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Abstract

We present a model for detecting user dis-

engagement during spoken dialogue interac-

tions. Intrinsic evaluation of our model (i.e.,

with respect to a gold standard) yields results

on par with prior work. However, since our

goal is immediate implementation in a sys-

tem that already detects and adapts to user un-

certainty, we go further than prior work and

present an extrinsic evaluation of our model

(i.e., with respect to the real-world task). Cor-

relation analyses show crucially that our au-

tomatic disengagement labels correlate with

system performance in the same way as the

gold standard (manual) labels, while regres-

sion analyses show that detecting user disen-

gagement adds value over and above detecting

only user uncertainty when modeling perfor-

mance. Our results suggest that automatically

detecting and adapting to user disengagement

has the potential to significantly improve per-

formance even in the presence of noise, when

compared with only adapting to one affective

state or ignoring affect entirely.

1 Introduction

Spoken dialogue systems that can detect and adapt

to user affect1 are fast becoming reality (Schuller

et al., 2009b; Batliner et al., 2008; Prendinger and

Ishizuka, 2005; Vidrascu and Devillers, 2005; Lee

∗Now at Univ. Toronto: jdrummond@cs.toronto.edu
1We use affect for emotions and attitudes that affect how

users communicate. Other speech researchers also combine

concepts of emotion, arousal, and attitudes where emotion is

not full-blown (Cowie and Cornelius, 2003).

and Narayanan, 2005; Shafran et al., 2003). The

benefits are clear: affect-adaptive systems have been

shown to increase task success (Forbes-Riley and

Litman, 2011a; D’Mello et al., 2010; Wang et al.,

2008) or improve other system performance met-

rics such as user satisfaction (Liu and Picard, 2005;

Klein et al., 2002). However, to date most affec-

tive systems researchers have focused either only on

affect detection, or only on detecting and adapting

to a single affective state. The next step is thus to

develop and evaluate spoken dialogue systems that

detect and respond to multiple affective states.

We previously showed that detecting and re-

sponding to user uncertainty during spoken dialogue

computer tutoring significantly improves task suc-

cess (Forbes-Riley and Litman, 2011a). We are

now taking the next step: incorporating automatic

detection and adaptation to user disengagement as

well, with the goal of further improving task suc-

cess. We targeted user uncertainty and disengage-

ment because manual annotation showed them to be

the two most common user affective states in our

system and both are negatively correlated with task

success (Litman and Forbes-Riley, 2009; Forbes-

Riley and Litman, 2011b). Thus, we hypothesize

that providing appropriate responses to these states

would reduce their frequency, consequently improv-

ing task success. Although we address these user

states in the tutoring domain, spoken dialogue re-

searchers across domains and applications have in-

vestigated the automatic detection of both user un-

certainty (e.g. (Drummond and Litman, 2011; Pon-

Barry and Shieber, 2011; Paek and Ju, 2008; Alwan

et al., 2007)) and user disengagement (e.g., (Schuller
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et al., 2010; Wang and Hirschberg, 2011; Schuller

et al., 2009a)), to improve system performance.

The detection of user disengagement in particular

has received substantial attention in recent years,

due to growing awareness of its potential for neg-

atively impacting commercial applications (Wang

and Hirschberg, 2011; Schuller et al., 2009a).

In this paper we present a model for automati-

cally detecting user disengagement during spoken

dialogue interactions. Intrinsic evaluation of our

model yields results on par with those of prior work.

However, we argue that while intrinsic evaluations

are necessary, they aren’t sufficient when immedi-

ate implementation is the goal, because there is no a

priori way to know when the model’s performance is

acceptable to use in a working system. This problem

is particularly relevant to affect detection because it

is such a difficult task, where no one achieves near-

perfect results. We argue that for such tasks some

extrinsic evaluation is also necessary, to show that

the automatic labels are useful and/or are a reason-

able substitute for a gold standard before undertak-

ing a labor-intensive and time-consuming evaluation

with real users. Here we use correlational analy-

ses to show that our automatic disengagement la-

bels are related to system performance in the same

way as the gold standard (manual) labels. We fur-

ther show through regression analyses that detecting

user disengagement adds value over and above de-

tecting only user uncertainty when modeling perfor-

mance. These results provide strong evidence that

enhancing a spoken dialogue system to detect and

adapt to multiple affective states (specifically, user

disengagement and uncertainty) has the potential to

significantly improve performance even in the pres-

ence of noise due to automatic detection, when com-

pared with only adapting to one affective state or ig-

noring affect entirely.

