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Abstract

Taxonomies are an important resource for a
variety of Natural Language Processing (NLP)
applications. Despite this, the current state-
of-the-art methods in taxonomy learning have
disregarded word polysemy, in effect, devel-
oping taxonomies that conflate word senses.
In this paper, we present an unsupervised
method that builds a taxonomy of senses
learned automatically from an unlabelled cor-
pus. Our evaluation on two WordNet-derived
taxonomies shows that the learned taxonomies
capture a higher number of correct taxonomic
relations compared to those produced by tradi-
tional distributional similarity approaches that
merge senses by grouping the features of each
word into a single vector.

1 Introduction

A concept or a sense, s, can be defined as the mean-
ing of a word or a multiword expression. A con-
cept s can be linguistically realised by more than one
word while at the same time a wordw can be the lin-
guistic realisation of more than one concept. Given
a set of concepts S, taxonomy learning is the task of
hierarchically classifying the elements in S in an au-
tomatic manner. For example, consider a set of con-
cepts linguistically realised by the words/multiword
expressions LAN, computer network, internet, mesh-
work, gauze, snood. Taxonomy learning methods
produce taxonomies, such as the ones shown in Fig-
ures 1 (a) and 1 (b).

By observing Figure 1 (a), we can express IS-
A statements, such as Internet IS-A Computer Net-
work etc. However, the same does not apply to the

Figure 1: A labelled and an unlabelled concept taxonomy

taxonomy in Figure 1 (b), since this taxonomy is not
fully labelled. Despite this, its hierarchical organ-
isation clearly shows that the concepts are divided
into groups, which are further subdivided into sub-
groups and so forth, until we reach a level where
each concept belongs to its own group. Unlabelled
taxonomies are typically produced by agglomera-
tive hierarchical clustering algorithms (King, 1967;
Sneath and Sokal, 1973).

The knowledge encoded in taxonomies can be
utilised in a range of NLP applications. For in-
stance, taxonomies can be used in information re-
trieval to expand a user query with semantically re-
lated words or to enhance document representation
by abstracting from plain words and adding concep-
tual information (Cimiano, 2006). WordNet’s (Fell-
baum, 1998) taxonomic relations have also been
used in Word Sense Disambiguation (WSD) (Nav-
igli and Velardi, 2004b). In named entity recog-
nition, methods relying on gazetteers could make
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use of automatically acquired taxonomies (Cimiano,
2006), while question answering systems have also
benefited (Moldovan and Novischi, 2002).

Despite the wide uses of taxonomies, the majority
of methods disregard or do not deal effectively with
word polysemy, in effect, developing taxonomies
that conflate the senses of words (see Section 2).
In this work, we show that Word Sense Induction
(WSI) can be effectively employed to address this
limitation of existing methods.

We present a novel method that employs WSI to
generate the different senses of a set of target words
from an unlabelled corpus and then produces a tax-
onomy of senses using Hierarchical Agglomerative
Clustering (HAC) (King, 1967; Sneath and Sokal,
1973). We evaluate our method on two WordNet-
derived sub-taxonomies and show that our method
leads to the development of concept hierarchies that
capture a higher number of correct taxonomic rela-
tions in comparison to those generated by current
distributional similarity approaches.

2 Related work

Initial research on taxonomy learning focused on
identifying in a given text lexico-syntactic patterns
that suggest hyponymy relations (Hearst, 1992). For
instance, the pattern NP0 such as NP1,. . . ,NPn
suggests that NP0 is a hypernym of NPi. For ex-
ample, given the phrase Fruits, such as oranges, ap-
ples,..., the above pattern would suggest that fruit
is a hypernym of orange and apple. These pattern-
based approaches operate at the word level by learn-
ing lexical relations between words rather than be-
tween senses of words.

In the same spirit, other work attempted to exploit
the regularities of dictionary entries to identify hy-
ponymy relations (Amsler, 1981). For example in
WordNet, WAN is defined as a computer network
that spans . . . . Hence, one can easily induce that
WAN is a hyponym of computer network by assum-
ing that the first noun phrase in the definition is a hy-
pernym of the target word. These approaches learn
lexical relations at the sense level since dictionaries
separate the senses of a word. However this would
be true if and only if the glosses of the dictionaries
were sense-annotated, which is not the case for the
majority of electronic dictionaries (Cimiano, 2006).

