
2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 710–719,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Autonomous Self-Assessment of Autocorrections: Exploring Text Message
Dialogues

Tyler Baldwin
Department of Computer
Science and Engineering

Michigan State University
East Lansing, MI 48824

baldwi96@cse.msu.edu

Joyce Y. Chai
Department of Computer
Science and Engineering

Michigan State University
East Lansing, MI 48824
jchai@cse.msu.edu

Abstract

Text input aids such as automatic correction
systems play an increasingly important role in
facilitating fast text entry and efficient com-
munication between text message users. Al-
though these tools are beneficial when they
work correctly, they can cause significant
communication problems when they fail. To
improve its autocorrection performance, it is
important for the system to have the capabil-
ity to assess its own performance and learn
from its mistakes. To address this, this pa-
per presents a novel task of self-assessment of
autocorrection performance based on interac-
tions between text message users. As part of
this investigation, we collected a dataset of au-
tocorrection mistakes from true text message
users and experimented with a rich set of fea-
tures in our self-assessment task. Our exper-
imental results indicate that there are salient
cues from the text message discourse that al-
low systems to assess their own behaviors with
high precision.

1 Introduction

The use of SMS text messaging is widespread and
growing. Users of text messaging often rely on small
mobile devices with limited user interfaces to com-
municate with each other. To support efficient com-
munication between users, many tools to aid text in-
put such as automatic completion (autocompletion)
and automatic correction (autocorrection) have be-
come available. When they work correctly, these
tools allow users to maintain clear communication
while potentially increasing the rate at which they

input their message, improving efficiency in com-
munication. However, when these tools make a mis-
take, they can cause problematic situations. Con-
sider the following example:

A1: Euthanasia doing tonight?

B1: Euthanasia?!

A2: I typed whatcha and stupid autotype.

In this example, the automatic correction system
on person A’s phone interpreted his attempt to write
the word whatcha as an attempt to write euthanasia
(due to the keyboard adjacency of the w and e keys,
etc.). This completely changed the meaning of the
message, which confused person B. Although this
instance was eventually discovered and corrected,
the natural flow of conversation was interrupted and
the participants were forced to make extra effort to
clarify this confusion.

This example indicates that the cost of a mistake
in autocorrection is potentially high. This is exacer-
bated by the fact that users will often fail to notice
these mistakes in a timely manner, due to their focus
being on the keyboard (Paek et al., 2010) and the
quick and casual conversation style of text messag-
ing. Because of this, autocorrection systems must
have high accuracy to be useful for text messaging.
This example also indicates that, when an autocor-
rection mistake happens (i.e., mistaken correction
of euthanasia), it often causes confusion which re-
quires dialogue participants to use the follow-up dia-
logue to clarify the intent. What this suggests is that
the discourse between text message users may pro-
vide important information for autocorrection sys-

710

tems to assess whether an attempted correction is
indeed what the user intended to type.

Self-assessment of its correction performance will
allow an autocorrection system to detect correction
mistakes, learn from such mistakes, and potentially
improve its correction performance for future opera-
tions. For instance, if a system is able to identify that
its current autocorrection policy results in too many
mistakes it may choose to adopt a more cautious cor-
rection policy in the future. Additionally, if it is able
to discover not only that a mistake has taken place
but what the ideal action should have been, it will be
able to use this data to learn a more refined policy
for future attempts.

Motivated by this observation, this paper inves-
tigates the novel task of self-assessment of auto-
correction performance based on interactions be-
tween dialogue participants. In particular, we
formulate this task as the automatic identification
of correction mistakes and their corresponding in-
tended words based on the discourse. For instance,
in the previous example, the system should automat-
ically detect that the attempted correction “euthana-
sia” is a mistake and the true term (i.e., intended
word) should have been “whatcha”. To support our
investigation, we collected a dataset of autocorrec-
tion mistakes from true text message users. We fur-
ther experimented with a rich set of features in our
self-assessment task. Our experimental results in-
dicate that there are salient cues from the text mes-
sage discourse that potentially allow systems to as-
sess their own behavior with high precision.