2 Related Work

Our focus in this paper is on first using machine

learning to develop a detector of user disengagement

for spoken dialogue systems, and then evaluating its

usefulness as fully as possible prior to its implemen-

tation and deployment with real users.

Disengaged users are highly undesirable in

human-computer interaction because they increase

the potential for user dissatisfaction and task fail-

ure; thus over the past decade there has already been

substantial prior work focused on detecting user dis-

engagement and the closely related states of bore-

dom, motivation and lack of interest (e.g., (Schuller

et al., 2010; Wang and Hirschberg, 2011; Jeon et

al., 2010; Schuller et al., 2009a; Bohus and Horvitz,

2009; Martalo et al., 2008; Porayska-Pomsta et al.,

2008; Kapoor and Picard, 2005; Sidner and Lee,

2003; Forbes-Riley and Litman, 2011b)).

Within this work, specific affect definitions vary

slightly with the intention of being coherent within

the application and domain and being relevant to the

specific adaptation goal (Martalo et al., 2008). How-

ever, affective systems researchers generally agree

that disengaged users show little involvement in the

interaction, and often display facial, gestural and lin-

guistic signals such as gaze avoidance, finger tap-

ping, humming, sarcasm, et cetera.

The features used to detect disengagement also

vary depending on system domain and applica-

tion. For example, Sidner & Lee (2003) are in-

terested in modeling more natural and collabora-

tive human-robot interactions during basic conver-

sations. They define an algorithm for the engage-

ment process that involves appropriate eye gaze and

turn-taking. Martalo et al. (2008) study how user

engagement influences dialogue patterns during in-

teractions with an embodied agent that gives ad-

vice about healthy dieting. They model engage-

ment using manually coded dialogue acts based on

the SWBDL-DAMSL scheme (Stolcke et al., 2000).

Bohus and Horvitz (2009) study systems that attract

and engage users for dynamic, multi-party dialogues

in open-world settings. They model user intentions

to engage the system with cues from facial sensors

and the dialogue. Within recent spoken dialogue

research, acoustic-prosodic, lexical and contextual

features have been found to be effective detectors

of disengagement (Schuller et al., 2010; Wang and

Hirschberg, 2011; Jeon et al., 2010); we will briefly

compare our own results with these in Section 5.

While all of the above-mentioned research has

presented intrinsic evaluations of their disengage-

ment modeling efforts that indicate a reasonable de-

gree of accuracy as compared to a gold standard

(e.g., manual coding), only a few have yet demon-

strated that the model’s detected values are useful

92



in practice and/or are a reasonable substitute for

the gold standard with respect to some practical

objective (e.g., a relationship to performance). In

particular, two studies (Bohus and Horvitz, 2009;

Schuller et al., 2009a) have gone directly from in-

trinsic evaluation of (dis)engagement models to per-

forming user studies with the implemented model,

thereby bypassing other less expensive and less

labor-intensive means of extrinsic evaluation to

quantify their model’s usefulness–and potentially in-

dicate its need to be further improved–before de-

ployment with real users. Neither study reports sta-

tistically significant improvements in system perfor-

mance as a result of detecting user (dis)engagement.

Finally, while substantial spoken dialogue and af-

fective systems research has shown that users dis-

play a range of affective states while interacting with

a system (e.g. (Schuller et al., 2009b; Conati and

Maclaren, 2009; Batliner et al., 2008; Devillers and

Vidrascu, 2006; Lee and Narayanan, 2005; Shafran

et al., 2003; Ang et al., 2002)), to date only a few af-

fective systems have been built that detect and adapt

to multiple user affective states (e.g., (D’Mello et al.,

2010; Aist et al., 2002; Tsukahara and Ward, 2001)),

and most of these have been deployed with cru-

cial natural language processing components “wiz-

arded” by a hidden human agent (e.g., who performs

speech recognition or affect annotation on the user

turns); moreover, none have yet shown significant

improvements in system performance as a result of

adapting to multiple user affective states.