Another limitation is that taxonomies are built ac-
cording to the sense distinctions present in dictio-
naries and not according to the actual use of words
in the corpus.

The majority of taxonomy learning approaches
are based on the distributional hypothesis (Harris,
1968). Typically, distributional similarity methods
(Cimiano et al., 2004; Cimiano et al., 2005; Faure
and Nédellec, 1998; Reinberger and Spyns, 2004;
Caraballo, 1999) utilise syntactic dependencies such
as subject/verb, object/verb relations, conjunctive
and appositive constructions and others. These de-
pendencies are used to extract the features that serve
as the dimensions of the vector space. Each target
noun is then represented as a vector of extracted fea-
tures where the frequency of co-occurrence of the
target noun with each feature is used to calculate the
weight of that feature. The constructed vectors are
the input to hierarchical clustering or formal concept
analysis (Ganter and Wille, 1999) to produce a tax-
onomy. These approaches assume that a target noun
is monosemous creating one vector of features for
each target noun. This limitation can lead to a num-
ber of problems.

Firstly, the constructed taxonomies might be bi-
ased towards the inclusion of taxonomic relation-
ships between the most frequent senses of tar-
get nouns, ignoring interesting taxonomic relations
where less frequent senses are present. For exam-
ple, consider the word house. Current distributional
similarity methods would possibly capture the hy-
ponyms of its Most Frequent Sense (MFS1), how-
ever ignoring the hyponyms of less frequent senses
of house, e.g. casino, theater, etc. Given that word
senses typically follow a Zipf distribution, these
methods construct vectors dominated by the MFS of
words. This bias significantly degrades the useful-
ness of learned taxonomies.

Secondly, given that distributional similarity ap-
proaches rely on the computation of pairwise simi-
larities between target words, merging their senses
to a single vector might lead to unreliable similarity
estimates. For example, merging the features of the
different senses of house could provide a lower sim-
ilarity with its monosemous hyponym beach house,
since only the first sense of house is related to beach

1WordNet: A dwelling that serves as living quarters . . .
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house. This problem might lead both to inclusion
of incorrect or loss of correct taxonomic relations.
In our work, we aim to overcome these drawbacks
by identifying the different senses with which target
words appear in text and then building a hierarchy
of the identified senses.

Soft clustering approaches (Reinberger and
Spyns, 2004; Reinberger et al., 2003) have also been
applied to taxonomy learning to deal with polysemy.
These methods associate each verb with a vector of
features, where each feature is a noun appearing as
a subject or object of that verb. That way a noun can
appear in different vectors, hence in different clus-
ters during hierarchical clustering as a result of its
polysemy. However, the underlying assumption is
that a verb is monosemous with respect to its associ-
ated vector of nouns. This assumption is not always
valid and can cause the problems mentioned above.

Other work in taxonomy learning exploits the
head/modifier relationships to create taxonomic re-
lations (Buitelaar et al., 2004; Hwang, 1999;
Sánchez and Moreno, 2005). These relations are
used to create: (1) a class (concept) for each head,
and (2) subclasses by adding nominal or adjectival
modifiers. For example, credit card IS-A card. The
corresponding hyponymy relations are learned at the
lexical level disregarding word polysemy. Some of
these approaches identified the problem of polysemy
and applied sense disambiguation with respect to
WordNet in order to capture the different senses of a
target term (Navigli and Velardi, 2004b; Navigli and
Velardi, 2004a). Specifically, the taxonomy built by
exploiting head/modifiers relations was modified ac-
cording to WordNet’s hyponymy relations between
senses of disambiguated terms. One important de-
ficiency of using sense disambiguation is that dic-
tionaries miss many domain-specific senses. Addi-
tionally, the fixed-list of senses paradigm prohibits
learning word senses according to their use in con-
text. The use of sense induction we propose in this
paper aims to overcome these limitations.

