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Abstract

This paper describes an efficient method
to extract largen-best lists from a word
graph produced by a statistical machine
translation system. The extraction is based
on thek shortest paths algorithm which
is efficient even for very largek. We
show that, although we can generate large
amounts of distinct translation hypothe-
ses, these numerous candidates are not
able to significantly improve overall sys-
tem performance. We conclude that large
n-best lists would benefit from better dis-
criminating models.

1 Introduction

This paper investigates the properties of largen-
best lists in the context of statistical machine trans-
lation (SMT). We present a method that allows for
fast extraction of very largen-best lists based on
the k shortest paths algorithm by (Eppstein, 1998).
We will argue that, despite being able to generate a
much larger amount of hypotheses than previously
reported in the literature, there is no significant gain
of such a method in terms of translation quality.

In recent years, phrase-based approaches evolved
as the dominating method for feasible machine
translation systems. Many research groups use a de-
coder based on a log-linear approach incorporating
phrases as main paradigm (Koehn et al., 2003). As a
by-product of the decoding process, one can extract
n-best translations from a word graph and use these
fully generated hypotheses for additional reranking.

In the past, several groups report on usingn-best
lists with n ranging from 1 000 to 10 000. The ad-
vantage ofn-best reranking is clear: we can apply

complex reranking techniques, based e.g. on syntac-
tic analyses of the candidates or using huge addi-
tional language models, since the whole sentence is
already generated. During the generation process,
these models would either need hard-to-implement
algorithms or large memory requirements.

1.1 Related work

The idea ofn-best list extraction from a word graph
for SMT was presented in (Ueffing et al., 2002). In
(Zens and Ney, 2005), an improved method is re-
ported that overcomes some shortcomings, such as
duplicate removal by determinization of the word
graph (represented as a weighted finite state automa-
ton) and efficient rest-cost estimation with linear
time complexity.

There are several research groups that use a two-
pass approach in their MT systems. First, they gen-
eraten-best translation hypotheses with the decoder.
Second, they apply additional models to the out-
put and rerank the candidates (see e.g. (Chen et al.,
2006)).

Syntactic features were investigated in (Och et al.,
2004) with moderate success. Although complex
models, such as features based on shallow parsing or
treebank-based syntactic analyses, were applied to
then-best candidates, the “simpler” ones were more
promising (e.g. IBM model 1 on sentence-level).

In the following section 2, we describe our SMT
system and explain how an improvedn-best extrac-
tion method is capable of generating a very large
number of distinct candidates from the word graph.
In section 3, we show our experiments related to
n-best list reranking with various sizes and the cor-
responding performance in terms of MT evaluation
measures. Finally, we discuss the results in section 4
and give some conclusive remarks.
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2 Generating N-best lists

We use a phrase-based SMT system (Mauser et al.,
2006) and enhance then-best list extraction with
Eppstein’sk shortest path algorithm which allows
for generating a very large number of translation
candidates in an efficient way.

2.1 Baseline SMT system

The baseline system uses phrases automatically ex-
tracted from a word-aligned corpus (trained with
GIZA++) and generates the best translations using
weighted log-linear model combination with several
features, such as word lexicon, phrase translation
and language models. This direct approach is cur-
rently used by most state-of-the-art decoders. The
model scaling factors are trained discriminatively on
some evaluation measure, e.g. BLEU or WER, using
the simplex method.

2.2 N-best list extraction

We incorporated an efficient extraction ofn best
translations using thek shortest path algorithm
(Eppstein, 1998) into a state-of-the-art SMT system.
The implementation is partly based on code that is
publicly available.1

Starting point for the extraction is a word graph,
generated separately by the decoder for each sen-
tence. Since these word graphs are directed and
acyclic, it is possible to construct a shortest path tree
spanning from the sentence begin node to the end
node. The efficiency of finding thek shortest paths
in this tree lies in the book-keeping of edges through
a binary heap that allows for an implicit representa-
tion of paths. The overall performance of the algo-
rithm is efficient even for largek. Thus, it is feasi-
ble to use in situations where we want to generate a
large number of paths, i.e. translation hypotheses in
this context.