In the sections that follow, we first introduce and
give an analysis of our dataset. We then highlight
the two interrelated problems that must be solved for
system self-assessment, and outline and evaluate our
approach to each of these problems. Finally, we ex-
amine the results of applying the system assessment
procedure end-to-end and discuss potential applica-
tions of autocorrection self-assessment.

2 Related Work

Spelling autocorrection systems grew naturally out
of the well studied field of spell checking. Most spell
checking systems are based on a noisy channel for-
mulation (Kernighan et al., 1990). Later refinements
allowed for string edit operations of arbitrary length

(Brill and Moore, 2000) and pronunciation modeling
(Toutanova and Moore, 2002). More recent work
has examined the use of the web as a corpus to build
a spell checking and autocorrection system without
the need for labeled training data (Whitelaw et al.,
2009).

Traditional spell checking systems generally as-
sume that misspellings are unintentional. However,
much of the spelling variation that appears in text
messages may be produced intentionally. For in-
stance, text message authors make frequent use of
acronyms and abbreviations. This motivates the
task of text message normalization (Aw et al., 2006;
Kobus et al., 2008), which attempts to transform all
non-standard spellings in a text message into their
standard form. The style of misspelling in text mes-
sages is often quite different from that of standard
prose. For instance, Whitelaw et. al. (2009) applied
the Aspell spell checker1 on a corpus of mistakes in
English prose and achieved an error rate of under
5%. Conversely, the same spell checker was found
to have an error rate of over 75% on text message
data (Choudhury et al., 2007).

Autocorrection in text messaging is similar to pre-
dictive texting and word completion technologies
(Dunlop and Crossan, 2000). These technologies
attempt to reduce the number of keystrokes a user
must type (MacKenzie, 2002), potentially speeding
up text entry. There are 2 primary sources of liter-
ature on text prediction. In one (often called auto-
completion), systems attempt to predict the intended
term before the user has finished typing it (Darragh
et al., 1990; Chaudhuri and Kaushik, 2009). In the
second, the system attempts to interpret ambiguous
user input typed on a keyboard with a small number
of keys, such as the 12 key keyboards found on many
mobile phones (MacKenzie and Tanaka-Ishii, 2007).
Few studies have looked at the effects SMS writing
style has on predictive text performance. How and
Kan (2005) analyze a corpus of 10,000 text mes-
sages and conclude that changing the standard map-
ping of letters to keys on 12 key keyboards could
improve input performance on SMS data.

Although never examined in the context of auto-
correction systems, system self-assessment has been
studied in other domains. One of the most com-

1http://aspell.net/

711

Figure 1: Example text message dialogue from our cor-
pus with an automatic correction mistake

mon application domains is spoken dialogue sys-
tems (Levow, 1998; Hirschberg et al., 2001; Litman
et al., 2006), where detecting problematic situations
can help the system better adapt to user behavior.
These systems often make use of prosody and task
specific dialogue acts, two feature sources unavail-
able in general text message dialogues.

In summary, while a large body of work addresses
similar problems, to our knowledge no previous
work has looked into the aspect of self-assessment
of autocorrection based on dialogues between text
message users. The work presented in this paper
represents a first step in this direction.

3 Data Set

To support our investigation, we collected a cor-
pus of data containing true experiences with auto-
correction provided by text message users. The
website “Damn You Auto Correct”2 (DYAC) posts
screenshots of text message conversations that con-
tain mistakes caused by phone automatic correction
systems, as sent in by cellphone users. An example
screenshot is shown is Figure 1.

Speech bubbles originating from the left of the
image in Figure 1 are messages sent by one dialogue
participant while those originating from the right of
the image are sent by the other. In this example, the
automatic correction system incorrectly decides that
the user’s attempt to write the non-standard word
form thaaaats was an attempt to write the word Tus-
saud. This confuses the reader, and several dialogue
turns are used to resolve the confusion. The author

2www.damnyouautocorrect.com

explicitly corrects her mistake by writing “I meant
thaaaats”.

Note that, in this example, the word Tussaud
could be an autocompletion or an autocorrection
by the system. However, there may be no signifi-
cant distinction between these two operations from
a user’s point of view. These two operations could
also take place at the same time. For instance, a
system may both suggest possible completions after
the user has only typed a small number of characters
and perform autocorrection once the user presses the
space bar to go on to the next word. Therefore, for
the purposes of our discussion here, we use autocor-
rection to refer to any changes made by the system
(either by autocompletion or autocorrection) with-
out the user explicitly selecting the correction them-
selves.