3 Method

Given a set of words W , a WSI method is applied
to each wi ∈ W (Section 3.1). The outcome of the
first stage is a set of senses, S, where each swi ∈ S
denotes the i-th sense of word w ∈ W . This set

Figure 2: WSI for network & LAN

of senses is the input to hierarchical clustering that
produces a hierarchy of senses (Section 3.2).

3.1 Word sense induction

WSI is the task of identifying the senses of a tar-
get word in a given text. Recent WSI methods
were evaluated under the framework of SemEval-
2007 WSI task (SWSI) (Agirre and Soroa, 2007).
The evaluation framework defines two types of as-
sessment, i.e. evaluation in: (1) a clustering and
(2) a WSD setting. Based on this evaluation, we se-
lected the method of Klapaftis & Manandhar (2008)
(henceforth referred to as KM) that achieves high F-
score in both evaluation schemes as compared to the
systems participating in SWSI. We briefly describe
KM mentioning its parameters used in our evalua-
tion (Section 4). Figures 2 (a) and 2 (b) describe the
different steps for inducing the senses of the target
words network and LAN.

Corpus preprocessing: The input to KM is a
base corpus bc, in which the target word w appears
in each paragraph. In Figure 2 (a), the base cor-
pus consists of the paragraphs A, B, C and D. The
aim of this stage is to capture nouns contextually
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related to w. Initially, the target word is removed
from bc, part-of-speech tagging is applied to each
paragraph, only nouns are kept and lemmatised. In
the next step, the distribution of each noun is com-
pared to the distribution of the same noun in a ref-
erence corpus2 using the log-likelihood ratio (G2)
(Dunning, 1993). Nouns with a G2 below a pre-
specified threshold (parameter p1) are removed from
each paragraph. Figure 2 (a) shows the remaining
nouns for each paragraph of bc.

Graph creation & clustering: In the setting of
KM, a collocation is a juxtaposition of two nouns
within the same paragraph. Thus, each noun is com-
bined with any other noun yielding a total of

(
N
2

)
collocations for a paragraph with N nouns. Each
collocation, cij , is assigned a weight that measures
the relative frequency of two nouns co-occurring.
This weight is the average of the conditional prob-
abilities p(ni|nj) and p(nj |ni), where p(ni|nj) =
f(cij)
f(nj)

, f(cij) is the number of paragraphs nouns ni,
nj co-occur and f(nj) is the number of paragraphs
in which nj appears. Collocations are filtered with
respect to their frequency (parameter p2) and weight
(parameter p3). Each retained collocation is rep-
resented as a vertex. Edges between vertices are
present, if two collocations co-occur in one or more
paragraphs. Figure 2 (a) shows that this process has
generated 24 collocations for the target word net-
work. On the top right of the figure we also observe
the collocations associated with each paragraph.

In the next step, a smoothing technique is applied
to discover new edges between vertices. The weight
applied to each edge connecting vertices vi and vj
(collocations cab, cde) is the maximum of their con-
ditional probabilities (max(p(cab|cde), p(cde|cab))).
Finally, the graph is clustered using Chinese whis-
pers (Biemann, 2006). The final output is a set of
senses, each one represented by a set of contextually
related collocations. In Figure 2, we generated two
senses for network and one sense for LAN.

3.2 Hierarchical clustering of senses

Given the set of senses S, our task at this point is to
hierarchically classify the senses using HAC. Con-
sider for example the words network and LAN, and

2The British National Corpus, 2001, Distributed by Oxford
University Computing Services.

Senses computer meshwork LAN
network

computer network 1 0.0 0.66
meshwork 0.0 1 0.14
LAN 0.66 0.14 1

Table 1: Similarity matrix for HAC.

Figure 3: WSI & HAC example

let us assume that the WSI process has generated
the senses in Figures 2 (a) and 2 (b). HAC oper-
ates by treating each sense as a singleton cluster and
then successively merging the most similar clusters
according to a pre-defined similarity function. This
process iterates until all clusters have been merged
into a single cluster taken to be the root.