3 ITSPOKE: Spoken Dialogue Tutor

We develop and evaluate our disengagement detec-

tor using a corpus of spoken dialogues from a 2008

controlled experiment evaluating our uncertainty-

adaptive spoken dialogue tutoring system, IT-

SPOKE (Intelligent Tutoring SPOKEn dialog sys-

tem) (Forbes-Riley and Litman, 2011a).2

ITSPOKE tutors 5 Newtonian physics problems

(one per dialogue), using a Tutor Question - Stu-

dent Answer - Tutor Response format. After

each tutor question, the student speech is digi-

tized from head-mounted microphone input and sent

2ITSPOKE is a speech-enhanced and otherwise modified

version of the Why2-Atlas text-based qualitative physics tu-

tor (VanLehn et al., 2002).

to the Sphinx2 recognizer, which yields an auto-

matic transcript (Huang et al., 1993). This an-

swer’s (in)correctness is then automatically classi-

fied based on this transcript, using the TuTalk se-

mantic analyzer (Jordan et al., 2007), and the an-

swer’s (un)certainty is automatically classified by

inputting features of the speech signal, the automatic

transcript, and the dialogue context into a logistic

regression model. We will discuss these features

further in Section 5. All natural language process-

ing components were trained using prior ITSPOKE

corpora. The appropriate tutor response is deter-

mined based on the answer’s automatically labeled

(in)correctness and (un)certainty and then sent to the

Cepstral text-to-speech system3, whose audio output

is played through the student headphones and is also

displayed on a web-based interface.

The experimental procedure was as follows: col-

lege students with no college-level physics (1) read

a short physics text, (2) took a pretest, (3) worked

5 “training” problems with ITSPOKE, where each

user received a varying level of uncertainty adapta-

tion based on condition, (4) took a user satisfaction

survey, (5) took a posttest isomorphic to the pretest,

and (6) worked a “test” problem with ITSPOKE that

was isomorphic to the 5th training problem, where

no user received any uncertainty adaptation.

The resulting corpus contains 432 dialogues (6

per student) and 7216 turns from 72 students, 47

female and 25 male. All turns are used in the dis-

engagement detection experiments described next.

However, only the training problem dialogues (360,

5 per student, 6044 student turns) are used for the

performance analyses in Sections 6-7, because the

final test problem was given after the instruments

measuring performance (survey and posttest).

Our survey and tests are the same as those used in

multiple prior ITSPOKE experiments (c.f., (Forbes-

Riley and Litman, 2011a)). The pretest and posttest

each contain 26 multiple choice questions querying

knowledge of the topics covered in the dialogues.

Average pretest and posttest scores in the corpus

were 51.0% and 73.1% (out of 100%) with stan-

dard deviations of 14.5% and 13.8%, respectively.

The user satisfaction survey contains 16 statements

rated on a 5-point Likert scale. Average total sur-

3an outgrowth of Festival (Black and Taylor, 1997).
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vey score was 60.9 (out of 80), with a standard de-

viation of 8.5. While the statements themselves are

listed elsewhere (Forbes-Riley and Litman, 2009),

9 statements concern the tutoring domain (e.g., The

tutor was effective/precise/useful), 7 of which were

taken from (Baylor et al., 2003) and 2 of which

were created for our system. 3 statements concern

user uncertainty levels and were created for our sys-

tem. 4 statements concern the spoken dialogue in-

teraction (e.g., It was easy to understand the tutor’s

speech) and were taken from (Walker et al., 2002).

Our survey has also been incorporated into other re-

cent work exploring user satisfaction in spoken dia-

logue computer tutors (Dzikovska et al., 2011). In

Section 6 we discuss how user scores on these in-

struments are used to measure system performance.

See (Forbes-Riley and Litman, 2011a) for further

details of ITSPOKE and the 2008 experiment.

Following the experiment, the entire corpus

was manually labeled for (in)correctness (cor-

rect, incorrect), (un)certainty (CER, UNC) and

(dis)engagement (ENG, DISE) by one trained an-

notator. Table 1 shows the distribution of the la-

beled turns in the 2008 ITSPOKE corpus. In prior

ITSPOKE corpora, our annotator displayed interan-

notator agreement of 0.85 and 0.62 Kappa on cor-

rectness and uncertainty, respectively (Forbes-Riley

and Litman, 2011a). For the disengagement label,

a reliability analysis was performed over several an-

notation rounds on subsets of the 2008 ITSPOKE

corpus by this and a second trained annotator, yield-

ing 0.55 Kappa (this analysis is described in detail

elsewhere (Forbes-Riley et al., 2011)). Our Kap-

pas indicate that user uncertainty and disengage-

ment can both be annotated with moderate reliabil-

ity in our dataset, on par with prior emotion anno-

tation work (c.f., (Pon-Barry and Shieber, 2011)).

