whole is summarized in Table 3. The full tree set
with full wildcarding requires 327 GB. Wildcarding
greatly affects the distribution of the entries: before
wildcarding, the 4-grams are in fact more numerous
than the 5-grams. Many real applications would not
require full wildcarding capabilities.

7 Application adaptation and future work

Our method may be improved in several ways, leav-
ing avenues open for future work.

Firstly and most importantly, it is natural to at-
tempt applying our indexing structure to a real task.
The work of Bansal and Klein (2011) has served as
a motivating example. Implementing their method
with “on-line” lookup would be a natural next step.

For other researchers who wish to use our in-
dexing machinery, it has been made available as
free software and may be retrieved at http://
github.com/svk/lib1tquery.

If wildcarding is not required, a lowering of stor-
age and memory requirements can be achieved by
disabling it. This will reduce storage costs to about
21.52% or around 75 GB (and memory require-
ments approximately proportionally). Generaliz-
ing from this, if only certain kinds of wildcarded
queries will be performed, similar benefits can be
achieved by certain kinds of wildcarded (or even
non-wildcarded) queries. For instance, less than
40% of the structure would suffice to perform the
queries used by Bansal and Klein (2011).

Disk and memory efficiency could be improved
by applying compression techniques to the nodes,
though this is a balancing act as it would also in-
crease computational load.

Furthermore, performance could be increased by
using a layered approach that would be able to re-
solve some queries without accessing the disk at all.
This is more feasible for an application where infor-
mation is available about the approximate distribu-
tion of the coming queries.

References
Mohit Bansal and Dan Klein. 2011. Web-scale fea-

tures for full-scale parsing. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume
1, HLT ’11, pages 693–702, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Doug Baskins. 2004. Judy arrays. http://judy.
sourceforge.net/index.html. (Online; ac-
cessed November 18, 2011).

R. Bayer and E. M. McCreight. 1972. Organization and
maintenance of large ordered indexes. Acta Informat-
ica, 1:173–189. 10.1007/BF00288683.

Tobias Hawker, Mary Gardiner, and Andrew Bennetts.
2007. Practical queries of a massive n-gram database.
In Proceedings of the Australasian Language Technol-
ogy Workshop 2007, pages 40–48, Melbourne, Aus-
tralia, December.

Donald E. Knuth. 1998. The Art of Computer Pro-
gramming, volume 3: Sorting and Searching. Addison
Wesley, second edition.

Dekang Lin, Kenneth Church, Heng Ji, Satoshi Sekine,
David Yarowsky, Shane Bergsma, Kailash Patil, Emily
Pitler, Rachel Lathbury, Vikram Rao, Kapil Dalwani,
and Sushant Narsale. 2010. New tools for web-scale
n-grams. In Proceedings of the Seventh conference
on International Language Resources and Evaluation
(LREC’10), Valletta, Malta, may.

Satoshi Sekine and Kapil Dalwani. 2010. Ngram search
engine with patterns combining token, POS, chunk and
NE information. In Proceedings of the Seventh In-
ternational Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta, may.

D. Talbot and M. Osborne. 2007a. Smoothed bloom fil-
ter language models: Tera-scale LMs on the cheap.
In Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-
CoNLL), pages 468–476.

David Talbot and Miles Osborne. 2007b. Randomised
language modelling for statistical machine translation.
In Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 512–519,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

22

