
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 198–206,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Formatting Time-Aligned ASR Transcripts for Readability

Maria Shugrina ∗

Google Inc.
New York, NY 10011
shumash@google.com

Abstract

We address the problem of formatting the out-
put of an automatic speech recognition (ASR)
system for readability, while preserving word-
level timing information of the transcript. Our
system enriches the ASR transcript with punc-
tuation, capitalization and properly written
dates, times and other numeric entities, and
our approach can be applied to other format-
ting tasks. The method we describe combines
hand-crafted grammars with a class-based lan-
guage model trained on written text and relies
on Weighted Finite State Transducers (WF-
STs) for the preservation of start and end time
of each word.

1 Introduction and Prior Work

The output of a typical ASR system lacks punctua-
tion, capitalization and proper formatting of entities
such as phone numbers, time expressions and dates.
Even if such automatic transcript is free of recogni-
tion errors, it is difficult for a human to parse. The
proper formatting of the transcript gains particular
importance in applications where the user relies on
ASR output for information and where information-
rich numeric entities (e.g. time expressions, mone-
tary amounts) are common. A good example of such
application is a voicemail transcription system. The
goal of our work is to transform the raw transcript
into its proper written form in order to optimize it for
the visual scanning task by the end user. We present
quantitative and qualitative evaluation of our system
with a focus on numeric entity formatting, punctua-
tion and capitalization (See Fig. 1).

Apart from text, the ASR output usually con-
tains word-level metadata such as time-alignment
and confidence. Such quantities may be useful for a
variety of applications. Although simple to recover

∗Thank you to Michiel Bacchiani, Martin Jansche, Michael
Riley and Cyril Allauzen for discussion and support.

Raw Transcript:
hi bill it’s tracy at around three thirty P M just got
an apartment for one thousand three thirty one thou-
sand four hundred a month my number is five five five
eight eight eight eight extension is three thirty bye

Our Result:
Hi Bill, it’s Tracy at around 3:30 PM, just got an
apartment for 1,330 1,400 a month. My number is
555-8888 extension is 330. Bye.

Figure 1: An example of a raw transcript with ambiguous
written forms and the output of our formatting system.

via word alignment after some types of formatting,
word-level quantities may be difficult to preserve if
the original text has undergone a significant transfor-
mation. We present a formal and general augmen-
tation of our WFST-based technique that preserves
word-level timing and confidence information dur-
ing arbitrary formatting.

The problems of sentence boundary detection and
punctuation of transcripts have received a substantial
amount of attention, e.g. (Beeferman et al., 1998;
Shriberg et al., 2000; Christensen et al., 2001; Liu
et al., 2006; Gravano et al., 2009). Capitalization of
ASR transcripts received less attention (Brown and
Coden, 2002; Gravano et al., 2009), but there has
also been work on case restoration in the context
of machine translation (Chelba and Acero, 2006;
Wang et al., 2006). Our work does not propose
competing methods for transcript punctuation and
capitalization. Instead, we aim to provide a com-
mon framework for a wide range of formatting tasks.
Our method extends the approach of Gravano et al.
(2009) with a general WFST formulation suitable
for formatting monetary amounts, time expressions,
dates, phone numbers, honorifics and more, in addi-
tion to punctuation and capitalization.

To our knowledge, this scope of the problem has
not been addressed in literature. Yet such format-
ting can have a high impact on transcript readabil-
ity. In this paper we focus on numeric entity format-

198

ting. In general, context independent rules fail to
adequately perform this task due to its inherent am-
biguity (See Fig. 1). For example, the spoken words
“three thirty” should be written differently in these
three contexts:
• meet me at3:30
• you owe me330
• dinner forthree 30minutes later

The proper written form of a numeric entity depends
on its class (time, monetary amount, etc). In this
sense, formatting is related to the problem of named
entity (NE) detection and value extraction, as de-
fined by MUC-7 (Chinchor, 1997). Several authors
have considered the problem of NE value extraction
from raw transcripts (Huang et al., 2001; Jansche
and Abney, 2002; B́echet et al., 2004; Levit et al.,
2004). This is an information extraction task that in-
volves identifying transcript words corresponding to
a particular NE class and extracting an unambigu-
ous value of that NE (e.g. the value of the date
NE “december first oh nine” is “12/01/2009”). Al-
though relevant, this information extraction does not
directly address the problem of proper formatting
and ordinarily requires a tagged corpus for training.