Note however that the best way to label users’ in-

ternal affective state(s) is still an open question.

Many system researchers (including ourselves) rely

on trained labelers (e.g., (Pon-Barry et al., 2006;

Porayska-Pomsta et al., 2008)) while others use self-

reports (e.g., (Conati and Maclaren, 2009; Gratch et

al., 2009; McQuiggan et al., 2008)). Both meth-

ods are problematic; for example both can be ren-

dered inaccurate when users mask their true feel-

ings. Two studies that have compared self-reports,

peer labelers, trained labelers, and combinations of

labelers (Afzal and Robinson, 2011; D’Mello et al.,

2008) both illustrate the common finding that hu-

man annotators display low to moderate interannota-

tor reliability for affect annotation, and both studies

show that trained labelers yield the highest reliabil-

ity on this task. Despite the lack of high interan-

notator reliability, responding to affect detected by

trained human labels has still been shown to improve

system performance (see Section 1).

Table 1: 2008 ITSPOKE Corpus Description (N=7216)

Turn Label Total Percent

Disengaged 1170 16.21%

Correct 5330 73.86%

Uncertain 1483 20.55%

Uncertain+Disengaged 373 5.17%

4 Automatically Detecting User

Disengagement (DISE) in ITSPOKE

As noted in Section 1, we have developed a user dis-

engagement detector to incorporate into our existing

uncertainty-adaptive spoken dialogue system. The

result will be a state of the art system that adapts to

multiple affective states during the dialogue.

4.1 Binary DISE Label

Our disengagement annotation scheme (Forbes-

Riley et al., 2011) was derived from empirical ob-

servations in our data but draws on prior work,

including work mentioned in Section 2, appraisal

theory-based emotion models (e.g., Conati and Ma-

claren (2009))4, and prior approaches to annotating

disengagement or related states in tutoring (Lehman

et al., 2008; Porayska-Pomsta et al., 2008).

Briefly, our overall Disengagement label (DISE)

is used for turns expressing moderate to strong dis-

engagement towards the interaction, i.e., responses

given without much effort or without caring about

appropriateness. Responses might also be accompa-

nied by signs of inattention, boredom, or irritation.

Clear examples include answers spoken quickly in

leaden monotone, with sarcastic or playful tones,

or with off-task sounds such as rhythmic tapping or

4Appraisal theorists distinguish emotional behaviors from

their underlying causes, arguing that emotions result from an

evaluation of a context.
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electronics usage.5 Note that our DISE label is de-

fined independently of the tutoring domain and thus

should generalize across spoken dialogue systems.

Figure 1 illustrates the DISE, (in)correctness, and

(un)certainty labels across 3 tutor/student turn pairs.

U1 is labeled DISE and UNC because the student

gave up immediately and with irritation when too

much prior knowledge was required. U2 is labeled

DISE and UNC because the student avoided giv-

ing a specific numerical value, offering instead a

vague (and obviously incorrect) answer. U3 is la-

beled DISE and CER because the student sang the

correct answer, indicating a lack of interest in the

larger purpose of the material being discussed.6

T1: What is the definition of Newton’s Second Law?

U1: I have no idea <sigh>. (DISE, incorrect, UNC)

. . .

T2: What’s the numerical value of the man’s accelera-

tion? Please specify the units too.

U2: The speed of the elevator. Meters per second. (DISE,

incorrect, UNC)

. . .

T3: What are the forces acting on the keys after the man

releases them?

