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Abstract

We describe tree edit models for representing
sequences of tree transformations involving
complex reordering phenomena and demon-
strate that they offer a simple, intuitive, and
effective method for modeling pairs of seman-
tically related sentences. To efficiently extract
sequences of edits, we employ a tree kernel
as a heuristic in a greedy search routine. We
describe a logistic regression model that uses
33 syntactic features of edit sequences to clas-
sify the sentence pairs. The approach leads to
competitive performance in recognizing tex-
tual entailment, paraphrase identification, and
answer selection for question answering.

1 Introduction

Many NLP tasks involve modeling relations be-
tween pairs of sentences or short texts in the same
language. Examples include recognizing textual en-
tailment, paraphrase identification, and question an-
swering. Generic approaches are, of course, desir-
able; we believe such approaches are also feasible
because these tasks exhibit some similar semantic
relationships between sentences.

A popular method for such tasks is Tree Edit Dis-
tance (TED), which models sentence pairs by find-
ing a low or minimal cost sequence of editing oper-
ations to transform a tree representation of one sen-
tence (e.g., a dependency or phrase structure parse
tree) into a tree for the other. Unlike grammar-
based models and shallow-feature discriminative ap-
proaches, TED provides an intuitive story for tree
pairs where one tree is derived from the other by a
sequence of simple transformations.

The available operations in standard TED are the
following: insertion of a node, relabeling (i.e., re-
naming) of a node, and deletion (i.e., removal) of a

node. While the restriction to these three operations
permits efficient dynamic programming solutions
for finding a minimum-cost edit sequence (Klein,
1989; Zhang and Shasha, 1989), certain interesting
and prevalent phenomena involving reordering and
movement cannot be elegantly captured. For exam-
ple, consider the following sentence pair, which is
a simplified version of a true entailment (i.e., the
premise entails the hypothesis) in the development
data for the RTE-3 task.

Premise: Pierce built the home for his daughter off
Rossville Blvd, as he lives nearby.
Hypothesis: Pierce lives near Rossville Blvd.

In a plausible dependency tree representation of
the premise, live and Rossville Blvd would be in sep-
arate subtrees under built. In the hypothesis tree,
however, the corresponding nodes would be in a
grandparent-child relationship as part of the same
phrase, lives near Rossville Blvd. In general, one
would expect that short transformation sequences to
provide good evidence of true entailments. How-
ever, to account for the grandparent-child relation-
ship in the hypothesis, TED would produce a fairly
long sequence, relabeling nearby to be near, delet-
ing the two nodes for Rossville Blvd, and then re-
inserting those nodes under near.

We describe a tree edit approach that allows for
more effective modeling of such complex reordering
phenomena. Our approach can find a shorter and
more intuitive edit sequence, relabeling nearby to be
near, and then moving the whole subtree Rossville
Blvd to be a child of near, as shown in Figure 1.

A model should also be able to consider character-
istics of the tree edit sequence other than its overall
length (e.g., how many proper nouns were deleted).
Using a classifier with a small number of syntactic
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Pierce lives near Rossville Blvd.

Pierce built the home for his daughter off Rossville Blvd, as he lives nearby.

Pierce built the home for his daughter off Rossville Blvd, as he lives near.

built the home for his daughter off, as Pierce he lives near Rossville Blvd.

Pierce built the home for his daughter off, as he lives near Rossville Blvd.

RELABEL-NODE
(nearby)

MOVE-SUBTREE
(Rossville Blvd)

MOVE-SUBTREE
(Pierce)

multiple RELABEL-EDGE, DELETE-LEAF, DELETE-AND-MERGE edits

Figure 1: A tree edit sequence transforming a premise to an entailed hypothesis. Dependency types and parts of speech
are omitted for clarity.

features, our approach allows us to learn—from la-
beled examples—how different types of edits should
affect the model’s decisions (e.g., about whether two
sentences are paraphrases).

The structure of this paper is as follows. §2 in-
troduces our model and describes the edit opera-
tions that were implemented for our experiments.
§3 details the search-based procedure for extracting
edit sequences for pairs of sentences. §4 describes
the classifier for sentence pairs based on features of
their corresponding edit sequences. §5 describes and
presents the results of experiments involving recog-
nizing textual entailment (Giampiccolo et al., 2007),
paraphrase identification (Dolan et al., 2004), and an
answer selection task for question answering (Wang
et al., 2007). §6 addresses related work, and §7 pro-
vides concluding remarks.