A parallel corpus containing raw transcriptions
and the corresponding formatted strings would facil-
itate the solution to the transcript formatting prob-
lem. However, there is no such corpus available.
Therefore, we follow the approach of Gravano et al.
and provide an approximation that exploits readily
available written text instead. In section 2 we de-
tail our method, provide a probabilistic interpreta-
tion and present a practical formulation of the solu-
tion in terms of WFSTs. Section 3 shows how to
augment the WFST formulation to preserve word-
level timing and confidence. Section 4 presents both
qualitative and quantitative evaluation of our system.

2 Method

First, handwritten grammars are used to generate
all plausible written forms. These variants are then
scored with a language model (LM) approximating
probability over written strings. To overcome data
sparsity associated with written numeric strings, we
introduce numeric classes into the LM. In section
2.1 we give a probabilistic formulation of this ap-
proach. In section 2.2 we comment on the hand-
written grammars, and in section 2.3 we discuss the

class-based language model used for scoring. Sec-
tion 2.4 provides the WFST formulation of the solu-
tion.

2.1 Probabilistic Formulation

The problem of estimating the best written form̂w
of a spoken sequence of wordss can be formulated
as a Machine Translation (MT) problem of translat-
ing a strings from the language of spoken strings
into a language of written strings. From a statistical
standpoint,ŵ can be estimated as follows:

ŵ = argmax
w

{P (w|s)} ≈ argmax
w

{P ′(s|w)P ′(w)},

whereP (·) denotes probability, andP ′(·) a prob-
ability approximation. The probability over written
stringsP (w) can be estimated by training ann-gram
language model on amply available written text. The
absence of a parallel corpus containing sequences of
spoken words and their written renditions makes the
conditional distributionP (s|w) impossible to esti-
mate. An approximationP ′(s|w) can be obtained by
defining handwritten grammars that generate multi-
ple unweighted written variants for any spoken se-
quence. For a givens, a collection of grammars en-
codes a uniform probability distribution across the
set of all written variants generated fors and as-
signs a zero probability to any string not in this set.
Such grammar-based modeling ofP (s|w) combined
with statistical estimation ofP (w) takes advantage
of prior knowledge, but does not share the disadvan-
tages of rigid, fully rule-based systems.

2.2 Handwritten Grammars

Handwritten grammarsG1...Gm are used to gener-
ate unweighted written variants for a raw strings. In
Gravano’s work (Gravano et al., 2009) the generated
variants include optional punctuation between every
two words and an optional capitalization for every
word. Our system supports a wider range of vari-
ants, including but not limited to multiple variants
of number formatting.

The handwritten grammars can be very restrictive
or very liberal, depending on the application require-
ments. For example, a grammar we use to generate
punctuation and capitalization only generates sen-
tences with the first word capitalized. This enforces
conventions and consistency, which the best scor-
ing variant could occasionally violate. On the other

199

0

2
three

1

3

3

<space>

<space>

<column>

<period>

ε

5
thirty

4

3 0

Figure 2: An FSA encoding all variants generated by the
number grammar for a spoken string “three thirty”.

hand, the grammar for number formatting could
be very liberal in producing written variants (See
Fig. 2). Jansche and Abney (2002) observe that
handwritten rules deterministically tagging numeric
strings of certain length as phone numbers perform
surprisingly well on phone number NE identification
in voicemail. If appropriate to the task, determinis-
tic grammars can be incorporated into the grammar
stack. The unweighted written variants generated by
applyingG1...Gm to s are then scored with the lan-
guage model.

