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Abstract

We show that the automatically induced latent
variable grammars of Petrov et al. (2006) vary
widely in their underlying representations, de-
pending on their EM initialization point. We
use this to our advantage, combining multiple
automatically learned grammars into an un-
weighted product model, which gives signif-
icantly improved performance over state-of-
the-art individual grammars. In our model,
the probability of a constituent is estimated as
a product of posteriors obtained from multi-
ple grammars that differ only in the random
seed used for initialization, without any learn-
ing or tuning of combination weights. Despite
its simplicity, a product of eight automatically
learned grammars improves parsing accuracy
from 90.2% to 91.8% on English, and from
80.3% to 84.5% on German.

1 Introduction

Learning a context-free grammar for parsing re-
quires the estimation of a more highly articulated
model than the one embodied by the observed tree-
bank. This is because the naive treebank grammar
(Charniak, 1996) is too permissive, making unreal-
istic context-freedom assumptions. For example, it
postulates that there is only one type of noun phrase
(NP), which can appear in all positions (subject, ob-
ject, etc.), regardless of case, number or gender. As
a result, the grammar can generate millions of (in-
correct) parse trees for a given sentence, and has a
flat posterior distribution. High accuracy grammars
therefore add soft constraints on the way categories
can be combined, and enrich the label set with addi-
tional information. These constraints can be lexical-
ized (Collins, 1999; Charniak, 2000), unlexicalized

(Johnson, 1998; Klein and Manning, 2003b) or au-
tomatically learned (Matsuzaki et al., 2005; Petrov
et al., 2006). The constraints serve the purpose of
weakening the independence assumptions, and re-
duce the number of possible (but incorrect) parses.

Here, we focus on the latent variable approach of
Petrov et al. (2006), where an Expectation Maxi-
mization (EM) algorithm is used to induce a hier-
archy of increasingly more refined grammars. Each
round of refinement introduces new constraints on
how constituents can be combined, which in turn
leads to a higher parsing accuracy. However, EM is a
local method, and there are no guarantees that it will
find the same grammars when initialized from dif-
ferent starting points. In fact, it turns out that even
though the final performance of these grammars is
consistently high, there are significant variations in
the learned refinements.

We use these variations to our advantage, and
treat grammars learned from different random seeds
as independent and equipotent experts. We use a
product distribution for joint prediction, which gives
more peaked posteriors than a sum, and enforces all
constraints of the individual grammars, without the
need to tune mixing weights. It should be noted here
that our focus is on improving parsing performance
using a single underlying grammar class, which is
somewhat orthogonal to the issue of parser combina-
tion, that has been studied elsewhere in the literature
(Sagae and Lavie, 2006; Fossum and Knight, 2009;
Zhang et al., 2009). In contrast to that line of work,
we also do not restrict ourselves to working with k-
best output, but work directly with a packed forest
representation of the posteriors, much in the spirit
of Huang (2008), except that we work with several
forests rather than rescoring a single one.
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In our experimental section we give empirical an-
swers to some of the remaining theoretical ques-
tions. We address the question of averaging versus
multiplying classifier predictions, we investigate dif-
ferent ways of introducing more diversity into the
underlying grammars, and also compare combining
partial (constituent-level) and complete (tree-level)
predictions. Quite serendipitously, the simplest ap-
proaches work best in our experiments. A product
of eight latent variable grammars, learned on the
same data, and only differing in the seed used in
the random number generator that initialized EM,
improves parsing accuracy from 90.2% to 91.8%
on English, and from 80.3% to 84.5% on German.
These parsing results are even better than those ob-
tained by discriminative systems which have access
to additional non-local features (Charniak and John-
son, 2005; Huang, 2008).

2 Latent Variable Grammars

Before giving the details of our model, we briefly
review the basic properties of latent variable gram-
mars. Learning latent variable grammars consists of
two tasks: (1) determining the data representation
(the set of context-free productions to be used in the
grammar), and (2) estimating the parameters of the
model (the production probabilities). We focus on
the randomness introduced by the EM algorithm and
refer the reader to Matsuzaki et al. (2005) and Petrov
et al. (2006) for a more general introduction.