There is another issue that has to be addressed.
In phrase-based SMT, we have to deal with differ-
ent phrase segmentations for each sentence. Due to
the large number of phrases, it is possible that we
have paths through the word graph representing the
same sentence but internally having different phrase
boundaries. Inn-best list generation, we want to get
rid of these duplicates. Due to the efficiency of the
k shortest paths algorithm, we allow for generating
a very large number of hypotheses (e.g.100 · n) and

1http://www.ics.uci.edu/∼eppstein/pubs/
graehl.zip

then filter the output via a prefix tree (also called
trie) until we getn distinct translations.

With this method, it is feasible to generate
100 000-best lists without much hassle. In gen-
eral, the file input/output operations are more time-
consuming than the actualn-best list extraction.
The average generation time ofn-best candidates
for each of the sentences of the development list
is approximately 30 seconds on a 2.2GHz Opteron
machine, whereas 7.4 million hypotheses are com-
puted per sentence on average. The overall extrac-
tion time including filtering and writing to hard-disk
takes around 100 seconds per sentence. Note that
this value could be optimized drastically if checking
for how many duplicates are generated on average
beforehand and adjusting the initial number of hy-
potheses before applying the filtering. We only use
thek = 100 · n as a proof of concept.

2.3 Rescoring models

After having generated the 100 000-best lists, we
have to apply additional rescoring models to all hy-
potheses. We select the models that have shown
to improve overall translation performance as used
for recent NIST MT evaluations. In addition to the
main decoder score (which is already a combination
of several models and constitutes a strong baseline),
these include several large language models trained
on up to 2.5 billion running words, a sentence-level
IBM model 1 score,m-gram posterior probabilities
and an additional sentence length model.

3 Experiments

The experiments in this section are carried out onn-
best lists withn going up to 100 000. We will show
that, although we are capable of generating this large
amount of hypotheses, the overall performance does
not seem to improve significantly beyond a certain
threshold. Or to put it simple: although we generate
lots of hypotheses, most of them are not very useful.

As experimental background, we choose the large
data track of the Chinese-to-English NIST task,
since the length of the sentences and the large vo-
cabulary of the task allow for largen-best lists. For
smaller tasks, e.g. the IWSLT campaign, the domain
is rather limited such that it does not make sense
to generate lists reaching beyond several thousand
hypotheses. As development data, we use the 2002
eval set, whereas for test, the 2005 eval set is chosen.
The corpus statistics are shown in Table 1.
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Chinese English
Train Sentence Pairs 7M

Running Words 199M 213M
Vocabulary Size 222K 351K

Dev Sentence Pairs 878 3 512
Running Words 25K 105K

Test Sentence Pairs 1 082 4 328
Running Words 33K 148K

Table 1: Corpus statistics for the Chinese-English
NIST MT task.

3.1 Oracle-best hypotheses

In the first experiment, we examined the oracle-best
hypotheses in then-best lists for several list sizes.
For an efficient calculation of the true BLEU oracle
(the hypothesis which has a maximum BLEU score
when compared to the reference translations), we
use approximations based on WER/PER-oracles, i.e.
we extract the hypotheses that have the lowest edit
distance (WER, word error rate) to the references.
The same is applied by disregarding the word or-
der (leading to PER, position-independent word er-
ror rate).

As can be seen in Table 2, the improvements are
steadily decreasing, i.e. with increasing number of
generated hypotheses, there are less and less use-
ful candidates among them. For the first 10 000
candidates, we therefore have the possibility to find
hypotheses that could increase the BLEU score by
at least 8.3% absoluteif our models discriminated
them properly. For the next 90 000 hypotheses, there
is only a small potential to improve the whole sys-
tem by around 1%. This means that most of the
generated hypotheses are not very useful in terms of
oracle-WER and likely distracting the “search” for
the needle(s) in the haystack. It has been shown in
(Och et al., 2004) that true BLEU oracle scores on
lists with much smallern ≤ 4096 are more or less
linear inlog(n). Our results support this claim since
the oracle-WER/PER is a lower bound of the real
BLEU oracle. For the PER criterion, the behavior of
the oracle-best hypotheses is similar. Here we can
notice that after 10,000 hypotheses, the BLEU score
of the oracle-PER hypotheses stays the same.