2.3 Language Model

The probability distribution over written textP (w)
can be approximated by a Katz back-offn-gram lan-
guage model trained on written text in a domain
semantically similar to the domain for which the
ASR engine is deployed. Unlike some of the ap-
proaches used for NE identification (Jansche and
Abney, 2002; Levit et al., 2004) and sentence bound-
ary detection (Christensen et al., 2001; Shriberg et
al., 2000; Liu et al., 2006), LM-based scoring can-
not exploit a larger context thann tokens or prosodic
features. The advantage of the LM approach is the
ease of applying it to new formatting tasks: no new
tagged corpus, and only trivial changes to the pre-
processing of the training text would be required.

If the LM is to score written numeric strings, care
must be taken in modeling numbers. Representing
each written number as a token (e.g. tokens “1,235”,
“15”) during training results in a very large model
and suffers from data sparsity even with very large
training corpora. An alternative approach of model-
ing every digit as a token (e.g. “15” is comprised of
tokens “1” and “2”) fails to model sufficient context
for longer digit strings. A partially class-based LM
remedies the drawbacks of both approaches, and has
been used for tasks such as NE tagging (Béchet et

Class Set A
Numeric range Interpretation
2-9 single digits
10-12 up to hour in a 12-hour system
13-31 up to the largest day of the month
32-59 up to the largest minute in a time

expression
other 2-digit all other 2-digit numbers
other 3-digit all 3-digit numbers
1900 - 2099 common year numbers
other 4-digit all other 4-digit numbers
10000-99999 all 5-digit numbers; e.g. US zip-

codes
≥ 100000 all large numbers

Class Set B
Numeric range Interpretation
0-9 one digit string
10-99 two digit string
... ...
109 − (1010 − 1) ten-digit string
≥ 1010 longer digit string

Table 1: Two sets of number classes used in our system.
Each sequence of consecutive digit characters is mapped
to the appropriate class. For example, “$1,235.12” would
become “〈dollar〉 1 〈comma〉 〈num 100 999〉 〈period〉
〈num 10 12〉” in Class Set A and “〈dollar〉 〈num 1D〉
〈comma〉 〈num 3D〉 〈period〉 〈num 2D〉 in Class Set B.

al., 2004). The generalization provided by classes
eliminates data sparsity, and is able to model suffi-
cient context.

We experiment with two sets of classes (See Ta-
ble 1). Class Set B, based on (Béchet et al., 2004),
marks strings ofn consecutive digits as belonging to
an n-digit class, assuming nothing about the num-
ber distribution. Class Set A is based on intuition
about number distribution in text (See Table 1,Inter-
pretation). In section 4.4 we show that Class Set A
achieves better performance on number formatting.
Now that it is established that the choice of classes
affects performance, future research could focus on
finding an optimal set of number classes automat-
ically. Clustering techniques, often used to derive
class definitions from training text, could be applied.

Although more punctuation marks could be con-
sidered, we focus on periods and commas. Similarly
to Gravano et al. (2009), we map all other punctua-
tion marks in the training text to these two. In many
formatting scenarios (e.g. spelled out acronyms, nu-
meric ranges), spaces are ambiguous and significant,

200

and it is therefore important to consider whitespace
when scoring the written variants. Because of this,
we model space as a token in the LM.

2.4 WFST Formulation

The one-best1 ASR outputs can be represented by a
Finite State Acceptor (FSA)S. We describe a series
of standard WFST operations onS resulting in the
FSA Wbest encoding the best estimated formatted
variantŵ. Current section assumes familiarity with
WFSTs; for background see (Mohri, 2009).

(a)S FSA

(b) W variants FST

(c) Wout FSA

(d) Wclass FST

(e)Wbest FSA

Figure 3: An example showing transducers produced dur-
ing formatting.

We encode each grammarGi as an unweighted
FSTTi that transduces the raw transcript to its for-
matted versions. The necessity to encode them
as FSTs restricts the set of grammars to regular
grammars (Hopcroft and Ullman, 1979), sufficiently
powerful for most formatting tasks. The back-off
n-gram LM is naturally represented as a weighted
deterministic FSAG with negative log probability
weights (Mohri et al., 2008). The deterministic map-
ping of digit strings to number class tokens can also

1This WFST formulation can also be applied to the ASR lat-
tice orn-best list with some modification to the scoring phase.

be accomplished by an unweighted transducerK,
which passes all non-numeric strings unchanged.