2.1 Split & Merge Learning

Latent variable grammars split the coarse (but ob-
served) grammar categories of a treebank into more
fine-grained (but hidden) subcategories, which are
better suited for modeling the syntax of natural
languages (e.g. NP becomes NP1 through NPk).
Accordingly, each grammar production A→BC
over observed categories A,B,C is split into a set
of productions Ax→ByCz over hidden categories
Ax,By,Cz. Computing the joint likelihood of the ob-
served parse treesT and sentencesw requires sum-
ming over all derivationst over split subcategories:

∏

i

P(wi, Ti) =
∏

i

∑

t:Ti

P(wi, t) (1)

Matsuzaki et al. (2005) derive an EM algorithm
for maximizing the joint likelihood, and Petrov et

al. (2006) extend this algorithm to use a split&merge
procedure to adaptively determine the optimal num-
ber of subcategories for each observed category.
Starting from a completely markovized X-Bar gram-
mar, each category is split in two, generating eight
new productions for each original binary production.
To break symmetries, the production probabilities
are perturbed by 1% of random noise. EM is then
initialized with this starting point and used to climb
the highly non-convex objective function given in
Eq. 1. Each splitting step is followed by a merging
step, which uses a likelihood ratio test to reverse the
least useful half of the splits. Learning proceeds by
iterating between those two steps for six rounds. To
prevent overfitting, the production probabilities are
linearly smoothed by shrinking them towards their
common base category.

2.2 EM induced Randomness

While the split&merge procedure described above
is shown in Petrov et al. (2006) to reduce the vari-
ance in final performance, we found after closer
examination that there are substantial differences
in the patterns learned by the grammars. Since
the initialization is not systematically biased in any
way, one can obtain different grammars by simply
changing the seed of the random number genera-
tor. We trained 16 different grammars by initial-
izing the random number generator with seed val-
ues 1 through 16, but without biasing the initial-
ization in any other way. Figure 1 shows that the
number of subcategories allocated to each observed
category varies significantly between the different
initialization points, especially for the phrasal cate-
gories. Figure 2 shows posteriors over the most fre-
quent subcategories given their base category for the
first four grammars. Clearly, EM is allocating the la-
tent variables in very different ways in each case.

As a more quantitative measure of difference,1 we
evaluated all 16 grammars on sections 22 and 24 of
the Penn Treebank. Figure 3 shows the performance
on those two sets, and reveals that there is no single
grammar that achieves the best score on both. While
the parsing accuracies are consistently high,2 there

1While cherry-picking similarities is fairly straight-forward,
it is less obvious how to quantify differences.

2Note that despite their variance, the performance is always
higher than the one of the lexicalized parser of Charniak (2000).
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Figure 1: There is large variance in the number of subcat-
egories (error bars correspond to one standard deviation).

is only a weak correlation between the accuracies
on the two evaluation sets (Pearson coefficient 0.34).
This suggests that no single grammar should be pre-
ferred over the others. In previous work (Petrov et
al., 2006; Petrov and Klein, 2007) the final grammar
was chosen based on its performance on a held-out
set (section 22), and corresponds to the second best
grammar in Figure 3 (because only 8 different gram-
mars were trained).

A more detailed error analysis is given in Fig-
ure 4, where we show a breakdown of F1 scores for
selected phrasal categories in addition to the overall
F1 score and exact match (on the WSJ development
set). While grammar G2 has the highest overall F1
score, its exact match is not particularly high, and
it turns out to be the weakest at predicting quanti-
fier phrases (QP). Similarly, the performance of the
other grammars varies between the different error
measures, indicating again that no single grammar
dominates the others.

3 A Simple Product Model

It should be clear by now that simply varying the
random seed used for initialization causes EM to
discover very different latent variable grammars.
While this behavior is worrisome in general, it turns
out that we can use it to our advantage in this partic-
ular case. Recall that we are using EM to learn both,
the data representation, as well as the parameters of
the model. Our analysis showed that changing the
initialization point results in learning grammars that
vary quite significantly in the errors they make, but
have comparable overall accuracies. This suggests
that the different local maxima found by EM corre-
spond to different data representations rather than to
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Figure 2: Posterior probabilities of the eight most fre-
quent hidden subcategories given their observed base cat-
egories. The four grammars (indicated by shading) are
populating the subcategories in very different ways.

suboptimal parameter estimates.
To leverage the strengths of the individual gram-

mars, we combine them in a product model. Product
models have the nice property that their Kullback-
Liebler divergence from the true distribution will
always be smaller than the average of the KL di-
vergences of the individual distributions (Hinton,
2001). Therefore, as long as no individual gram-
mar Gi is significantly worse than the others, we can
only benefit from combining multiple latent variable
grammars and searching for the tree that maximizes

P(T |w) ∝
∏

i

P(T |w, Gi) (2)

Here, we are making the assumption that the individ-
ual grammars are conditionally independent, which
is of course not true in theory, but holds surprisingly
well in practice. To avoid this assumption, we could
use a sum model, but we will show in Section 4.1
that the product formulation performs significantly
better. Intuitively speaking, products have the ad-
vantage that the final prediction has a high poste-
rior underall models, giving each model veto power.
This is exactly the behavior that we need in the case
of parsing, where each grammar has learned differ-
ent constraints for ruling out improbable parses.