Throughout the paper, we use the term attempted
correction to refer to any autocorrection made by
the system; for example, Tussaud is an attempted
correction in Figure 1. Some attempted corrections
could correct to the word that the user intended,
which will be referred to as unproblematic cor-
rections or non-erroneous corrections. Other at-
tempted corrections may mistakenly choose a word
that the user did not intend to write, which will be re-
ferred to as correction mistakes or erroneous cor-
rections. For example, Tussaud is an erroneous cor-
rection. We use the term intended word to refer to
the term that the user was attempting to type when
the autocorrection system intervened. For instance,
in the erroneous correction in Figure 1, the intended
term was thaaaats.

To build our dataset, screenshots were extracted
from the site and transcribed, and correction mis-
takes were annotated with their intended words, if
the intended word appeared in the dialogue. Be-
cause the website presents autocorrection mistakes
that submitters find to be humorous or egregious,
there may be an incentive for users to submit fal-
sified instances. To combat this, we performed an
initial filtering phase to remove instances that were
unlikely to have been produced by a typical autocor-
rection system (e.g., instances that substituted letters
that were far from each other on the keyboard and
not phonetically similar) or that were otherwise be-
lieved to be falsified. Using this methodology we
compiled a development set of 300 dialogues and an

712

Figure 2: Text message dialogue with several correction
mistakes for the same intended term.

additional 635 dialogues for evaluation.
Some dialogues contained several correction mis-

takes. It was common for multiple correction mis-
takes to be produced in an attempt at typing a single
word; an example is shown in Figure 2, in which
the intended term cookies is erroneously corrected
at first as commies and then as cockles.

We will use the term message to refer to one SMS
text message sent in the course of the conversation,
while a turn encompasses all messages sent by a user
between messages from the other participant. For
instance, the first 3 speech bubbles in Figure 2 all
represent separate messages, but they are all part of
the same turn.

While this dataset provides us with instances of
autocorrection mistakes, in order to differentiate be-
tween problematic and unproblematic correction at-
tempts we will need a dataset of unproblematic at-
tempts as well. It should be noted that, from the per-
spective of the reader, a successful autocorrection at-
tempt is equivalent to the user typing correctly with-
out any intervention from the system at all. To build
a dataset of unproblematic instances, we collected
text message conversations from pairs of users with-
out the aid of autocorrection. Users were then asked
to correct any mistakes they produced. Snippets
of these conversations that did not contain mistakes
were then extracted to act as a set of unproblematic
autocorrection instances. In total 554 snippets were
extracted. These snippets were combined with the
problematic instances from the DYAC data to make
the final dataset used for training and evaluation.

4 Autocorrection Self-Assessment

It is desirable for an autocorrection system to have
the capability to assess its own performance. For
each correction attempt it makes, if the system can

evaluate its performance based on the dialogue it can
acquire valuable information to learn from its own
mistakes and thus improve its performance for fu-
ture operations. Next we describe how we formulate
the task of self-assessment and what features can be
used for this task.

Because each correction attempt is system gener-
ated, an autocorrection system should have knowl-
edge of all correction attempts it has made. Let C
be the set of all correction attempts performed by an
autocorrection system over the course of a dialogue
and let W be the set of all words in this dialogue
which occur after the correction attempt. We model
this problem as two distinct subtasks: 1) identify at-
tempted corrections ci ∈ C which are erroneous (if
there are any), and 2) for each erroneous correction
ci, identify a word wj ∈ W which is the intended
word for ci (i.e., Intended(ci) = wj).

4.1 Identifying Erroneous Corrections

The first task involves a simple binary decision;
given an arbitrarily sized dialogue snippet contain-
ing an automatic correction attempt, we must decide
whether or not the system acted erroneously when
making the correction. We thus model the task as
a binary classification problem in which we classify
every correction attempt c ∈ C as either erroneous
or non-erroneous.