2 Extended Tree Edit Sequences

This section defines a tree edit sequence and de-
scribes the operations used in our experiments.

We begin with some conventions. We use depen-
dency trees as the structure upon which the tree ed-
its will operate. The child nodes for a given parent
are represented in a head-outward fashion such that
the left and right children are separate lists, with the
left- and right-most elements as the last members of
their respective lists, as in most generative depen-
dency models (Eisner, 1996). Each node consists of
a lemmatized word token as its main label (hereafter,
lemma), a part of speech tag (POS), and a syntactic
relation label for the edge to its parent. We assume
the root node has a special dummy edge label ROOT.

Let Tc be a “current tree” that is being trans-
formed and let Tt be a “target tree” into which Tc

will ultimately be transformed. Let T (i) be a node

with an index i into the tree T , where the indices are
arbitrary (e.g., they could be word positions).

2.1 Definition
We define a tree edit sequence to be a series of edit
operations that transform a source tree (the initial
Tc) into a target tree Tt.1 While TED permits only
insert, relabel, and delete operations, edit sequences
may contain more complex operations, such as mov-
ing entire subtrees and re-ordering child nodes.

2.2 Implemented Operations
For our experiments, we used the types of edit op-
erations listed in Table 1.2 The first six operations
are straightforward extensions of the insert, rela-
bel and delete operations allowed in TED. The final
three operations, MOVE-SUBTREE, NEW-ROOT,
and MOVE-SIBLING, enable succinct edit se-
quences for complex transformations. For a given
current tree, there may be many instantiations of
each operation (e.g., DELETE-LEAF could be in-
voked to delete any of a number of leaf nodes). Note
that any tree can be transformed into any other sim-
ply by deleting all nodes from the one tree and in-
serting all the nodes in the other. However, our set
of tree edit operations permits more concise and in-
tuitive edit sequences.

3 Searching for Tree Edit Sequences

To model sentence pairs effectively, we seek a short
sequence of tree edits that transforms one tree into
another. The space of possible edit sequences, as
with TED and many other methods involving trees,

1Such a sequence is sometimes called a “script” for TED.
2We leave for future work the exploration of other opera-

tions (e.g., swapping parent and child nodes).
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Operation Arguments Description
INSERT-CHILD node index j, new lemma l, POS p,

edge label e, side s ∈ {left , right}
Insert a node with lemma l, POS p, and edge label e as the
last child (i.e., farthest from parent) on side s of T (j).

INSERT-PARENT non-root node index j, new lemma l,
new POS p, edge label e,
side s ∈ {left , right}

Create a node with lemma l, POS p, and edge label e. Make
T (j) a child of the new node on side s. Insert the new node
as a child of the former parent of T (j) in the same position.

DELETE-LEAF leaf node index j Remove the leaf node T (j).
DELETE-&-MERGE node index j

(s.t. T (j) has exactly 1 child)
Remove T (j). Insert its child as a child of T (j)’s former
parent in the same position.

RELABEL-NODE node index j, new lemma l, new POS p Set the lemma of T (j) to be l and its POS to be p.
RELABEL-EDGE node index j, new edge label e Set the edge label of T (j) to be e.
MOVE-SUBTREE node index j, node index k

(s.t. T (k) is not a descendant of T (j)),
side s ∈ {left , right}

Move T (j) to be the last child on the s side of T (k).

NEW-ROOT non-root node index j,
side s ∈ {left , right}

Make T (j) the new root node of the tree. Insert the former
root as the last child on the s side of T (j).

MOVE-SIBLING non-root node index j,
side s ∈ {left , right},
position r ∈ {first , last}

Move T (j) to be the r child on the s side of its parent.

Table 1: Possible operations in our extended tree edit implementation. All are described as operations to tree T .

is exponentially large in the size of the trees. How-
ever, while dynamic programming solutions exist
for TED (Klein, 1989; Zhang and Shasha, 1989),
it is unlikely that such efficient algorithms are avail-
able for our problem because of the lack of locality
restrictions on edit operations.3

3.1 Algorithm for Extracting Sequences

Rather than dynamic programming, we use greedy
best-first search (Pearl, 1984) to efficiently find sen-
sible (if not minimal) edit sequences. The distin-
guishing characteristic of greedy best-first search is
that its function for evaluating search states is sim-
ply a heuristic function that estimates the remaining
cost, rather than a heuristic function plus the cost
so far (e.g., number of edits), as in other types of
search.