3.1 Learning

Joint training of our product model would couple the
parameters of the individual grammars, necessitat-
ing the computation of an intractable global parti-
tion function (Brown and Hinton, 2001). Instead,
we use EM to train each grammar independently,
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Figure 3: Parsing accuracies for grammars learned from
different random seeds. The large variance and weak cor-
relation suggest that no single grammar is to be preferred.

but from a different, randomly chosen starting point.
To emphasize, we do not introduce any systematic
bias (but see Section 4.3 for some experiments), or
attempt to train the models to be maximally dif-
ferent (Hinton, 2002) – we simply train a random
collection of grammars by varying the random seed
used for initialization. We found in our experiments
that the randomness provided by EM is sufficient
to achieve diversity among the individual grammars,
and gives results that are as good as more involved
training procedures. Xu and Jelinek (2004) made
a similar observation when learning random forests
for language modeling.

Our model is reminiscent of Logarithmic Opinion
Pools (Bordley, 1982) and Products of Experts (Hin-
ton, 2001).3 However, because we believe that none
of the underlying grammars should be favored, we
deliberately do not use any combination weights.

3.2 Inference

Computing the most likely parse tree is intractable
for latent variable grammars (Sima’an, 2002), and
therefore also for our product model. This is because
there are exponentially many derivations over split
subcategories that correspond to a single parse tree
over unsplit categories, and there is no dynamic pro-
gram to efficiently marginalize out the latent vari-
ables. Previous work on parse risk minimization has
addressed this problem in two different ways: by
changing the objective function, or by constraining

3As a matter of fact, Hinton (2001) mentions syntactic pars-
ing as one of the motivating examples for Products of Experts.

G1
G2
G3
G4

P

90% 91.5% 93%

F1 Score
G1
G2
G3
G4

P

40% 45% 50%

Exact Match

G1
G2
G3
G4

P

91% 93% 95%

NP
G1
G2
G3
G4

P

90% 92% 94%

VP

G1
G2
G3
G4

P

85% 88% 91%

PP
G1
G2
G3
G4

P

90% 92.5% 95%

QP

Figure 4: Breakdown of different accuracy measures for
four randomly selected grammars (G1-G4), as well as a
product model (P) that uses those four grammars. Note
that no single grammar does well on all measures, while
the product model does significantly better on all.

the search space (Goodman, 1996; Titov and Hen-
derson, 2006; Petrov and Klein, 2007).

The simplest approach is to stick to likelihood as
the objective function, but to limit the search space
to a set of high quality candidatesT :

T ∗ = argmax
T∈T

P(T |w) (3)

Because the likelihood of a given parse tree can be
computed exactly for our product model (Eq. 2), the
quality of this approximation is only limited by the
quality of the candidate list. To generate the candi-
date list, we produce k-best lists of Viterbi deriva-
tions with the efficient algorithm of Huang and Chi-
ang (2005), and erase the subcategory information
to obtain parse trees over unsplit categories. We re-
fer to this approximation as TREE-LEVEL inference,
because it considers a list of complete trees from
the underlying grammars, and selects the tree that
has the highest likelihood under the product model.
While the k-best lists are of very high quality, this is
a fairly crude and unsatisfactory way of approximat-
ing the posterior distribution of the product model,
as it does not allow the synthesis of new trees based
on tree fragments from different grammars.

An alternative is to use a tractable objective func-
tion that allows the efficient exploration of the entire
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Figure 5: Grammar G1 has a preference for flat structures, while grammar G2 prefers deeper hierarchical structures.
Both grammars therefore make one mistake each on their own. However, the correct parse tree (which uses a flat
ADJP in the first slot and a hierarchical NP in the second) scores highest under the product model.

search space. Petrov and Klein (2007) present such
an objective function, which maximizes the product
of expected correct productionsr:

T ∗ = argmax
T

∏

r∈T

E(r|w) (4)

These expectations can be easily computed from the
inside/outside scores, similarly as in the maximum
bracket recall algorithm of Goodman (1996), or in
the variational approximation of Matsuzaki et al.
(2005). We extend the algorithm to work over poste-
rior distributions from multiple grammars, by aggre-
gating their expectations into a product. In practice,
we use a packed forest representation to approxi-
mate the posterior distribution, as in Huang (2008).
We refer to this approximation as CONSTITUENT-
LEVEL, because it allows us to form new parse trees
from individual constituents.