The proposed method follows a standard proce-
dure for supervised binary classification. First we
must build a set of labeled training data in which
each instance is represented as a vector of features
and a ground truth class label. Given this, we can
train a classifier to differentiate between the two
classes. For the purposes of this work we use a sup-
port vector machine (SVM) classifier.

4.1.1 Feature Set
In order to detect problematic corrections, we

must identify dialogue behaviors that signify an er-
ror has occurred. We examined the dialogues in
our development set to understand which dialogue
behaviors are indicative of autocorrection mistakes.
While in unproblematic dialogues users are able to
converse freely, in problematic dialogues users must
spend dialogue turns reestablishing common ground
(Clark, 1996). Our feature set will focus on two
common ways these attempts to establish common

713

ground manifest themselves: as confusion and as at-
tempts to correct the mistake.
Confusion Detection Features. Because autocor-
rection mistakes often result in misleading or se-
mantically vacuous utterances, they are apt to con-
fuse the reader, who will often express this confu-
sion in the dialogue in order to gain clarification.
These features examine the dialogue of the uncor-
rected user (the dialogue participant that reads the
automatic correction mistake, not the one that was
automatically corrected). One sign of confusion is
the use of the question mark, so one feature captured
the presence of question marks in the messages sent
by the uncorrected user. Similarly, users may often
use a block or repeated punctuation of show suprise
or confusion, so another feature detected instances
of repeated question marks and exclamation points
(???, !?!!, etc.). When confused, readers will often
retype the confusing word as a request for clarifica-
tion (e.g., Tussaud?), or simply type “what?”. We
therefore include features that detect whether or not
the corrected term appears in the first message sent
by the uncorrected user after the correction mistake
has occurred, and whether or not this message con-
tains the word “what” as its own clause.
Clarification Detection Features. In contrast to ut-
terances of confusion which are generally produced
by the reader of the autocorrection mistake, clarifi-
cation attempts are usually initiated by the user that
was corrected. Several methods are used to indicate
that the term shown by the system was incorrect.
One convention is to use an asterisk (*) either be-
fore or after the corrected term:

A1: Indeed Sid

A2: Sir*

Another common method is to explicitly state
what was intended using phrases such as “I meant
to type”, “that was supposed to say”, etc. We in-
cluded several features to capture these word pat-
terns. Another method is to simply quickly reply
with the word that was intended, so we included a
feature to record whether the next message after the
correction attempt contains only a single word. As
users often feel the need to explain why the mistake
occurred, we included a feature that recorded any
mention or autocompletion, autocorrection or spell

Features Precision Recall F-Measure
All Features .861 .751 .803
-Confusion .857 .725 .786

-Clarification .848 .676 .752
-Dialogue .896 .546 .679
Baseline .568 1 .724

Table 1: Feature ablation results for identifying autocor-
rection mistakes

checking. One additional feature recorded whether
or not the corrected user’s dialogue contained words
written in all capital letters.
Dialogue Features. A few features captured infor-
mation more closely tied to the flow of the dialogue
than to confusion or clarification. In our develop-
ment set, we observed a few common dialogue for-
mats. In one, a correction mistake is immediately
followed by confusion, which is then immediately
followed by clarification. The dialogue in Figure 1
gives an example of this. To capture this form, we
included a feature that recorded whether a confusion
feature was present in the message immediately fol-
lowing the correction attempt and whether a clarifi-
cation feature was present in the message immediate
following the confusion message. Similarly, clarifi-
cation attempts are often tried immediately after the
mistake even if no confusion was present, so an ad-
ditional feature captured whether the first message
after the mistake by the corrected user was a clari-
fication attempt. Additionally, we observed that au-
tocorrection mistakes frequently appeared in the last
word in a message, which was recorded by another
binary feature. Finally, we recorded a count of how
often the corrected term appeared in the dialogue.

4.1.2 Evaluation
To build our classifier we used the SVMLight3

implementation of a support vector machine clas-
sifier with an RBF kernel. To ensure validity and
account for the relatively small size of our dataset,
evaluation was done via leave-one-out cross valida-
tion.

Results are shown in Table 1. A majority class
baseline is given for comparison. As shown, using
the entire feature set, the classifier achieves above
baseline precision of 0.861, while still producing re-
call of 0.751.