To calculate the pairwise similarities between
senses we exploit the attributes that represent each
sense, i.e. their collocations. Let BC be the cor-
pus resulting from the union of the base corpora of
all words in W . In our example, BC would consist
of the paragraphs, in which the words network and
LAN appear, i.e. A, B, ..., G. An induced sense tags
a paragraph, if one or more of its collocations ap-
pear in that paragraph. Thus, each induced sense is
associated with a set of paragraph labels that denote
the paragraphs tagged by that sense. Figure 3 shows
the paragraph labels tagged by each sense of our ex-
ample. Finally, given two senses sai , sbi and their
corresponding sets of tagged paragraphs fai and f bi ,
we use the Jaccard coefficient to calculate their sim-
ilarity, i.e. JC(sai , s

b
i) = |fa

i ∩fb
i |

|fa
i ∪fb

i |
, where skj denotes

the j-th sense of word k. The resulting similarity
matrix of our example is shown in Table 1. Given
that matrix, HAC would first group computer net-
work and LAN as they have the highest similarity
(Figure 3). In the final iteration, the remaining two
clusters (Cluster 1 & meshwork) would be grouped
to the root.

An important parameter of HAC is the choice
of the technique for calculating cluster similarities.
Note that as we move towards the higher levels of

85



the taxonomy clusters contain more than one sets of
tagged paragraphs (Figure 3 - Cluster 1), hence the
choice of the similarity function is crucial. We ex-
periment with three techniques, i.e. single-linkage,
complete-linkage and average-linkage. The first one
defines the similarity between two clusters as the
maximum similarity among all the pairs of their cor-
responding feature sets. The second considers the
minimum similarity among all the pairs, while the
third calculates the average similarity of all the pairs.

4 Evaluation

We evaluate our method with respect to two
WordNet-derived sub-taxonomies (Section 4.3). For
that reason, it is necessary to map the induced senses
to WordNet before applying HAC. Note that the
mapping process might map more than one induced
senses to the same WordNet sense. In that case,
these induced senses are merged to a single one
along with their corresponding collocations.

4.1 Mapping WSI clusters to WordNet senses

The process of mapping the induced senses to Word-
Net is straightforward. Let w ∈ W be a word with
n senses in WordNet. A WordNet sense i of w is de-
noted bywswi , i = [1, n]. Let us also assume that the
WSI method has produced m senses for w, where
each sense j is denoted as swj , j = [1,m]. Each in-
duced sense swj is associated with a set of features
fwj as in the previous section. These features are the
paragraphs (paragraph labels) of BC tagged by swj .
In the next step, each WordNet sense wswi is associ-
ated with its WordNet signature gwi that contains the
following semantic features: hypernyms/hyponyms,
meronyms/holonyms and synonyms of wswi . For
example, the signature of the fifth WordNet sense
of network would contain internet, cyberspace and
other semantically related words. Table 2 shows par-
tial signatures for each sense of network.

The signature gwi is used to formalise the Word-
Net sense wswi as a set of features qwi . These fea-
tures are the paragraphs (paragraph labels) of BC
that contain one or more of the aforementioned se-
mantically related to wswi words that exist in gwi .
Given an induced sense swj , a similarity score is cal-
culated between swj and each WordNet sense of w.
The maximum score determines the WordNet sense

WordNet sense Semantically related words/phrases
1 reticulum, RF, RAS
2 communication system/equipment
3 gauze, snood, tulle
4 reseau, reticle, reticulation
5 net, internet, cyberspace

Table 2: Semantically related words/phrases to network

label that will be assigned to swj , i.e. label(swj ) =
argmaxi JC(fwj , q

w
i ), where JC is the Jaccard sim-

ilarity coefficient. In the example of Figure 2 (a),
the computer network sense would be mapped to the
fifth WordNet sense of network, since there is a sig-
nificant overlap between the paragraphs tagged by
the induced and that WordNet sense.

4.2 Evaluation measures

For the purposes of this section we present one gold
standard taxonomy (Figure 1 (a)) and a second de-
rived from our method (Figure 1 (b)). The compari-
son of these taxonomies is based on the semantic co-
topy of a node, which has also been used in (Maed-
che and Staab, 2002; Cimiano et al., 2005). In par-
ticular, the semantic cotopy of a node is defined as
the set of all its super- and subnodes excluding the
root and including that node. For example, the se-
mantic cotopy of computer network in Figure 1 (a)
is {computer network, internet, LAN}. There are
two issues, which make the evaluation difficult.