Figure 5 illustrates a real case where the prod-
uct model was able to construct a completely correct
parse tree from two partially correct ones. In the ex-
ample, one of the underlying grammars (G1) had an
imperfect recall score, because of its preference for
flat structures (it missed an NP node in the second
part of the sentence). In contrast, the other gram-
mar (G2) favors deeper structures, and therefore in-
troduced a superfluous ADVP node. The product
model gives each underlying grammar veto power,
and picks the least controversial tree (which is the
correct one in this case). Note that a sum model al-
lows the most confident model to dominate the de-

cision, and would chose the incorrect hierarchical
ADJP construction here (as one can verify using the
provided model scores).

To make inference efficient, we can use the
same coarse-to-fine pruning techniques as Petrov
and Klein (2007). We generate a hierarchy of pro-
jected grammars for each individual grammar and
parse with each one in sequence. Because only the
very last pass requires scores from the different un-
derlying grammars, this computation can be trivially
parallelized across multiple CPUs. Additionally, the
first (X-Bar) pruning pass needs to be computed
only once because it is shared among all grammars.
Since the X-Bar pass is the bottleneck of the multi-
pass scheme (using nearly 50% of the total process-
ing time), the overhead of using a product model is
quite manageable. It would have also been possi-
ble to use A*-search for factored models (Klein and
Manning, 2003a; Sun and Tsujii, 2009), but we did
not attempt this in the present work.

4 Experiments

In our experiments, we follow the standard setups
described in Table 1, and use the EVALB tool for
computing parsing figures. Unless noted other-
wise, we use CONSTITUENT-LEVEL inference. All
our experiments are based on the publicly available
BerkeleyParser.4

4http://code.google.com/p/berkeleyparser
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Training Set Dev. Set Test Set
ENGLISH-WSJ Sections

Section 22 Section 23
(Marcus et al., 1993) 2-21
ENGLISH-BROWN see 10% of 10% of the
(Francis et al. 1979) ENGLISH-WSJ the data5 the data5

GERMAN Sentences Sentences Sentences
(Skut et al., 1997) 1-18,602 18,603-19,60219,603-20,602

Table 1: Corpora and standard experimental setups.

4.1 (Weighted) Product vs. (Weighted) Sum

A great deal has been written on the topic of prod-
ucts versus sums of probability distributions for joint
prediction (Genest and Zidek, 1986; Tax et al.,
2000). However, those theoretical results do not
apply directly here, because we are using multi-
ple randomly permuted models from the same class,
rather models from different classes. To shed some
light on this issue, we addressed the question em-
pirically, and combined two grammars into an un-
weighted product model, and also an unweighted
sum model. The individual grammars had parsing
accuracies (F1) of 91.2 and 90.7 respectively, and
their product (91.7) clearly outperformed their sum
(91.3). When more grammars are added, the gap
widens even further, and the trends persist indepen-
dently of whether the models use TREE-LEVEL or
CONSTITUENT-LEVEL inference. At least for the
case of unweighted combinations, the product dis-
tribution seems to be superior.

In related work, Zhang et al. (2009) achieve ex-
cellent results with a weighted sum model. Using
weights learned on a held-out set and rescoring 50-
best lists from Charniak (2000) and Petrov et al.
(2006), they obtain an F1 score of 91.0 (which they
further improve to 91.4 using a voting scheme). We
replicated their experiment, but used an unweighted
product of the two model scores. Using TREE-
LEVEL inference, we obtained an F1 score of 91.6,
suggesting that weighting is not so important in the
product case, as long as the classifiers are of compa-
rable quality.6 This is in line with previous work on
product models, where weighting has been impor-
tant when combining heterogenous classifiers (Hes-
kes, 1998), and less important when the classifiers
are of similar accuracy (Smith et al., 2005).

5See Gildea (2001) for the exact setup.
6The unweighted sum model, however, underperforms the

individual models with an F1 score of only 90.3.
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Figure 6: Adding more grammars to the product model
improves parsing accuracy, while CONSTITUENT-LEVEL

inference gives consistently better results.