Composing the input acceptorS with the gram-
mar transducersTi results in a transducerW with
all written variants on the output. Projected onto its
output labels,W becomes an acceptorWout. Wclass,
the result of the composition ofWout with K, has
all formatted written variants on the input side and
the formatted variants with digit strings replaced by
class tokens on the output. The output side ofWclass

can then be scored via composition withG to pro-
duce a weighted transducerWscored. The shortest
path in the Tropical Semiring onWscored contains
the estimate of the best written variant on the input
side. This algorithm can be summarized as follows
(See Fig. 3):

1. W = S ◦ T1 ◦ T2... ◦ Tm

2. Wout = Projout(W)

3. Wclass = Wout ◦K

4. Wscored = Wclass ◦G

5. Wbest = Projin(BestPath(Wscored))

where ◦ denotes FST composition,Projin and
Projout denote projection on input and output la-
bels respectively, andBestPath(X) as a function
returning an FST encoding the shortest path ofX.
The key Step 2 ensures that the target written vari-
ants are not consumed in the consequent composi-
tion operations. For efficiency reasons it is advisable
to apply optimizations such as epsilon removal and
determinization to the intermediate results.2

3 Preserving Word-Level Metadata

We extend the WFST formulation to preserve word-
level timing and confidence information.

3.1 Background

A WFST is a finite set of states and transitions
connecting them. Each transition has an input la-
bel, an output label and a weight in some semir-
ing K. A semiring is informally defined as a tou-
ple (K,⊕,⊗, 0, 1), whereK is the set of elements,
⊕ and⊗ are the addition and multiplication opera-
tions,0 is the additive identity and multiplicative an-
nihilator,1 is the multiplicative identity (See (Mohri,

2Our system implements proper failure transitions available
in the OpenFST Library (Allauzen et al., 2007).

201

2009)). By defining new semirings we can use stan-
dard FST operations to accomplish a wide range of
goals.

3.2 Timing Semiring

In order to formulate time preservation within the
FST formalism, we define thetiming semiring Kt

where each element is a pair(s, e) that can be inter-
preted as the start and end time of a word:

Wt =
{

(s, e) : s, e ∈ R
+ ∪ {0,∞}

}

(s1, e1)⊕ (s2, e2) = (max(s1, s2), min(e1, e2))

(s1, e1)⊗ (s2, e2) = (min(s1, s2), max(e1, e2))

0 = (0,∞) 1 = (∞, 0)

Intuitively, the addition operation takes the largest
interval contained by both operand intervals, while
multiplication returns the smallest interval fully con-
taining both operand intervals.3 This definition ful-
fills all the semiring properties as defined in (Mohri,
2009). Note that encoding only the duration of each
word is not sufficient, as there may be time gaps
between the words due to the segmentation of the
source audio. Let̃S denote the Weighted Finite
State Acceptor (WFSA) encoding the raw ASR out-
put with the start and end time stored in the weight
of each arc.

In order to preserve word-level confidence in ad-
dition to timing information, a Cartesian product of
Kt and the Log semiring can be used to store both
time and confidence in an arc weight.

3.3 Weight Synchronization

The goal is to associate the timing/confidence
weights ofS̃ with the word labels ofWbest, the best
formatted string (See Sec. 2.4). Because the weight
of each transition inS̃ already expresses the tim-
ing/confidence corresponding to its word label, it is
sufficient to associate the labels ofS̃ with the labels
of Wbest. This is equivalent to identifying the output
labels to which each input label is transduced during
Step 1 in section 2.4. However, in general WFST op-
erations may desynchronize input and output labels

3Note that this is just a Cartesian product of min-max and
max-min semirings. The elements ofKt are not proper inter-
vals, as it is possible fors to exceede.

and weights, as the FST structure itself does not in-
dicate a semantic correspondence between them. To
alleviate this, we guarantee such a correspondence
in our grammars by enforcing that for all paths in
any grammar FSTTi:
• an input label appears before any of the corre-

sponding output labels, and
• output labels corresponding to a given input la-

bel appear before the next input label.
In practice, these assumptions are usually met by
handwritten grammars. Even if these assumptions
are violated for a small number of paths, only small
word-level timing discrepancies will be incurred.
Each path inW can be thought of as a sequence of
subpaths with only the first transition containing a
non-ǫ input label. We say that the input label of each
such subpath corresponds to that subpath’s output la-
bels.