3Version 6.02, http://svmlight.joachims.org/

714

Although F-measure is reported, it is unlikely that
precision and recall should be weighted equally. Be-
cause one of the primary reasons we may wish to
detect problematic situations is to automatically col-
lect data to improve future performance by the au-
tocorrection system, it is imperative that the data
collected have high precision in order to reduce the
amount of noise present in the collected dataset.
Conversely, because problematic situation detection
can monitor a user’s input continuously for an in-
definite period of time in order to collect more data,
recall is less of a concern.

To study the effect of each feature source, we per-
formed a feature ablation study, the results of which
are included in Table 1. For each run, one feature
type was removed and the model was retrained and
reassessed. As shown, removing any feature source
has a relatively small effect on the precision but a
more substantial effect on the recall. Confusion de-
tection features seem to be the least essential, caus-
ing a comparatively small drop in precision and re-
call values when removed. Removing the dialogue
features results in the greatest drop in recall, return-
ing only slightly above half of the problematic in-
stances. However, as a result, the precision of the
classifier is higher than when all features are used.

4.2 Identifying The Intended Term

Note that one purpose of the proposed self-
assessment is to collect information online and thus
make it possible to build better models. In order
to do so, we need to know not only whether the
system acted erroneously, but also what it should
have done.Therefore, once we have extracted a set of
problematic instances (and their corresponding dia-
logues), we must identify the term which the user
was attempting to type when the system intervened.
First, assume that via the classification task de-
scribed in Section 4.1 we have identified a set of er-
roneous correction attempts, EC. Now the problem
becomes, for every erroneous correction c ∈ EC,
identify w ∈ W such that w = Intended(c). We
model this as a ranking task, in which all w ∈ W
are ranked by their likelihood of being the intended
term for c. We then predict that the top ranked word
is the true intended term.

4.2.1 Feature Set

To support the above processing, we explored a
diverse feature set, consisting of five different fea-
ture sources: contextual, punctuation, word form,
similarity, and pattern features, crafted from an ex-
amination of our development data. Several of the
features are related to those used in the initial clas-
sification phase. However, unlike our classification
features, these feature focus on the relationship be-
tween the erroneous correction c and a candidate in-
tended term w.
Contextual Features. Contextual features capture
relevant phenomena at the discourse level. After an
error is discovered by a user, they may type an in-
tended term several times or type it in a message by
itself in order to draw attention to it. These phe-
nomena are captured in the word repetition and only
word features. Another common discourse related
correction technique is to retype some of the origi-
nal context, which is captured by the word overlap
feature. The same author feature indicates whether
c and w are written by the same author. The author
of the original mistake is likely the one to correct it,
as they know their true intent.
Punctuation Features. Punctuation is occasionally
used by text message writers to signal a correction of
an earlier mistake, as noted previously. We included
features to capture the presence of several different
punctuation marks occurring before or after a candi-
date word such as *,?,!, etc. Each punctuation mark
is represented by a separate feature.
Word Form Features. Word form features cap-
ture variations in how a word is written. One word
form feature captures whether a word was typed in
all capital letters, a technique used by text message
writers to add emphasis. Two word form features
were designed to capture words that were potentially
unknown to the system, out-of-vocabulary words
and words with letter repetition (e.g., “yaaay”). Be-
cause the system does not know these words, it
will consider them misspellings and may attempt to
change them to an in-vocabulary term.
Similarity Features. Our similarity feature cap-
tured the character level distance between a word
changed by the system and a candidate intended
word. We calculated the normalized levenshtein edit
distance between the two words as a measure of sim-

715

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

All Features
-Contextual

-Punctuation
-Similarity
Baseline

Figure 3: Precision-recall curve for intended term selec-
tion, including feature ablation results

ilarity.
Pattern Features. Pattern features attempt to cap-
ture phrases that are used to explicitly state a cor-
rection. These include phrases such as “(I) meant
to write w”, “(that was) supposed to say w”, “(that)
should have read w”, “(I) wrote w”, etc.