4.2 Tree-Level vs. Constituent-Level Inference

Figure 6 shows that accuracy increases when more
grammars are added to the product model, but levels
off after eight grammars. The plot also compares
our two inference approximations, and shows that
CONSTITUENT-LEVEL inference results in a small
(0.2), but consistent improvement in F1 score.

A first thought might be that the improvement is
due to the limited scope of the k-best lists. How-
ever, this is not the case, as the results hold even
when the candidate set for CONSTITUENT-LEVEL

inference is constrained to trees from the k-best lists.
While the packed forrest representation can very ef-
ficiently encode an exponential set of parse trees, in
our case the k-best lists appear to be already very di-
verse because they are generated by multiple gram-
mars. Starting at 96.1 for a single latent variable
grammar, merging two 50-best lists from different
grammars gives an oracle score of 97.4, and adding
more k-best lists further improves the oracle score to
98.6 for 16 grammars. This compares favorably to
the results of Huang (2008), where the oracle score
over a pruned forest is shown to be 97.8 (compared
to 96.7 for a 50-best list).

The accuracy improvement can instead be ex-
plained by the change in the objective function. Re-
call from section Section 3.2, that CONSTITUENT-
LEVEL inference maximizes the expected number
of correct productions, while TREE-LEVEL infer-
ence maximizes tree-likelihood. It is therefore not
too surprising that the two objective functions se-
lect the same tree only 41% of the time, even when
limited to the same candidate set. Maximizing the
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expected number of correct productions is superior
for F1 score (see the one grammar case in Figure 6).
However, as to be expected, likelihood is better for
exact match, giving a score of 47.6% vs. 46.8%.

4.3 Systematic Bias

Diversity among the underlying models is what
gives combined models their strength. One way of
increasing diversity is by modifying the feature sets
of the individual models (Baldridge and Osborne,
2008; Smith and Osborne, 2007). This approach
has the disadvantage that it reduces the performance
of the individual models, and is not directly appli-
cable for latent variable grammars because the fea-
tures are automatically learned. Alternatively, one
can introduce diversity by changing the training dis-
tribution. Bagging (Breiman, 1996) and Boosting
(Freund and Shapire, 1996) fall into this category,
but have had limited success for parsing (Hender-
son and Brill, 2000). Furthermore boosting is im-
practical here, because it requires training dozens of
grammars in sequence.

Since training a single grammar takes roughly one
day, we opted for a different, parallelizable way of
changing the training distribution. In a first exper-
iment, we divided the training set into two disjoint
sets, and trained separate grammars on each half.
These truly disjoint grammars had low F1 scores
of 89.4 and 89.6 respectively (because they were
trained on less data). Their combination unfortu-
nately also achieves only an accuracy of 90.9, which
is lower than what we get when training a single
grammar on the entire training set. In another exper-
iment, we used a cross-validation setup where indi-
vidual sections of the treebank were held out. The
resulting grammars had parsing accuracies of about
90.5, and the product model was again not able to
overcome the lower starting point, despite the poten-
tially larger diversity among the underlying gram-
mars. It appears that any systematic bias that lowers
the accuracy of the individual grammars also hurts
the final performance of the product model.

4.4 Product Distribution as Smoothing

Smith et al. (2005) interpret Logarithmic Opinion
Pools (LOPs) as a smoothing technique. They
compare regularizing Conditional Random Fields
(CRFs) with Gaussian priors (Lafferty et al., 2001),

to training a set of unregularized CRFs over differ-
ent feature sets and combining them in an LOP. In
their experiments, both approaches work compara-
bly well, but their combination, an LOP of regular-
ized CRFs works best.

Not too surprisingly, we find this to be the case
here as well. The parameters of each latent vari-
able grammar are typically smoothed in a linear
fashion to prevent excessive overfitting (Petrov et
al., 2006). While all the experiments so far used
smoothed grammars, we reran the experiments also
with a set of unsmoothed grammars. The individ-
ual unsmoothed grammars have on average an 1.2%
lower accuracy. Even though our product model
is able to increase accuracy by combining multiple
grammars, the gap to the smoothed models remains
consistent. This suggests that the product model is
doing more than just smoothing. In fact, because the
product distribution is more peaked, it seems to be
doing the opposite of smoothing.

4.5 Final Results

Our final model uses an unweighted product of eight
grammars trained by initializing the random number
generator with seeds 1 through 8. Table 2 shows
our test set results (obtained with CONSTITUENT-
LEVEL inference), and compares them to related
work. There is a large body of work that has re-
ported parsing accuracies for English, and we have
grouped the different methods into categories for
better overview.