Here, the initial search state is the source tree, the
current state is Tc, and the goal state is Tt. The func-
tion for generating the successors for a given state
returns returns trees for all possible specifications of
operations on Tc (§2.2), subject to the minimal con-
straints to be described in §3.3. The enumeration
order of the edits in the search procedure (i.e., the
order in which states are explored) follows the or-
der of their presentation in Table 1. In preliminary

3Gildea (2003) proposes a dynamic programming algorithm
for a related tree alignment problem, but it is still exponential in
the maximum number of children for a node.

experiments, varying this order had no effect on the
extracted transformations.

3.2 Tree Kernel Heuristic
In our greedy search approach, the evaluation func-
tion’s value for a state depends only on the heuristic
function’s estimate of how different the current tree
at that state is from the target tree. Using this func-
tion, at each step, the search routine chooses the next
state (i.e., edit) so as to minimize the difference be-
tween the current and target trees.

We use a tree kernel to define the heuristic func-
tion. A kernel is a special kind of symmetric func-
tion from a pair of objects to a real number. It
can be interpreted as the inner product of those ob-
jects represented in some real-valued feature space
(Schölkopf and Smola, 2001). A tree kernel, as pro-
posed by Collins and Duffy (2001), is a convolution
kernel4 whose input is a pair of trees and whose out-
put is a positive number indicating the similarity of
the sets of all their subtrees.

The dimensionality of the feature vector associ-
ated with a tree kernel is thus unbounded in general,
and larger trees generally lead to larger kernel val-
ues. Direct use as a search heuristic would lead to
the exploration of states for larger and larger trees,
even ones larger than the target tree. Thus, as in

4Haussler (1999) provides a proof, which can be extended
for our kernel, that tree kernels are valid kernel functions.
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Equation 1, the search heuristic H “normalizes” the
kernel K of the current tree Tc and target tree Tt

to unit range by dividing by the geometric mean of
the kernels comparing the individual trees to them-
selves.5 Also, the normalized value is subtracted
from 1 so as to make it a difference rather than a
similarity. The search routine will thus reach the
goal state when the heuristic reaches 0, indicating
that the current and target trees are identical.

H(Tc) = 1− K(Tc, Tt)√
K(Tc, Tc)×K(Tt, Tt)

(1)

Kernels are most commonly used in the efficient
construction of margin-based classifiers in the im-
plied representation space (e.g., Zelenko et al.,
2003). Here, however, the kernel helps to find a
representation (i.e., an edit sequence) for subsequent
modeling steps.

We are effectively mapping the source, current,
and target trees to points on the surface of a high-
dimensional unit sphere associated with the normal-
ized kernel. In this geometric interpretation, the
search heuristic in Equation 1 leads the search al-
gorithm to explore reachable trees along the surface
of this sphere, always choosing the one whose an-
gle with the target tree is smallest, until the angle is
0. The path on the sphere corresponds to an edit se-
quence, from which we will derive edit features in
§4 for classification.

Our kernel is based on the partial tree kernel
(PTK) proposed by Moschitti (2006). It considers
matches between ordered subsequences of children
in addition to the full sequences of children as in
Collins and Duffy (2001). This permits a very fine-
grained measure of tree pair similarity. Importantly,
if two nodes differ only by the presence or position
of a single child, they will still lead to a large ker-
nel function value. We also sum over the similarities
between all pairs of nodes, similar to (Collins and
Duffy, 2001).

Since the PTK considers non-contiguous subse-
quences, it is very computationally expensive. We
therefore restrict our kernel to consider only con-
tiguous subsequences, as in the contiguous tree ker-
nel (CTK) (Zelenko et al., 2003).

5This normalized function is also guaranteed to be a kernel
function (Schölkopf and Smola, 2001).

To define our kernel, we begin with a similarity
function for pairs of nodes n1 and n2 that depends
on their lemmas, POS tags, edge labels, and sides
with respect to their parents:6

s(n1, n2) =δ(l(n1), l(n2))

×
∑

f∈{l,e,p,s}

δ(f(n1), f(n2)) (2)

where δ returns 1 if its arguments are equivalent, 0
otherwise. l, e, p, and s are used here as functions
to select the lemma, edge label, POS, and side of
a node. Equation 2 encodes the linguistic intuition
that the primary indicator of node similarity should
be a lexical match between lemmas. If the lem-
mas match, then edge labels, POS, and the locations
(sides) relative to their parents are also considered.