4.2.2 Evaluation
To find the most likely intended term for a cor-

rection mistake, we rank every candidate word inW
and predict that the top ranked word is the intended
term. We used the ranking mode of SVMlight to
train our ranker. By thresholding our results to only
trust predictions in which the ranker reported a high
ranking value for the top term, we were able to ex-
amine the precision at different recall levels. That
is, if the top ranked term does not meet the thresh-
old, we simply do not predict an intended term for
that instance, hurting recall but hopefully improv-
ing precision by removing instances that we are not
confident about. This thresholding process may also
allow the ranker to exclude instances in which the in-
tended term does not appear in the dialogue, which
are hopefully ranked lower than other cases. As be-
fore, evaluation was done via leave-one-out cross
validation.

Results are shown in Figure 3. As a method
of comparison we report a baseline that selects the
word with the smallest edit distance as the intended
term. As shown, using the entire feature set results
in consistently above baseline performance.

As before, we are more concerned with the pre-
cision of our predictions than the recall. It is diffi-
cult to assess the appropriate precision-recall trade-
off without an in-depth study of autocorrection us-
age by text messagers. However, a few observations
can be made from the precision-recall curve. Most
critically, we can observe that the model is able to
predict the intended term for an erroneous correc-
tion with high precision. Additionally, the precision
stays relatively stable as recall increases, suffering
a comparatively small drop in precision for an in-
crease in recall. At its highest achieved recall values
of 0.892, it maintains high precision at 0.869.

Feature ablation results are also reported in Fig-
ure 3. The most critical feature source was word
similarity; without the similarity feature the perfor-
mance is consistently worse than all other runs, even
falling below baseline performance at high recall
levels. This is not suprising, as the system’s incor-
rect guess must be at least reasonably similar to the
intended term, or the system would be unlikely to
make this mistake. Although not as substantial as
the similarity feature, the contextual and punctuation
features were also shown to have a significant effect
on overall performance. Conversely, removing word
form or pattern features did not cause a significant
change in performance (not shown in Figure 3 to en-
hance readability).

5 An End-To-End System

In order to see the actual effect of the full system,
we ran it end-to-end, with the output of the initial
erroneous correction identification phase used as in-
put when identifying the intended term. Results are
shown in Figure 4. The results of the intended term
classification task on gold standard data from Figure
3 are shown as an upper bound.

As expected, the full end-to-end system produced
lower overall performance than running the tasks in
isolation. The end-to-end system can reach a recall
level of 0.674, significantly lower than the recall of
the ground truth system. However, the system still
peaks at precision of 1, and was able to produce pre-
cision values that were competitive with the ground
truth system at lower recall levels, maintaining a pre-
cision of above 0.90 until recall reached 0.396.

It is worth mentioning that the current evalua-

716

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Gold Standard
End To End

Figure 4: Precision-recall curve for the end-to-end sys-
tem

tion is based on a balanced dataset with roughly
even numbers of problematic and unproblematic in-
stances. It is likely that in a realistic setting an au-
tocorrection system will get many more instances
correct than wrong, leading to a data distribution
skewed in favor of unproblematic instances. This
suggests that the evaluation given here may overes-
timate the performance of a self-assessment system
in a real scenario. Although the size of our dataset
is insufficient to do a full analysis on skewed data,
we can get a rough estimate of the performance by
simply counting false positives and false negatives
unevenly. For instance, if the cost of mispredicting
a unproblematic case as problematic is nine times
more severe than the cost of missing a problematic
case, this can give us an estimate of the performance
of the system on a dataset with a 90-10 skew.

We examined the 90-10 skew case to see if the
procedure outlined here was still viable. Results of
an end-to-end system with this data skew are con-
sistently lower than the balanced data case. The
skewed data system can keep performance of 90%
or better until it reaches 13% recall, and 85% or bet-
ter until it reaches 22%. These results suggest that
the system could still potentially be utilized. How-
ever, its performance drops off steadily, to the point
where it would be unlikely to be useful at higher re-
call levels. We leave the full exploration of this to
future work, which can utilize larger data sets to get
a more accurate understanding of the performance.