U3: graaa-vi-tyyyyy <sings the answer> (DISE, cor-

rect, CER)

Figure 1: Corpus Example Illustrating the User Turn La-

bels ((Dis)Engagement, (In)Correctness, (Un)Certainty)

4.2 DISE Detection Method

Machine learning classification was done at the turn

level using WEKA software7 and 10-fold cross val-

idation. A J48 decision tree was chosen because of

its easily read output and the fact that previous ex-

periments with our data showed little variance be-

5Affective systems research has found total disengagement

rare in laboratory settings (Lehman et al., 2008; Martalo et al.,

2008). As in that research, we equate the DISE label with no

or low engagement. Since total disengagement is common in

real-world unobserved human-computer interactions (deleting

unsatisfactory software being an extreme example) it remains

an open question as to how well laboratory findings generalize.
6Our original scheme distinguished six DISE subtypes

that trained annotators distinguished with a reliability of .43

Kappa (Forbes-Riley et al., 2011). However, pilot experiments

indicated that our models cannot accurately distinguish them,

thus our DISE detector focuses on the DISE label.
7http://www.cs.waikato.ac.nz/ml/weka/

tween different machine learning algorithms (Drum-

mond and Litman, 2011). We also use a cost matrix,

which heavily penalizes classifying a true DISE in-

stance as false, because our class distributions are

highly skewed (16.21% DISE turns) and the cost

matrix successfully mitigated the skew’s effect in

our prior work, where the uncertainty distribution is

also skewed (20.55% UNC turns) (Drummond and

Litman, 2011).

To train our DISE model, we first extracted the set

of speech and dialogue features shown in Figure 2

from the user turns in our corpus. As shown, the

acoustic-prosodic features represent duration, paus-

ing, pitch, and energy, and were normalized by the

first user turn, as well as totaled and averaged over

each dialogue. The lexical and dialogue features

consist of the current dialogue name (i.e., one of the

six physics problems) and turn number, the current

ITSPOKE question’s name (e.g.,T3 in Figure 1 has

a unique identifier) and depth in the discourse struc-

ture (e.g., an ITSPOKE remediation question after

an incorrect user answer would be at one greater

depth than the prior question), a word occurrence

vector for the automatically recognized text of the

user turn, an automatic (in)correctness label, and

lastly, the number of user turns since the last cor-

rect turn (“incorrect runs”). We also included two

user-based features, gender and pretest score.

• Acoustic-Prosodic Features

temporal features: turn duration, prior pause dura-

tion, turn-internal silence

fundamental frequency (f0) and energy (RMS) fea-

tures: maximum, minimum, mean, std. deviation

running totals and averages for all features

• Lexical and Dialogue Features

dialogue name and turn number

question name and question depth

ITSPOKE-recognized lexical items in turn

ITSPOKE-labeled turn (in)correctness

incorrect runs

• User Identifier Features:

gender and pretest score

Figure 2: Features Used to Detect Disengagement (DISE)

for each User Turn
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Table 2: Results of 10-fold Cross-Validation Experiment with J48 Decision Tree Algorithm Detecting the Binary DISE

Label in the 2008 ITSPOKE Corpus (N=7216 user turns)

Algorithm Accuracy UA Precision UA Recall UA Fmeasure CC MLE

Decision Tree 83.1% 68.9% 68.7% 68.8% 0.52 0.25

Majority Label 83.8% 41.9% 50.0% 45.6% – 0.27

Note that although our feature set was drawn pri-

marily from our prior uncertainty detection exper-

iments (Forbes-Riley and Litman, 2011a; Drum-

mond and Litman, 2011), we have also experi-

mented with other features, including state-of-the-

art acoustic-prosodic features used in the last Inter-

speech Challenges (Schuller et al., 2010; Schuller et

al., 2009b) and made freely available in the openS-

MILE Toolkit (Florian et al., 2010). To date, how-

ever, these features have only decreased the cross-

validation performance of our models.8 While some

of our features are tutoring-specific, these have sim-

ilar counterparts in other applications (i.e., answer

(in)correctness corresponds to a more general no-

tion of “response appropriateness” in other domains,

while pretest score corresponds to the general no-

tion of domain expertise). Moreover, all of our fea-

tures are fully automatic and available in real-time,

so that the model can be directly implemented and

deployed. To that end, we now describe the results

of our intrinsic and extrinsic evaluations of our DISE

model, aimed at determining whether it is ready to

be evaluated with real users.