The kernel is defined recursively (starting from
the roots), where ni is a node in the set of nodes
NTi in tree Ti:

K(T1, T2) =
∑

n1∈{NT1
}

∑
n2∈{NT2

}

∆(n1, n2) (3)

∆(n1, n2) = µ
(
λ2s(n1, n2) + (4)

∑
J1,J2,|J1|=|J2|

l(J1)∏
i=1

∆(cn1 [J1i], cn2 [J2i])


J1 = 〈J11, J12, J13, . . .〉 is an index sequence as-
sociated with any contiguous ordered sequence of
children cn1 of node n1 (likewise for J2). J1i and
J2i point to the ith children in the two sequences.
| · | returns the length of a sequence.

The kernel includes two decay factors: λ for the
length of child subsequences, as in Zelenko et al.
(2003) and Moschitti (2006); and µ for the height of
the subtree, as in Collins and Duffy (2001) and Mos-
chitti (2006). We set both to 0.25 in our experiments
to encourage the search to consider edits leading to
smaller matches (e.g., of individual parent-child de-
pendencies) before larger ones.7

6The side of a node relative to its parent in a dependency tree
is important: two parent nodes with the same children should
not be considered exact matches if children are on different
sides (e.g., defeated the insurgents and the insurgents defeated).

7From experiments with the paraphrase training set (§5.2),
performance does not appear sensitive to the decay parameters.
Settings of 0.1, 0.2, 0.3, and 0.4 led to 10-fold cross-validation
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The main difference between our kernel and the
CTK is that we sum over all pairs of subtrees
(Equation 3). In contrast, the CTK only consid-
ers only one pair of subtrees. When the CTK
is applied to relation extraction by Culotta and
Sorensen (2004), each subtree is the smallest com-
mon subtree that includes the entities between which
a relation may exist (e.g., the subtree for Texas-
based energy company Exxon Mobil when extract-
ing ORGANIZATION-LOCATION relations).

3.3 Constraints on the Search Space
For computational efficiency, we impose the follow-
ing three constraints to simplify the search space.
Note that the first two simply prune away obviously
unhelpful search states.

1. For INSERT-CHILD, INSERT-PARENT, and
RELABEL-NODE edits, the lemma and POS of
the node to insert must occur in the target tree.
Also, the pair consisting of the lemma for the
node to insert and the lemma for its prospective
parent must not appear more times in the result-
ing tree than in the target tree.

2. For MOVE-SUBTREE edits, the pair consisting
of the lemma for the node to move and the
lemma for its prospective parent must exist in the
target tree.

3. For INSERT-CHILD and INSERT-PARENT
edits, the edge labels attaching the newly in-
serted nodes to their parents are always the most
frequent edge label for the given POS.8 Further
edits can modify these edge labels.

3.4 Search Error and Failure
The search does not always find optimal edit se-
quences, but most sequences seem reasonable upon
inspection. However, for some cases, the search
does not find a sequence in a reasonable number
of iterations. We therefore set an upper limit of
maxIters = 200 on the number of iterations.9 In
accuracy values that were not significantly different from each
other. However, we did observe that increased search failure
(§3.4) resulted from settings above 0.5.

8Edge label frequencies for each POS were computed from
the training data for the MST parser (McDonald et al., 2005).

9maxIters = 400 for the textual entailment experiments to
account for multi-sentence premises. For all tasks, extracting
sequences took about 5 seconds on average per sentence pair
with 1 GB of RAM on a 3.0 GHz machine.

practice, this constraint is enforced a small fraction
of the time (e.g., less than 0.1% of the time for the
answer selection training data). If no goal state is
found after maxIters iterations, a special unknown
sequence feature is recorded.

4 Classification of Sequences

Given a training set of labeled sentence pairs, af-
ter extracting edit sequences, we train a logistic
regression (LR) classification model (Hastie et al.,
2001) on the labels and features of the extracted se-
quences.10 We optimize with a variant of Newton’s
method (le Cessie and van Houwelingen, 1997).

The tree edit models use a set of 33 features of
edit sequences to classify sentence pairs. We used
the training data for the paraphrase task (§5.2) to de-
velop this set. All features are integer-valued, and
most are counts of different types of edits. Five are
counts of the nodes in the source tree that were not
edited directly by any operations (though their an-
cestors or descendants may have been). Table 2 de-
scribes the features in detail.