6 Discussion

When an autocorrection system attempts a correc-
tion, it has perfect knowledge of the behavior of both
itself and the user. It knows the button presses the
user used to enter the term. It knows the term it
chose as a correction. It knows the surrounding con-
text; it has access to both the messages sent and re-
ceived by the user. It has a large amount of the infor-
mation it could use to improve its own performance,
if only it were able to know when it made a mis-
take. The techniques described here attempt to ad-
dress this critical system assessment step. Users may
vary in the speed and accuracy at which they type,
and input on small or virtual keyboards may vary
between users based on the size and shape of their
fingers. The self-assessment task described here can
potentially facilitate the development of autocorrec-
tion models that are tailored to specific user behav-
iors.

Here is a brief outline of how our self-assessment
module might potentially be used in building user-
specific correction models. As a user types input, the
system performs autocorrection by starting with a
general model (e.g., for all text message users). Each
time a correction is performed, the system exam-
ines the surrounding context to determine whether
the correction it chose was actually what the user
had intended to type. Over the course of several
dialogues, the system builds a corpus of erroneous
and non-erroneous correction attempts. This corpus
is then used to train a user-specific correction model
that is targeted toward system mistakes that are most
frequent with this user’s input behavior. The user-
specific model is then applied on future correction
attempts to improve overall performance. This mon-
itoring process can be continued for months or even
longer. The results from self-assessment will al-
low the system to continuously and autonomously
improve itself for a given user (Baldwin and Chai,
2012).

In order to learn a user-specific model that is ca-
pable of improving performance, it is important that
the self-assessment system provides it with training
data without a large amount of noise. This suggests
that the self-assessment system must be able to iden-
tify erroneous instances with high precision. Con-
versely, because the system can monitor user behav-

717

ior indefinitely to collect more data, the overall re-
call may not be as critical. It might then be reason-
able for a self-assessment system to be built to focus
on collecting high accuracy pairs, even if it misses
many system mistakes. Although a full examination
of this tradeoff is left for future work which may
more closely examine user input behavior, we feel
that the results presented here show promise for col-
lecting accurate data in a timely manner.

7 Conclusions and Future Work

This paper describes a novel problem of assessing
its own correction performance for an autocorrection
system based on dialogue between two text mes-
saging users. Our evaluation results indicate that
given a problematic situation caused by an auto-
correction system, the discourse between users pro-
vides important cues for the system to automati-
cally assess its own correction performance. By
exploring a rich set of features from the discourse,
our proposed approach is able to both differentiate
between problematic and unproblematic instances
and identify the term the user intended to type with
high precision, achieving significantly above base-
line performance. As discussed in Section 6, this
self-assessment task can potentially be important for
building user-specific autocorrection models to im-
prove auto-correction performance.

The results presented in this paper represent a
first look at autocorrection self-assessment. There
are several areas of future work. There is certainly
a need to examine additional feature sources. Be-
cause automatic correction mistakes can potentially
create semantically vacuous utterances, a computa-
tional semantics based approach, similar to those
used in semantic autocompletion systems (Hyvnen
and Mkel, 2006), may prove fruitful. Addition-
ally, although this work focused solely on dialogue-
related features, future work may wish to take a
closer look at the autocorrection mistakes them-
selves (e.g., which words are most likely to be mis-
takenly corrected, etc.). Lastly, although our current
work demonstrated some potential, more thorough
evaluation in realistic settings will allow a more full
understanding of the impact and limitations of the
proposed self-assessment approach.

Acknowledgments

This work was supported in part by Award #0957039
from the National Science Foundation and Award
#N00014-11-1-0410 from the Office of Naval Re-
search. The authors would like to thank the review-
ers for their valuable comments and suggestions.

References

AiTi Aw, Min Zhang, Juan Xiao, and Jian Su. 2006. A
phrase-based statistical model for sms text normaliza-
tion. In Proceedings of the COLING/ACL on Main
conference poster sessions, pages 33–40, Morristown,
NJ, USA. Association for Computational Linguistics.

Tyler Baldwin and Joyce Chai. 2012. Towards on-
line adaptation and personalization of key-target resiz-
ing for mobile devices. In Proceedings of the 2012
ACM international conference on Intelligent User In-
terfaces, IUI ’12, pages 11–20, New York, NY, USA.
ACM.