0 1
ten/(1,2)

2
<sp>

3
six/(3,4)

(a) S̃ FSA

0 1
1

2
0

3
<sp>

4
6

(b) Wbest FSA

0 1
ten:1

2
ε:0

3
<sp>:<sp>

4
six:6

(c) Wraw:best FST

0 1
ten:1/(1,2)

2
ε:0

3
<sp>:<sp>

4
six:6/(3,4)

(d) W̃best FST

Figure 4: A small example of time preservation section of
the algorithm. Arcs with non-unity timing weights show
parenthesized pair of start and end time.

The best path that has input labels corresponding
to the raw ASR output can be obtained by compos-
ing the variants FSTW with the best formatted FSA
Wbest and picking any path. The timing weights are
restored to by composing the weightedS̃ with this
result. To preserve timing we add two more steps to
Steps 1–5 in section 2.4:

6. Wraw:best = RmEps(AnyPath(W ◦Wbest))

7. W̃best = S̃ ◦Mapt(Wraw:best)

whereRmEps(X) applies the epsilon-removal al-
gorithm to X (Mohri, 2009), andMapt(X) maps

202

all non-zero weights ofX to the unity weight in the
timing semiring. BecausẽS is an epsilon-free accep-
tor, the resultW̃best will contain the original weights
of S̃ on the arcs with the corresponding input labels
(See Fig. 4 for an example). The space-delimited
words and the corresponding weights can then be
read off by walkingW̃best.

4 Evaluation

Section 4.1 presents our datasets and an evaluation
metric specific to number formatting, and section
4.2 describes our experimental system. We present
quantitative evaluation of capitalization/punctuation
performance and number formatting performance
separately in sections 4.3 and 4.4. Because the ul-
timate goal of our work is to improve the readability
of ASR transcripts, we also present the result of a
user study of transcript readability in section 4.5.

4.1 Data and Metrics

The training corpus contains 185M tokens of written
text normalized to contain only comma and period
punctuation marks. A set of 176M tokens (TRS) is
used for training and a set of 7M tokens (PTS) is
held back for testing punctuation and capitalization
(See Table 3). To obtain a test input (NPTS) for our
system, PTS is lowercased and all punctuation is re-
moved.

words commas periods capitals
TRS 176M 10.6M 11.8M 24.3M
PTS 7M 420K 440K 880K

Table 3: Training set TRS and test set PTS.

Number formatting is evaluated on a manually
formatted test set. We manually processed the set
of raw manual transcripts (NNTS) from the LDC
Voicemail Part I training set (Padmanabhan et al.,
1998) to obtain a reference number formatting set
(NTS). All numeric entities in NTS were formatted
according to the following conventions:
• all quantities under 10 are spelled out
• time is written in a 12-hour system as “xx:xx”

or “xx”
• dollar amounts are written as “$x,xxx.xx” with

cents included if spoken
• US phone numbers are written as “(xxx) xxx-

xxxx” or “xxx-xxxx”
• other phone numbers are written as digit strings
• decimals are written as “x.x”

• large amounts include commas: “x,xxx,xxx”
All contiguous sequences of words in NTS that
could be a target for number formatting were marked
asnumeric entities, whether or not these words were
formatted by the labeler (for example “six” is anu-
meric entity). To evaluate number formatting per-
formance, we process NNTS with our full experi-
mental system, then remove all capitalization and
inter-word punctuation. This result is aligned with
NTS, and each entity is scored separately as totally
correct or totally incorrect (See Table 2), yielding:

Numeric Entity Error Rate = 100 · I

N

whereI is the count of entities that did not match
the reference entity string exactly andN is the total
entity count. This error rate is independent of the
numeric entity density in the test set. The errors are
broken down into three types:
• incorrect formatting - when the system incor-

rectly formats an entity that is formatted in the
reference

• overformatting - when the system formats an
entity that stays unformatted in the reference

• underformatting - when the system does not
format an entity formatted in the reference

Out of 1801 voicemail transcripts in NTS, 1347 con-
tain at least one entity for a total of 3563 entities,
signifying a frequent occurrence of numeric entities
in voicemail. There is an average of 7 raw transcript
words per entity, suggesting that in many cases en-
tity formatting is non-trivial.

4.2 Experimental System

The experimental system includes a 5-gram LM
trained on TRS with spaces treated as tokens. Num-
ber evaluation is performed with two sets of number
classes, listed in Table 1. System A contains LM
with classes from set A, and System B contains LM
with classes from set B. The experimental setup also
includes the following grammars:

• Gphone - deterministically formats as a phone
number any string spoken like a US 7 or 10
digit phone number

• Gnumber - expands all spoken numbers to a full
range of variants, with support for time expres-
sions, ordinals, decimals, dollar amounts

• Gcap punct - generates all possible combina-
tions of commas, periods and capitals; always
capitalizes the first word of a sentence

203

Raw: for six people at five five thirty cost is eleven hundred dollars
Ref: for six people at 5 5:30 cost is $1,100
Hyp: for 6 people at 5 5:30 cost is 11 $100
Score: - incorrect - correct - incorrect

Table 2: A example of a raw transcript, reference transcriptwith number formatting and the hypothesis produced by
the system. The entities (bold) in reference and hypothesisare aligned and scored.

4.3 Evaluation of Punctuation

To evaluate the performance of capitalization and
punctuation we run System A on NPTS with only
theGcap punct (in order not to introduce errors due
to numeric formatting). The precision, recall and F-
measure rates for periods, commas and capitals are
computed using PTS as reference (See Fig. 5).

Precision Recall F-Measure
Capitals 0.7902 0.5356 0.6385
Comma 0.5527 0.3129 0.3996
Period 0.6672 0.6783 0.6727

Figure 5: Punctuation and capitalization results.

It should be noted that a 5-gram language model
that treats spaces as words models the same history
as a 3-gram model that omits the spaces from train-
ing data. When this is taken into account, our re-
sults with a much smaller training set are compara-
ble to Gravano et al. (2009). The F-measure scores
for commas and periods are also comparable to the
prosody-based work of (Christensen et al., 2001),
with the precision of the period slightly lower, but
compensated by recall. Thus, our system can per-
form additional formatting, while retaining a reason-
able capitalization and punctuation performance.

4.4 Evaluation of Number Formatting

We evaluate number formatting performance of Sys-
tems A and B, which use different sets of classes for
the language modeling (See Table 1). We process
NNTS with both systems and score against the ref-
erence formatted set NTS to obtain Numeric Entity
Error Rate (NEER). Class Set B naively breaks num-
bers into classes by digit count. System B using this
class set performs worse than System A by 1.7% ab-
solute (See Table 4). In particular, the overformat-
ting rate (OFR) is higher by 1.2% absolute in System
B than in System A. An example of overformatting
is the mis-formatting of the English impersonal pro-
noun “one” as the digit “1”. Such overformatting
errors are much more noticeable than the underfor-

NEER IFR OFR UFR
System A

exact 16.1% 9.7% 5.4% 1.0%
ignore space 11.2% 4.9% 5.4% 1.0%

System B
exact 17.8% 10.6% 6.6% 0.6%

ignore space 13.2% 6.0% 6.6% 0.6%

Table 4: The total NEER score, NEER due to incorrect
formatting (IFR), NEER due to overformatting (OFR)
and NEER due to underformatting (UFR); NEER rates
with whitespace errors ignored are also listed.

matting errors, which are higher by 0.4% absolute
in System A. This result shows that the choice of
classes for the class-based LM significantly impacts
number formatting performance. Superior overall
performance of System A suggests that prior knowl-
edge in the choice of classes favorably impacts per-
formance.