5 Experiments

Experiments were conducted to evaluate tree edit
models for three tasks: recognizing textual entail-
ment (Giampiccolo et al., 2007), paraphrase identi-
fication (Dolan et al., 2004), and an answer selec-
tion task (Wang et al., 2007) for question answering
(Voorhees, 2004). The feature set and first tree edit
model were developed for paraphrase, and then ap-
plied to the other tasks with very few modifications
(all explained below) and no further tuning.11

5.1 Recognizing Textual Entailment
A tree edit model was trained for recognizing tex-
tual entailment (RTE). Here, an instance consists of

10In cross-validation experiments with the training data, we
found that unregularized LR outperformed SVMs (Vapnik,
1995) and `2-regularized LR, perhaps due to the small number
of features in our models.

11All datasets were POS-tagged using Ratnaparkhi’s (1996)
tagger and parsed for dependencies using the MST Parser
(McDonald et al., 2005). Features were computed from
POS and edge label information in the dependency parses.
The WordNet API (Miller et al., 1990) was used for
lemmatization only. An appendix with further experimen-
tal details is available at http://www.ark.cs.cmu.edu/
mheilman/tree-edit-appendix/.
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Feature Description
totalEdits # of edits in the sequence.
XEdits #s of X edits (where X is

one of the nine edit types in
Table 1).

relabelSamePOS,
relabelSameLemma,
relablePronoun,
relabelProper,
relabelNum

#s of RELABEL-NODE edits
that: preserve POS, preserve
lemmas, convert between
nouns and pronouns, change
proper nouns, change numeric
values by more than 5% (to
allow rounding), respectively.

insertVorN,
insertProper

#s of INSERT-CHILD or
INSERT-PARENT edits that:
insert nouns or verbs, insert
proper nouns, respectively.

removeVorN,
removeProper,
removeSubj,
removeObj,
removeVC,
removeRoot

#s of REMOVE-LEAF or
REMOVE-&-MERGE edits
that: remove nouns or verbs,
remove proper nouns, remove
nodes with subject edge la-
bels, remove nodes with object
edge labels, remove nodes
with verb complement edge
labels, remove nodes with
root edge labels (which may
occur after NEW-ROOT edits),
respectively.

relabelEdgeSubj,
relabeledgeObj,
relabelEdgeVC,
relabelEdgeRoot

#s of RELABEL-EDGE edits
that: change to or from subject
edge labels, change to or from
object edge labels, change to
or from verb complement edge
labels, change to or from root
edge labels, respectively.

uneditedNodes,
uneditedNum,
uneditedVerbs,
uneditedNouns,
uneditedProper

#s of unedited nodes: in total,
that are numeric values, that
are verbs, that are nouns, that
are proper nouns, respectively.

unknownSeq 1 if no edit sequence was
found and 0 otherwise (§3.4).

Table 2: Tree edit sequence classification features.

a “premise,” which is a sentence or paragraph about
a particular topic or event, and a “hypothesis,” which
is a single, usually short, sentence that may or may
not follow from the premise. The task is to de-
cide whether or not the hypothesis is entailed by the
premise (Giampiccolo et al., 2007).

Tree edit sequences were extracted in one direc-
tion, from premise to hypothesis.12 Since premises

12It is counter-intuitive to model adding information through
extensive insertions, for both entailment and answer selection.

System Acc. % Prec. % Rec. %
Harmeling, 2007 59.5 - -
de Marneffe et al., 2006 60.5 61.8 60.2
M&M, 2007 (NL) 59.4 70.1 36.1
M&M, 2007 (Hybrid) 64.3 65.5 63.9
Tree Edit Model 62.8 61.9 71.2

Table 3: Results for recognizing textual entailments. Pre-
cision and recall values are for the true entailment class.
Results for de Marneffe et al. (2006) were reported by
MacCartney and Manning (2008). Harmeling (2007)
only reported accuracy.

may consist of multiple sentences, we attach sen-
tences as children of dummy root nodes, for both
the premise and hypothesis. The model was trained
on the development set (i.e., training data) for RTE-
3 along with all the data from the RTE-1 and RTE-2
tasks. It was then evaluated on the RTE-3 test set.
We report precision and recall for true entailments,
and overall accuracy (i.e., percentage correct).