The first one is that HAC produces a taxonomy in
which all internal nodes are unlabelled, as opposed
to the gold standard taxonomy. In Figure 1 (b), we
have manually labelled internal nodes with their IDs
for clarity. For example, the semantic cotopy of the
node New Cluster 1 in Figure 1 (b) is {computer net-
work, internet, LAN, New Cluster 1, New Cluster
0}. By comparing the cotopies of nodes computer
network in Figure 1 (a) and New Cluster 1 in Fig-
ure 1 (b), we observe that the automatic method has
successfully grouped all of the hypernyms and hy-
ponyms of computer network under New Cluster 1.
However, the corresponding cotopies are not iden-
tical, because the cotopy of New Cluster 1 also in-
cludes the labels produced by HAC.

To deal with this problem, we use a version of se-
mantic cotopy for nodes in the automatically learned
taxonomy which excludes nodes that do not exist in
WordNet. That way the semantic cotopies of New
Cluster 1 in Figure 1 (b) and computer network in
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Figure 1 (a) will yield maximum similarity.
The second issue is that the nodes that exist in the

gold standard taxonomy are leaf nodes in the auto-
matically learned taxonomy. As a result, the seman-
tic cotopy of LAN in Figure 1 (b) is {LAN} since
all of its supernodes do not exist in WordNet. In
contrast, the semantic cotopy of LAN in Figure 1
(a) is {LAN, computer network}. We observe that
there is an overlap between the two cotopies derived
by the existence of the same concept in both tax-
onomies, i.e. LAN. In fact, all of the leaf nodes of
a learned taxonomy will have a small overlap with
the corresponding concept in the gold standard. For
this problem, we observe that in our automatically
learned taxonomies it does not make sense to cal-
culate the semantic cotopy of leaf nodes. On the
contrary, we need to evaluate the internal nodes that
group the leaf nodes. Let us assume the following
notation:
TA = automatically learned taxonomy
ηi = node in a taxonomy
C(TA) = internal nodes + leaf nodes of TA
I(TA) = internal nodes of TA
TG = gold standard taxonomy
C(TG) = internal nodes + leaf nodes of TG
I(TG) = internal nodes of TG
hyper(ηi) = supernodes of ηi excluding the root
hypo(ηi) = subnodes of ηi including ηi
For ηi ∈ I(TA), the semantic cotopy is defined as:
SC ′(ηi) = (hyper(ηi) ∪ hypo(ηi)) ∩ C(TG)
For ηi ∈ C(TG), the semantic cotopy is defined as:
SC ′′(ηi) = (hyper(ηi) ∪ hypo(ηi))

P (ηi, ηj) =
|SC ′(ηi) ∩ SC ′′(ηj)|

|SC ′(ηi)|
(1)

R(ηi, ηj) =
|SC ′(ηi) ∩ SC ′′(ηj)|

|SC ′′(ηj)|
(2)

F (ηi, ηj) =
2P (ηi, ηj)R(ηi, ηj)
P (ηi, ηj) +R(ηi, ηj)

(3)

Precision, recall and harmonic mean of node ηi ∈
I(TA) with respect to node ηj ∈ C(TG) are de-
fined in Equations 1, 2 and 3. The F-score, FS, of
node ηi ∈ I(TA) is the maximum F attained at any
ηj ∈ C(TG) (FS(ηi) = argmaxj F (ηi, ηj)). Fi-
nally, the similarity TS of the entire taxonomy to
the gold standard taxonomy is the average of the
F-scores of each ηi ∈ I(TA) (Equation 4). The

TS(TA, TG) in Figure 1 is 0.9. All nodes of TA
have a perfect match, apart from New Cluster 0 and
New Cluster 2, which are matched against computer
network and meshwork respectively, having a per-
fect precision but a lower recall since the cotopies
of computer network and meshwork consist of three
concepts. The automatically learned taxonomy has
two redundant clusters that decrease its similarity.