5 Intrinsic Evaluation: Cross-Validation

Table 2 shows the averaged results of the cross-

validation with the J48 decision tree algorithm. In

addition to accuracy, we use Unweighted Aver-

age (UA) Precision9, Recall, and F-measure be-

cause they are the standard measures used to eval-

uate current affect recognition technology, particu-

larly for unbalanced two-class problems (Schuller

et al., 2009b). In addition, we use the cross corre-

lation (CC) measure and mean linear error (MLE)

because these metrics were used in recent work for

evaluating disengagement (level of interest) detec-

tors for the Interspeech 2010 challenge (Schuller et

8We also tried using our automatic UNC label as a feature in

our DISE model, but our results weren’t significantly improved.
9simply ((Precision(DISE) + Precision(ENG))/2)

al., 2010; Wang and Hirschberg, 2011; Jeon et al.,

2010)).10 Note however that the Interspeech 2010

task differs from ours not only in the corpus and fea-

tures, but also in the learning task: they used regres-

sion to detect a continuous level of interest ranging

from 0 to 1, while we detect a binary class. Thus

comparison between our results and those are only

suggestive rather than conclusive.

As shown in Table 2, we also compare our results

with those of majority class (ENG) labeling of the

same turns. Since (7216-1170)/7216 user turns in

the corpus are engaged (recall Table 1), always se-

lecting the majority class (ENG) label for these turns

thus yields 83.8% accuracy (with 0% precision and

recall for DISE, and 83.8% precision and 100% re-

call for ENG). While our DISE model does not out-

perform majority class labeling with respect to ac-

curacy, this is not surprising given the steep skew

in class distribution, and our learned model signif-

icantly outperforms the baseline with respect to all

the other measures (p<.001).11

Our CC and MLE results are on par with the best

results from the state-of-the-art systems competing

in the 2010 Interspeech Challenge, where the task

was to detect level of interest. In particular, the win-

ner obtained a CC of 0.428 (higher numbers are bet-

ter) and an MLE of 0.146 (lower numbers are bet-

ter) (Jeon et al., 2010), while a subsequent study

yielded a CC of 0.480 and an MLE of 0.131 on

the same corpus (Wang and Hirschberg, 2011). Our

results are also on par with the best results of the

other prior research on detecting disengagement dis-

cussed in Section 2 that detects a small number of

disengagement classes and reports accuracy and/or

recall and precision. For example, (Martalo et al.,

2008) report average precision of 75% and recall

10Pearson product-moment correlation coefficient (CC) is a

measure of the linear dependence that is widely used in regres-

sion settings. MLE is a regression performance measure for the

mean absolute error between an estimator and the true value.
11CC is undefined for majority class labeling.
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of 74% (detecting three levels of disengagement),

while (Kapoor and Picard, 2005) report an accuracy

of 86% for detecting binary (dis)interest.

Our final DISE model was produced by running

the J48 algorithm over our entire corpus. The re-

sulting decision tree contains 141 nodes and 75

leaves. Inspection of the tree reveals that all of the

feature types in Figure 2 (acoustic-prosodic, lexi-

cal/dialogue, user identifier) are used as decision

nodes in the tree, although not all variations on these

types were used. The upper-level nodes of the tree

are usually considered to be more informative fea-

tures as compared to lower-level nodes, since they

are queried for more leaves. The upper level of

the DISE model consists entirely of temporal, lex-

ical, pitch and energy features as well as question

name and depth and incorrect runs, while features

such as gender, turn number, and dialogue name

appear only near the leaves, and pretest score and

turn (in)correctness don’t appear at all. The amount

of pausing prior to the start of the user turn is the

most important feature for determining disengage-

ment, with pauses shorter than a quarter second be-

ing labeled DISE, suggesting that fast answers are a

strong signal of disengagement in our system. Users

who answer quickly may do so without taking the

time to think it through; the more engaged user, in

contrast, takes more time to prepare an answer.

Three lexical items from the student turns, “fric-

tion”, “light”, and “greater”, are the next most im-

portant features in the tree, suggesting that particular

concepts and question types can be typically associ-

ated with user disengagement in a system. For ex-

ample, open-ended system questions may lead users

to disengage due to frustration from not knowing

when their answer is complete. One common case

in ITSPOKE involves asking users to name all the

forces on an object; some users don’t know how

many to list, so they start listing random forces, such

as “friction.” On the other hand, multiple choice

questions can also lead users to disengage; they be-

gin with a reasonable chance of being correct and

thus don’t take the time to think through their an-

swer. One common case in ITSPOKE involves ask-

ing users to determine which of two objects has the

greater or lesser force, acceleration, and velocity.