We compare to four systems that use syntactic de-
pendencies and lexical semantic information.13 De
Marneffe et al. (2006) described an RTE system
that finds word alignments and then classifies sen-
tence pairs based on those alignments. MacCart-
ney and Manning (2008) used an inference pro-
cedure based on Natural Logic, leading to a rela-
tively high-precision, low-recall system. MacCart-
ney and Manning (2008) also tested a hybrid of the
natural logic system and the complementary system
of de Marneffe et al. (2006) to improve coverage.
Harmeling (2007) took an approach similar to ours
involving classification based on transformation se-
quences, but with less general operations and a more
complex, heuristic procedure for finding sequences.

Table 3 presents RTE results, showing that the
tree edit model performs competitively. While it
does not outperform state-of-the-art RTE systems,
the tree edit model is simpler and less tailored to this
task than many other RTE systems based on similar
linguistic information.

13The top-performing RTE systems often involve significant
manual engineering for the RTE task. Also, many employ tech-
niques that make them not very comparable to our approach
(e.g., theorem proving). We also note that Kouylekov and
Magnini (2005) report 55% accuracy for RTE-2 using TED. See
Giampiccolo et al. (2007) for more RTE-3 results.
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System Acc. % Prec. % Rec. %
Wan et al., 2006 75.6 77 90
D&S, 2009 (QG) 73.9 74.9 91.3
D&S, 2009 (PoE) 76.1 79.6 86.0
Tree Edit Model 73.2 75.7 87.8

Table 4: Paraphrase identification results, with precision
and recall measures for true (positive) paraphrases. Wan
et al. (2006) report precision and recall values with only
two significant digits.

System MAP MRR
Punyakanok et al., 2004 0.3814 0.4462

+WN 0.4189 0.4939
Cui et al., 2005 0.4350 0.5569

+WN 0.4271 0.5259
Wang et al., 2007 0.4828 0.5571

+WN 0.6029 0.6852
Tree Edit Model 0.6091 0.6917

Table 5: Results for the task of answer selection for ques-
tion answering. +WN denotes use of WordNet features.

5.2 Paraphrase Identification
A tree edit model was trained and tested for para-
phrase identification using the the Microsoft Re-
search Paraphrase Corpus (Dolan et al., 2004). The
task is to identify whether two sentences convey es-
sentially the same meaning.

The standard training set was used to train the tree
edit classification model to distinguish between true
and false paraphrases. Since there is no predefined
direction for paraphrase pairs, we extracted two se-
quences for each pair (one in each direction) and
summed the feature values. The model was evalu-
ated with the standard test set.

We report accuracy, positive class precision (i.e.,
percentage of predicted positive paraphrases that
had positive gold-standard labels), and positive class
recall (i.e., percentage of positive gold-standard la-
bels that were predicted to be positive paraphrases).

We compare to two of the best performance ap-
proaches to paraphrase. One approach, by Wan et al.
(2006), uses an SVM classifier with features based
on syntactic dependencies, TED, unigram overlap,
and BLEU scores (Papineni et al., 2002). The other
system, by Das and Smith (2009), is based on a
quasi-synchronous grammar (QG; Smith and Eisner,
2006), a probabilistic model that allows loose align-
ments between trees but prefers tree isomorphism.
In addition to syntactic dependencies, the QG model

utilizes entity labels from BBN Identifinder (Bikel
et al., 1999) and lexical semantics knowledge from
WordNet. Das and Smith (2009) also use a product
of experts (PoE) (Hinton, 1999) to combine the QG
model with lexical overlap features.

Table 4 shows the test set results for all of the sys-
tems. While the tree edit model did not outperform
the other systems, it produced competitive results.
Moreover, the tree edit model does not make use
of BLEU scores (Wan et al., 2006), entity labeling
components, lexical semantics knowledge sources
such as WordNet (beyond lemmatization), or system
combination techniques (Das and Smith, 2009).

5.3 Answer Selection for Question Answering
A tree edit model was trained for answer selec-
tion in question answering (QA). In this task, an
instance consists of a short factual question (e.g.,
Who wrote the ‘Tale of Genji’?) and a candidate an-
swer sentence retrieved by the information retrieval
component of a question answering system. For a
positive instance, the text will correctly answer the
question—though perhaps indirectly. It may also
contain various extraneous information (e.g., Kano
script made possible the development of a secular
Japanese literature, beginning with such Late Heian
classics as Lady Murasaki’s “Tales of Genji.”). For
a given set of questions, the task here is to rank can-
didate answers (Wang et al., 2007).