TS(TA, TG) =
1

|I(TA)|
∑

ηi∈I(TA)

FS(ηi) (4)

The similarity measure TS(TA, TG) provides the
similarity of the automatically learned taxonomy to
the gold standard one, but it is not symmetric. Cal-
culating the taxonomic similarity one way might not
provide accurate results, in cases where TA misses
senses of the gold standard. This is due to the
fact that we would only evaluate the internal nodes
of TA, partially ignoring the fact that TA might
have missed some parts of the gold standard taxon-
omy. For that reason, we also calculate TS(TG, TA)
which provides the similarity of the gold standard
taxonomy to the automatically learned one. Fi-
nally, taxonomic similarities are combined to pro-
duce their harmonic mean (Equation 5).

TxSm(TA, TG) =
2TS(TG, TA)TS(TA, TG)
TS(TG, TA) + TS(TA, TG)

(5)

4.3 Evaluation datasets & setting
The first gold standard taxonomy is derived by ex-
tracting from WordNet all the hyponyms of the
senses of the word network. The extracted taxonomy
contains 29 senses linguistically realized by 24 word
sets (one sense might be expressed with more than
one words), since network has 5 senses and reseau
has 2 senses in the gold standard taxonomy. Note
that we have disregarded senses only expressed by
multiword expressions. The average polysemy of
words is around 1.7. The second taxonomy is de-
rived by extracting the concepts under the senses of
the word speaker. The speaker taxonomy contains
52 senses linguistically realized by 50 word sets,
since speaker has 3 senses included in the taxonomy.
The average polysemy of words is around 1.58.

To create our datasets3 we use the Yahoo! search
api4. For each word w in each of the datasets, we is-

3Available in http://www.cs.york.ac.uk/aig/projects/indect/taxlearn
4http://developer.yahoo.com/search/ [Accessed:10/06/2009]
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Parameter Range
G2 threshold (p1) 5,10
Collocation frequency (p2) 4,6,8
Collocation weight (p3) 0.1,0.2,0.3,0.4

Table 3: Chosen parameters for the KM WSI method.

sue a query to Yahoo! that contains w and we down-
load a maximum of 1000 pages. In cases where
a particular sense is expressed by more than one
word, the query was formulated by including all the
words and putting the keyword OR between them.
For each page we extracted fragments of text (para-
graphs) that occur in <p> </p> html tags. We ex-
tracted 58956 and 78691 paragraphs for the network
and speaker dataset respectively. The reason we ex-
tracted on average less content for the second dataset
was that Yahoo! provided a small number of results
for rare words such as alliterator, anecdotist, etc.

Table 3 shows the parameter ranges for the WSI
method. Our method is evaluated according to these
parameters. Our first baseline is RAND, which per-
forms a random hierarchical clustering of senses to
produce a binary tree. In each iteration two clusters
are randomly chosen and form a new cluster, until
we end up with one cluster taken to be the root. The
performance of RAND is calculated by executing the
random algorithm 10 times and then averaging the
results. The second baseline is the taxonomy most
frequent sense baseline (TL MFS), in which we do
not perform WSI. Instead, given a parameter setting
and a word w, all the collocations of w are grouped
into one vector, which will possibly be dominated
by collocations related to the MFS of w. WordNet
mapping takes place and finally HAC with average-
linkage is applied to create the taxonomy.

4.4 Results & discussion

Figures 4 (a) and 4 (b) show the performance
of HAC with single-linkage (HAC SNG), average-
linkage (HAC AVG) and complete-linkage (HAC
CMP) against RAND for p1 = 5 and different com-
binations of p2 and p3. It is clear that HAC SNG and
HAC AVG outperform RAND by very large margins
under all parameter combinations. In the network
dataset, both of them achieve their highest distance
from RAND (27.84%) at p2 = 8 and p3 = 0.2. In the
speaker dataset, their highest distance from RAND
(20.97% and 19.63% respectively) is achieved at
p2 = 4 and p3 = 0.1. HAC CMP performs worse

than the other HAC versions, yet it clearly outper-
forms RAND in all but one parameter combinations
(p1 = 5, p2 = 6, p3 = 0.4) in the speaker dataset.