In order to estimate the error rate not caused by
whitespace errors, we also compute the NEER with
whitespace errors ignored. It turns out that between
4 and 5% absolute of the errors are whitespace er-
rors. Even if all whitespace errors are significant,
the 83.9% of perfectly formatted entities suggests
that the proposed formatting approach can achieve
good performance on the number formatting task.

entities : . $,
Reference totals 3563 310 50 39 17
System A correct 3161 232 36 33 10
System B correct 2923 204 35 31 5

Table 5: The count of formatted entities in NTS contain-
ing various formatting characters; the counts of these en-
tities correctly formatted by the systems A and B.

To estimate how well the systems perform on spe-
cific number formatting tasks we count the number
of reference entities containing certain formatting
characters and compute the number of these enti-
ties correctly formatted by Systems A and B (See
Table 5). The count of different formatting charac-
ters in NTS is small, but still provides an estimate of
the number formatting performance for a real appli-

204

cation like voicemail transcription. System A per-
forms significantly better on the formatting of time
expressions containing a colon, getting 74.8% cor-
rect. The NEER of System A for entities containing
special formatting characters is under 28% for all
formatting characters except comma, which is used
inconsistently in training text.

4.5 Qualitative Evaluation

In addition to quantitative evaluation we have con-
ducted a small-scale study of transcript readability.
The study aims to compare raw ASR transcripts,
ASR transcripts formatted by our system and raw
manual transcripts. We have processed LDC Voice-
mail Part 1 with our ASR engine achieving an er-
ror rate of 30%, and have selected 50 voicemails
with error rate under 30% and high informational
content. Messages containing names, addresses and
numbers were preferred. The word error rate on
the selected voicemails is 20%. For each voicemail
we have constructed three semantic multiple-choice
questions, aimed at information extraction. We have
asked each of 15 volunteers to answer all 3 questions
about half of the voicemails. The questions were
shown in sequence, while the transcript remained on
the screen. The transcript for each voicemail was
randomly selected to be ASR raw, ASR formatted
or manual raw. The response time was measured in-
dividually for each question.

The analysis of the responses reveals a statis-
tically significant difference in response time be-
tween formatted and raw ASR transcripts (p = 0.02,
even allowing for per-item and per-subject effects;
see also Fig. 6) and comparable accuracy. The re-
sponse times for formatted ASR were comparable
to the response times for manual unformatted tran-
scripts. This suggests that for transcripts with low
error rates the formatting of the ASR output signif-
icantly impacts readability. This disagrees with a
similar study (Jones et al., 2003), which found no
significant difference in the comprehension rates be-
tween raw ASR transcripts and capitalized, punctu-
ated ASR output with disfluencies removed. This
could be due to a number of factors, including a dif-
ferent type of transformation performed on the ASR
transcript, a different corpus, and a lower word error
rate of transcripts in our user study.

ASR Formatted ASR Raw Manual Raw

0
20

40
60

80
10

0

T
im

e
to

 a
ns

w
er

 (
se

co
nd

s)

90.0% 90.7% 94.4%

Figure 6: The standard R box plot of the response time for
different transcript types and the corresponding accuracy.

5 Conclusion

We present a statistical approach suitable for a wide
range of formatting tasks, including but not lim-
ited to punctuation, capitalization and numeric en-
tity formatting. The average of 2 numeric enti-
ties per voicemail in the manually processed LDC
Voicemail corpus shows that number formatting is
important for applications such as voicemail tran-
scription. Our best system achieves a Numeric En-
tity Error Rate of 16.1% on the ambiguous task of
numeric entity formatting, while retaining capital-
ization and punctuation performance comparable to
other published work. Our algorithm is concisely
formulated in terms of WFSTs and is easily ex-
tended to new formatting tasks without the need for
additional training data. In addition, the WFST for-
mulation allows word-level timing and confidence
to be retained during formatting. In order to over-
come data sparsity associated with written numbers,
we use a class-based language model and show that
the choice of number classes significantly impacts
number formatting performance. Finally, a statis-
tically significant difference in question answering
time for raw and formatted ASR transcripts in our
user study demonstrates the positive impact of the
transcript formatting on the readability of errorful
ASR transcripts.