Our results on the English in-domain test set are
higher than those obtained by any single component
parser (SINGLE). The other methods quoted in Ta-
ble 2 operate over the output of one or more single
component parsers and are therefore largely orthog-
onal to our line of work. It is nonetheless exciting
to see that our product model is competitive with
the discriminative rescoring methods (RE) of Char-
niak and Johnson (2005) and Huang (2008), achiev-
ing higher F1 scores but lower exact match. These
two methods work on top of the Charniak (2000)
parser, and it would be possible to exchange that
parser with our product model. We did not attempt
this experiment, but we expect that those methods
would stack well with our model, because they use
primarily non-local features that are not available in
a context-free grammar.
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Techniques like self-training (SELF) and system
combinations (COMBO) can further improve pars-
ing accuracies, but are also orthogonal to our work.
In particular the COMBO methods seem related to
our work, but are very different in their nature.
While we use multiple grammars in our work, all
grammars are from the same model class for us. In
contrast, those methods rely on a diverse set of in-
dividual parsers, each of which requires a signifi-
cant effort to build. Furthermore, those techniques
have largely relied on different voting schemes in the
past (Henderson and Brill, 1999; Sagae and Lavie,
2006), and only more recently have started using ac-
tual posteriors from the underlying models (Fossum
and Knight, 2009; Zhang et al., 2009). Even then,
those methods operate only over k-best lists, and we
are the first to work directly with parse forests from
multiple grammars.

It is also interesting to note that the best results
in Zhang et al. (2009) are achieved by combining k-
best lists from a latent variable grammar of Petrov
et al. (2006) with the self-trained reranking parser of
McClosky et al. (2006). Clearly, replacing the sin-
gle latent variable grammar with a product of latent
variable grammars ought to improve performance.

The results on the other two corpora are similar.
A product of latent variable grammars very signifi-
cantly outperforms a single latent variable grammar
and sets new standards for the state-of-the-art.

We also analyzed the errors of the product mod-
els. In addition to the illustrative example in Fig-
ure 5, we computed detailed error metrics for differ-
ent phrasal categories. Figure 4 shows that a product
of four random grammars is always better than even
the best underlying grammar. The individual gram-
mars seem to learn different sets of constraints, and
the product model is able to model them all at once,
giving consistent accuracy improvements across all
metrics.

5 Conclusions

We presented a simple product model that signifi-
cantly improves parsing accuracies on different do-
mains and languages. Our model leverages multi-
ple automatically learned latent variable grammars,
which differ only in the seed of the random num-
ber generator used to initialize the EM learning al-

Ty
pe all sentences

Parser LP LR EX

ENGLISH-WSJ

This Paper 92.0 91.7 41.9

S
IN

G
L

E Charniak (2000) 89.9 89.5 37.2
Petrov and Klein (2007) 90.2 90.1 36.7
Carreras et al. (2008) 91.4 90.7 -

R
E Charniak et al. (2005) 91.8 91.2 44.8

Huang (2008) 92.2 91.2 43.5

S
E

L
F Huang and Harper (2009) 91.37 91.57 39.37

McClosky et al. (2006) 92.5 92.1 45.3

C
O

M
B

O Sagae and Lavie (2006) 93.2 91.0 -
Fossum and Knight (2009) 93.2 91.7 -
Zhang et al. (2009) 93.3 92.0 -

ENGLISH-BROWN

This Paper 86.5 86.3 35.8

S
IN

G Charniak (2000) 82.9 82.9 31.7
Petrov and Klein (2007) 83.9 83.8 29.6

R
E

Charniak et al. (2005) 86.1 85.2 36.8

GERMAN

This Paper 84.5 84.0 51.2
S

IN
G Petrov and Klein (2007) 80.0 80.2 42.4

Petrov and Klein (2008) 80.6 80.8 43.9

Table 2: Final test set accuracies for English and German.

gorithm. As our analysis showed, the grammars vary
widely, making very different errors. This is in part
due to the fact that EM is used not only for estimat-
ing the parameters of the grammar, but also to deter-
mine the set of context-free productions that under-
lie it. Because the resulting data representations are
largely independent, they can be easily combined in
an unweighted product model. The product model
does not require any additional training and is ca-
pable of significantly improving the state-of-the-art
in parsing accuracy. It remains to be seen if a sim-
ilar approach can be used in other cases where EM
converges to widely varying local maxima.
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