Generally, for collocation weight equal to 0.4 the
performance of all HAC versions drops. At this
high collocation weight the WSI method produces a
larger number of small clusters than in lower thresh-
olds. This issue negatively affects both the map-
ping process and HAC. For example in the speaker
dataset, for p1 = 5, p2 = 8 and p3 = 0.1 our tax-
onomies contained 86.54% of the gold standard tax-
onomy senses. Increasing the collocation weight to
0.2 did not have any effect, but increasing the weight
to 0.3 and then 0.4 led to 71.15% and 65.38% sense
coverage. Overall, our conclusion is that all HAC
versions exploit the WSI method and learn useful
information better than chance. The picture is the
same for p1 = 10.

Figures 4 (c) and 4 (d) show the performance of
HAC versions against the TL MFS baseline in the
same parameter setting as above. We observe that
both HAC SNG and HAC AVG perform significantly
better than TL MFS apart from p3 = 0.4, in which
case all HAC versions perform worse. In the network
dataset, the largest performance difference for HAC
SNG is 10.12% and for HAC AVG 9.9% at p2 = 6
and p3 = 0.2. In the speaker dataset, the largest per-
formance difference for HAC SNG is 10.83% and
for HAC AVG 7.83% at p2 = 8 and p3 = 0.2. HAC
CMP performs worse than TL MFS under most pa-
rameter settings in both datasets. The picture is the
same for p1 = 10.

Overall, the analysis of the WSI-based taxonomy
learning approach against TL MFS shows that HAC
SNG and HAC AVG perform better than TL MFS
under all parameter combinations for both datasets.
The main reason for their superior performance is
that their learned taxonomies contain a higher num-
ber of senses than TL MFS as a result of the sense
induction process. This greater sense coverage leads
to the discovery of a higher number of correct taxo-
nomic relations between senses than TL MFS, hence
in a better performance. To conclude, our results
verify our hypothesis and suggest that the unsuper-
vised learning of word senses contributes to produc-
ing taxonomies with a higher similarity to the gold
standard ones than traditional distributional similar-
ity methods.
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Figure 4: Performance analysis of the proposed method for p1 = 5 and different combinations of p2 and p3.

Despite that, our evaluation also shows that in
most cases HAC CMP is unable to exploit the in-
duced senses and performs worse than TL MFS,
HAC SNG and HAC AVG. This result was not ex-
pected, since HAC SNG employs a local criterion to
merge two clusters and does not consider the global
structure of the clusters, in effect, being biased to-
wards elongated clusters. The observation of the
gold standard taxonomies shows that they consist
both of cohyponym concepts which are expected
to be contextually related, but also of cohyponyms
which are not expected to appear in similar contexts.
For example, someone would expect a high similar-
ity between WAN, LAN, or between snood and tulle.
However, the same does not apply for snood and
cheesecloth or tulle and grillwork, because cheese-
cloth and grillwork appear in significantly different
contexts than snood and tulle. Despite that, all of
them are cohyponyms. This issue is more prevalent
in the speaker dataset, where concepts such as loud-
speaker, tannoy, woofer are expected to be contex-
tually related, while cohyponyms such as whisperer,
lecturer and interviewer are not. This means that the
gold standard taxonomies include elongated clusters
and explains the superior performance of HAC SNG.

This issue is not affecting HAC AVG, but it has a sig-
nificant effect on HAC CMP. Generally, HAC CMP
employs a non-local criterion by considering the di-
ameter of a candidate cluster. This results in com-
pact clusters with small diameters, as opposed to
elongated ones.

5 Conclusion

We presented an unsupervised method for taxonomy
learning that employs WSI to identify the senses of
target words and then builds a taxonomy of these
senses using HAC. We have shown that dealing with
polysemy by means of sense induction helps to de-
velop taxonomies that capture a higher number of
correct taxonomic relations than traditional distribu-
tional similarity methods, which associate each tar-
get word with one vector of features, in effect, merg-
ing its senses.
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