While our feature set is highly generalizable to

other domains, it is an empirical question as to

whether the feature values we found maximally ef-

fective for predicting disengagement also general-

ize to other domains. Intuition is often unreliable,

and it has been widely shown in affect prediction

that the answer can depend on domain, dataset, and

learning algorithm employed. Moreover, there are

many types of spoken dialogue systems with dif-

ferent styles and no single type can represent the

entire field. That said, it is also important to note

that there are lessons to be learned from the features

selected for one particular domain, in terms of the

take-home message for other domains. For example,

the fact that ”prior pause” is selected as a strong sig-

nal of disengagement in ITSPOKE dialogues may

indicate that the feature itself (regardless of its se-

lected value) could be transferred to different do-

mains, alone or in the demonstrated combinations

with the other selected features.

6 Extrinsic Evaluation: Correlation

Next we use extrinsic evaluation to confirm that our

final DISE model is both useful and a reasonable

substitute for our gold standard manual DISE la-

bels. With respect to showing the utility of detecting

DISE, we use a correlational analysis to show that

the gold standard (manual) DISE values are signif-

icantly predictive of two different measures of sys-

tem performance.12 With respect to showing the ad-

equacy of our current level of detection performance

for the learned DISE model, we demonstrate that af-

ter replacing the manual DISE labels with the au-

tomatic DISE labels when running our correlations,

the automatic labels are related to performance in

the same way as the gold standard labels.

Thus for both our automatically detected DISE la-

bels (auto) and our gold standard DISE labels (man-

ual), we first computed the total number of occur-

rences for each student, and then computed a bivari-

ate Pearson’s correlation between this total and two

different metrics of performance: learning gain (LG)

and user satisfaction (US). In the tutoring domain,

learning is the primary performance metric and as is

common in this domain we compute it as normal-

ized learning gain ((posttest score-pretest score)/(1-

12Spoken dialogue research has shown that redesigning a sys-

tem in light of such correlational analysis can indeed yield per-

formance improvements (Rotaru and Litman, 2009).
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Table 3: Correlations between Disengagement and both Satisfaction and Learning in ITSPOKE Corpus (N=72 users)

Measure Mean (SD) User Satisfaction Learning Gain

R p R p

Total Manual DISE 12.3 (7.3) -0.25 0.031 -0.35 0.002

Total Automatic DISE 12.6 (7.4) -0.26 0.029 -0.31 0.009

pretest score)). In spoken dialogue systems, user sat-

isfaction is the primary performance metric and as

is common in this domain we compute it by totaling

over the user satisfaction survey scores.13

Table 3 shows first the mean and standard devia-

tion for the DISE label over all students, the Pear-

son’s Correlation coefficient (R) and its significance

(p). As shown, both our manual and automatic DISE

labels are significantly related to performance, re-

gardless of whether we measure it as user satisfac-

tion or learning gain.14 Moreover, in both cases the

correlations are nearly identical between the man-

ual and automatic labels. These results indicate that

the detected DISE values are a useful substitute for

the gold standard, and suggest that redesigning IT-

SPOKE to recognize and respond to DISE can sig-

nificantly improve system performance.

7 Extrinsic Evaluation: Affective State

Multiple Regression

Because we are adding our disengagement detector

to a spoken dialogue system that already detects and

adapts to user uncertainty, we argue that it is also

necessary to evaluate whether greater performance

benefits are likely to be obtained by adapting to a

second state. In other words, given how difficult it is

to effectively detect and adapt to one user affective

state, is performance likely to improve by detecting

and adapting to multiple affective states?

To answer this question, we performed a multi-

ple linear regression analysis aimed at quantifying

the relative usefulness of the automatically detected

13Identical results were obtained by using an average instead

of a total, and only slightly weaker results were obtained when

normalizing the DISE totals as the percentages of total turns.
14We previously found a related correlation between different

DISE and learning measures, during the analysis of our DISE

annotation scheme (Forbes-Riley and Litman, 2011b). In par-

ticular, we showed a significant partial correlation between the

percentage of manual DISE labels and posttest controlled for

pretest score.

disengagement and uncertainty labels when predict-

ing our system performance metrics. We ran four

stepwise linear regressions. The first regression pre-

dicted learning gain, and gave the model two possi-

ble inputs: the total number of automatic DISE la-

bels and UNC labels per user. We then ran the same

regression again, this time predicting user satisfac-

tion. For comparison, we ran the same two regres-

sions using the manual DISE and UNC labels.