The experimental setup is the same as in Wang
et al. (2007). We trained the tree edit model on
the manually judged positive and negative QA pairs
from previous QA tracks at the Text REtrieval Con-
ference (TREC-8 through TREC-12). The goal of
the task is to rank answer candidates rather than clas-
sify them; therefore, after training a logistic regres-
sion classifier, we rank the answer candidates for a
given question by their posterior probabilities of cor-
rectness according to the model.

We tested our model with QA pairs from TREC-
13. We report Mean Average Precision (MAP) and
Mean Reciprocal Rank (MRR), which are informa-
tion retrieval measures for ranked lists.

Tree edit sequences were extracted only in one di-
rection, from answer to question. We compare our
tree edit model to three other systems as they are re-
ported by Wang et al. (2007). Wang et al. use a QG
model, incorporating information from dependency
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trees, entity labels from BBN Identifinder (Bikel et
al., 1999), and lexical semantics knowledge from
WordNet (Miller et al., 1990). Cui et al. (2005) de-
veloped an information theoretic measure based on
dependency trees. Punyakanok et al. (2004) used a
generalization of TED to model the QA pairs. For
their experiments, Wang et al. also extended both of
the latter models to utilize WordNet.

Table 5 displays answer selection results, includ-
ing test set results for the baseline systems with and
without lexical semantic information from Word-
Net. The tree edit model, which does not use lex-
ical semantics knowledge, produced the best result
reported to date. The results for the tree edit model
are statistically significantly different (sign test, p <
0.01) from the results for all except the Wang et al.
(2007) system with WordNet (p > 0.05).

5.4 Discussion

The parameter settings learned for the features in Ta-
ble 2 were broadly similar for the three tasks. For
example, operations involving changes to subjects
and proper nouns tended to be associated with non-
paraphrases, false entailments, and incorrect an-
swers. We did not observe any interesting differ-
ences in the parameter values.

While the tree edit models perform competitively
in multiple tasks by capturing relevant syntactic phe-
nomena, it is clear that syntax alone cannot solve
these semantic tasks. Fortunately, this approach is
amenable to extensions, facilitated by the separa-
tion of the representation extraction and classifica-
tion steps. Richer edits could be included; lexical se-
mantics could be integrated into the classifier or the
search heuristic; or edit sequences might be found
for other types of trees, such as semantic parses.

6 Related Work

TED is a widely studied technique with many appli-
cations (Klein, 1989; Zhang and Shasha, 1989; Pun-
yakanok et al., 2004; Schilder and McInnes, 2006).
See Bille (2005) for a review. Chawathe and Garcia-
Molina (1997) describe a tree edit algorithm for
detecting changes in structured documents that in-
corporates edits for moving subtrees and reordering
children. However, they make assumptions unsuit-
able for natural language, such as the absence of re-

cursive syntactic rewrite rules. Bernard et al. (2008)
use EM to learn the costs for simple insert, relabel,
and delete edits, but they only discuss experiments
for digit recognition and a task using artificial data.

Much research has focused on modeling word re-
ordering phenomena and syntactic alignments (e.g.,
Gildea, 2003; Smith and Eisner, 2006; inter alia),
and such methods have been applied successfully to
semantic tasks (de Marneffe et al., 2006; Wang et
al., 2007; Das and Smith, 2009). While we not de-
scribe connections to such approaches in detail due
to space limitations, we note that theoretical con-
nections are possible between transformations and
alignments (Chawathe and Garcia-Molina, 1997).

Tree kernels have been applied to a variety of nat-
ural language tasks (Collins and Duffy, 2001; Ze-
lenko et al., 2003; Culotta and Sorensen, 2004). Of
particular interest, Zanzotto and Moschitti (2006)
describe a kernel for RTE that takes tree pairs, rather
than single trees, as input. To our knowledge, our
use of a tree kernel as a search heuristic is novel.

7 Conclusion

We described tree edit models that generalize TED
by allowing operations that better account for com-
plex reordering phenomena and by learning from
data how different edits should affect the models de-
cisions about output variables of interest (e.g., the
correctness of answers). They offer an intuitive
and effective method for modeling sentence pairs.
They led to competitive performance for three tasks:
paraphrase identification, recognizing textual entail-
ment, and answer selection for question answering.
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