Eric Brill and Robert C. Moore. 2000. An improved
error model for noisy channel spelling correction. In
ACL ’00: Proceedings of the 38th Annual Meeting
on Association for Computational Linguistics, pages
286–293, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Surajit Chaudhuri and Raghav Kaushik. 2009. Extend-
ing autocompletion to tolerate errors. In Proceed-
ings of the 35th SIGMOD international conference on
Management of data, SIGMOD ’09, pages 707–718,
New York, NY, USA. ACM.

Monojit Choudhury, Rahul Saraf, Vijit Jain, Animesh
Mukherjee, Sudeshna Sarkar, and Anupam Basu.
2007. Investigation and modeling of the structure
of texting language. Int. J. Doc. Anal. Recognit.,
10(3):157–174.

Herbert H. Clark. 1996. Using Language. Cambridge
University Press.

J.J. Darragh, I.H. Witten, and M.L. James. 1990. The
reactive keyboard: a predictive typing aid. Computer,
23(11):41 –49, November.

Mark Dunlop and Andrew Crossan. 2000. Predictive text
entry methods for mobile phones. Personal and Ubiq-
uitous Computing, 4:134–143. 10.1007/BF01324120.

Julia Hirschberg, Diane J. Litman, and Marc Swerts.
2001. Identifying user corrections automatically in
spoken dialogue systems. In Proceedings of the Sec-
ond Meeting of the North American Chapter of the As-
sociation for Computational Linguistics.

Yijue How and Min yen Kan. 2005. Optimizing pre-
dictive text entry for short message service on mobile

718

phones. In in Human Computer Interfaces Interna-
tional (HCII 05). 2005: Las Vegas.

Eero Hyvnen and Eetu Mkel. 2006. Semantic autocom-
pletion. In Proceedings of the first Asia Semantic Web
Conference (ASWC 2006, pages 4–9. Springer-Verlag.

Mark D. Kernighan, Kenneth W. Church, and William A.
Gale. 1990. A spelling correction program based on a
noisy channel model. In Proceedings of the 13th con-
ference on Computational linguistics, pages 205–210,
Morristown, NJ, USA. Association for Computational
Linguistics.

Catherine Kobus, François Yvon, and Géraldine
Damnati. 2008. Normalizing SMS: are two metaphors
better than one ? In Proceedings of the 22nd Interna-
tional Conference on Computational Linguistics (Col-
ing 2008), pages 441–448, Manchester, UK, August.
Coling 2008 Organizing Committee.

Gina-Anne Levow. 1998. Characterizing and recogniz-
ing spoken corrections in human-computer dialogue.
In Proceedings of the 36th Annual Meeting of the As-
sociation for Computational Linguistics and 17th In-
ternational Conference on Computational Linguistics,
Volume 1, pages 736–742, Montreal, Quebec, Canada,
August. Association for Computational Linguistics.

Diane Litman, Julia Hirschberg, and Marc Swerts. 2006.
Characterizing and predicting corrections in spoken
dialogue systems. Comput. Linguist., 32:417–438,
September.

I. Scott MacKenzie and Kumiko Tanaka-Ishii. 2007.
Text Entry Systems: Mobility, Accessibility, Universal-
ity (Morgan Kaufmann Series in Interactive Technolo-
gies). Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.

I. Scott MacKenzie. 2002. Kspc (keystrokes per charac-
ter) as a characteristic of text entry techniques. In Pro-
ceedings of the 4th International Symposium on Mo-
bile Human-Computer Interaction, Mobile HCI ’02,
pages 195–210, London, UK. Springer-Verlag.

Tim Paek, Kenghao Chang, Itai Almog, Eric Badger,
and Tirthankar Sengupta. 2010. A practical exami-
nation of multimodal feedback and guidance signals
for mobile touchscreen keyboards. In Proceedings of
the 12th international conference on Human computer
interaction with mobile devices and services, Mobile-
HCI ’10, pages 365–368, New York, NY, USA. ACM.

Kristina Toutanova and Robert Moore. 2002. Pronun-
ciation modeling for improved spelling correction. In
40th Annual Meeting of the Association for Computa-
tional Linguistics(ACL 2002).

Casey Whitelaw, Ben Hutchinson, Grace Y Chung, and
Ged Ellis. 2009. Using the Web for language indepen-
dent spellchecking and autocorrection. In Proceedings

of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing, pages 890–899, Singapore,
August. Association for Computational Linguistics.

719