205

References

C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and
M. Mohri. 2007. Openfst: A general and efficient
weighted finite-state transducer library. InProceed-
ings of CIAA, pages 11–23.

F. Béchet, A. Gorin, J. Wright, and D. Hakkani-Tür.
2004. Detecting and extracting named entities from
spontaneous speech in a mixed-initiative spoken dia-
logue context: How may i help you?Speech Commu-
nication, 42(2):207–225.

D. Beeferman, A. Berger, and J. Lafferty. 1998. Cyber-
punc: A lightweight punctuation annotation system for
speech. InProceedings of ICASSP, pages 689–692.

E. Brown and A. Coden. 2002. Capitalization re-
covery for text. InInformation Retrieval Techniques
for Speech Applications, pages 11–22, London, UK.
Springer-Verlag.

C. Chelba and A. Acero. 2006. Adaptation of maximum
entropy capitalizer: Little data can help a lot.Com-
puter Speech and Language, 20(4):382–399.

N. Chinchor. 1997. Muc-7 named entity task definition.
In Proceedings of MUC-7.

H. Christensen, Y. Gotoh, and S. Renals. 2001. Punc-
tuation annotation using statistical prosody models. In
ISCA Workshop on Prosody in Speech Recognition and
Understanding.

A. Gravano, M. Jansche, and M. Bacchiani. 2009.
Restoring punctuation and capitalization in transcribed
speech. InProceedings of ICASSP, pages 4741–4744.
IEEE Computer Society.

J. Hopcroft and J. Ullman, 1979.Introduction to au-
tomata theory, languages, and computation, pages
218–219. Addison-Wesley.

J. Huang, G. Zweig, and M. Padmanabhan. 2001. Infor-
mation extraction from voicemail. InProceedings of
the Conference of the ACL, pages 290–297.

M. Jansche and S. P. Abney. 2002. Information extrac-
tion from voicemail transcripts. InIn EMNLP.

D. Jones, F. Wolf, E. Gibson, E. Williams, E. Fedorenko,
D. Reynolds, and M. Zissman. 2003. Measuring the
readability of automatic speech-to-text transcripts. In
Proceedings of EUROSPEECH, pages 1585–1588.

M. Levit, P. Haffner, A. Gorin, H. Alshawi, and E. N̈oth.
2004. Aspects of named entity processing. InPro-
ceedings of INTERSPEECH.

Y. Liu, E. Shriberg, A. Stolcke, D. Hillard, M. Ostendorf,
and M. Harper. 2006. Enriching speech recognition
with automatic detection of sentence boundaries and
disfluencies. IEEE Transactions on Audio, Speech,
and Language Processing, 14(5):1526–1540.

M. Mohri, F. Pereira, and M. Riley. 2008. Speech recog-
nition with weighted finite-state transducers. InHand-
book on Speech Processing and Speech Communica-
tion. Springer.

M. Mohri. 2009. Weighted automata algorithms. In
Handbook of Weighted Automata. Monographs in The-
oretical Computer Science., pages 213–254. Springer.

M. Padmanabhan, G. Ramaswamy, B. Ramabhadran,
P. Gopalakrishnan, and C. Dunn. 1998. Voicemail
corpus part i. Linguistic Data Consortium, Philadel-
phia.

E. Shriberg, A. Stolcke, D. Hakkani-Tür, and G. T̈ur.
2000. Prosody-based automatic segmentation of
speech into sentences and topics.Speech Communi-
cations, 32(1-2):127–154.

W. Wang, K. Knight, and D. Marcu. 2006. Capitaliz-
ing machine translation. InProceedings of HLT/ACL,
pages 1–8. Association for Computational Linguistics.

206