As the trained regression models in Figure 3 show,

when predicting learning gain, selecting both auto-

matically detected affective state metrics as inputs

significantly increases the model’s predictive power

as compared to only selecting one.15 The (stan-

dardized) feature weights indicate relative predic-

tive power in accounting for the variance in learn-

ing gain. As shown, both automatic affect metrics

have the same weight in the final model. This re-

sult suggests that adapting to our automatically de-

tected disengagement and uncertainty labels can fur-

ther improve learning over and above adapting to un-

certainty alone. Although the final model’s predic-

tive power is low (R2=0.15), our interest here is only

in investigating whether the two affective states are

more useful in combination than in isolation for pre-

dicting performance. In similar types of stepwise re-

gressions on prior ITSPOKE corpora, we’ve shown

that more complete models of system performance

incorporating many predictors of learning (i.e. af-

fective states in conjunction with other dialogue fea-

tures) can yield R2 values of over .5 (Forbes-Riley

et al., 2008).16

15Using the stepwise method, Automatic DISE was the first

feature selected, and Automatic UNC the second. However,

note that a model consisting of only the Automatic UNC metric

also yields significantly worse predictive power than selecting

both affective state metrics. Further note that almost identical

models were produced using percentages rather than totals.
16R2 is the standard reported metric for linear regressions.

However, for consistency with Table 3, note that the two models

in Figure 3 yield R values of -.31 and -.38, respectively.
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Learning Gain = -.31 * Total Automatic DISE (R2=.09, p=.009)

Learning Gain = -.24 * Total Automatic DISE - .24 * Total Automatic UNC (R2=.15, p=.004)

Figure 3: Performance Model’s Predictive Power Increases Significantly with Multiple Affective Features

Interestingly, for the regression models of learn-

ing gain that used manual affect metrics, only the

DISE metric was selected as an input. This indi-

cates that the automatic affective state labels are use-

ful in combination for predicting performance in a

way that is not reflected in their gold standard coun-

terparts. Detecting multiple affective states might

thus be one way to compensate for the noise that is

introduced in a fully-automated affective spoken di-

alogue system.

Similarly, only the DISE metric was selected

for inclusion in the regression model of user sat-

isfaction, regardless of whether manual or auto-

matic labels were used. A separate correlation

analysis showed that user uncertainty is not sig-

nificantly correlated with user satisfaction in our

system, though we previously found that multiple

uncertainty-related metrics do significantly correlate

with learning (Litman and Forbes-Riley, 2009).

8 Summary and Current Directions

In this paper we used extrinsic evaluations to pro-

vide evidence for the utility of a new system de-

sign involving the complex task of user affect de-

tection, prior to undertaking an expensive and time-

consuming evaluation of an affect-adaptive system

with real users. In particular, we first presented a

novel model for automatically detecting user disen-

gagement in spoken dialogue systems. We showed

through intrinsic evaluations (i.e., cross-validation

experiments using gold-standard labels) that the

model yields results on par with prior work. We

then showed crucially through novel extrinsic eval-

uation that the resulting automatically detected dis-

engagement labels correlate with two primary per-

formance metrics (user satisfaction and learning) in

the same way as gold standard (manual) labels. This

suggests that adapting to the automatic disengage-

ment labels has the potential to significantly improve

performance even in the presence of noise from the

automatic labeling. Finally, further extrinsic anal-

yses using multiple regression suggest that adapt-

ing to our automatic disengagement labels can im-

prove learning (though not user satisfaction) over

and above the improvement achieved by only adapt-

ing to automatically detected user uncertainty.

We have already developed and implemented an

adaptation for user disengagement in ITSPOKE.

The disengagement adaptation draws on empiri-

cal analyses of our data and effective responses

to user disengagement presented in prior work

(c.f., (Forbes-Riley and Litman, 2011b)), We are

currently evaluating our disengagement adaptation

in the “ideal” environment of a Wizard of Oz exper-

iment, where user disengagement, uncertainty, and

correctness are labeled by a hidden human during

user interactions with ITSPOKE.

Based on the evaluations here, we believe our dis-

engagement model is ready for implementation in

ITSPOKE. We will then evaluate the resulting spo-

ken dialogue system for detecting and adapting to

multiple affective states in an upcoming controlled

experiment with real users.
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