These observations already impair the alleged
usefulness of a large amount of translation hypothe-
ses by showing that the overall possible gain with in-
creasingn gets disproportionately small if one puts
it in relation to the exponential growth of then.

Oracle-WER [%] Oracle-PER [%]
N BLEU abs. imp. BLEU abs. imp.
1 36.1 36.1
10 38.8 +2.7 38.0 +1.9
100 41.3 +2.5 39.8 +1.8
1000 43.3 +2.0 41.0 +1.2
10000 44.4 +1.1 42.0 +1.0
100000 45.3 +0.9 42.0 +0.0

Table 2: Dev BLEU scores of oracle-best hypothe-
ses based on minimum WER/PER.

3.2 Rescoring performance

As a next step, we show the performance of tuning
the model scaling factors towards best translation
performance. In our experiments, we use the BLEU
score as objective function of the simplex method.

Figure 1 shows the graphs for the development
(on the left) and test set (on the right). The up-
per graphs depict the oracle-WER BLEU scores (cf.
also Table 2) for comparison. As was already stated,
these are a lower bound since the real oracle-BLEU
hypotheses might have even higher scores. Still, it is
an indicator of what could be achieved if the models
discriminated good from bad hypotheses properly.

The lower two graphs show the behavior when
(a) optimizing and extracting hypotheses on a sub-
set (the firstn) of the 100k-best hypotheses and (b)
optimizing on a subset but extracting from the full
100k set. As can be seen, extracting from the full
set does not even help for the development data on
which the scaling factors were tuned. Experiments
on the test list show similar results. We can also
observe that the improvement declines rapidly with
highern. Note that an optimization on the full 100k
list was not possible due to huge memory require-
ments. The highestn that fit into the 16GB machine
was 60 000. Thus, this setting was used for extrac-
tion on the full 100k set.

The results so far indicate that it is not very use-
ful to go beyondn = 10000. For the development
set, the baseline of 36.1% BLEU can be improved
by 1.6% absolute to 37.7% for the first 10k entries,
whereas for the 60k setting, the absolute improve-
ment is only increased by a marginal 0.1%. For the
chosen setting, whose focus was on various list sizes
for optimization and extraction, the improvements
on the development lists do not carry over to the test
list. From the baseline of 31.5%, we only get a mod-
erate improvement of approximately 0.5% BLEU.
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Figure 1: BLEU scores of the reranked system. Development set (left) vs. Test set (right).

One possible explanation for this lies in the poor
performance of the rescoring models. A short test
was carried out in which we added the reference
translations to then-best list and determined the cor-
responding scores of the additional models, such as
the large LM and the IBM model 1. Interestingly,
only less than 1/4 of the references was ranked as
the best hypothesis. Thus, most reference transla-
tions would never have been selected as final candi-
dates. This strongly indicates that we have to come
up with better models in order to make significant
improvements from largen-best lists. Furthermore,
it seems that the exponential growth ofn-best hy-
potheses for maintaining a quasilinear improvement
in oracle BLEU score has a strong impact on the
overall system performance. This is in contrast to a
word graph, where a linear increment of its density
yields disproportionately high improvements in ora-
cle BLEU for lower densities (Zens and Ney, 2005).

4 Conclusion

We described an efficientn-best list extraction
method that is based on thek shortest paths algo-
rithm. Experiments with large 100 000-best lists in-
dicate that the models do not have the discriminating
power to separate the good from the bad candidates.
The oracle-best BLEU scores stay linear inlog(n),
whereas the reranked system performance seems to
saturate at around 10k best translations given the ac-
tual models. Using more hypotheses currently does
not help to significantly improve translation quality.

Given the current results, one should balance the
advantages ofn-best lists, e.g. easily testing com-
plex rescoring models, and word graphs, e.g. repre-
sentation of a much larger hypotheses space. How-

ever, as long as the models are not able to correctly
fire on good candidates, both approaches will stay
beneath their capabilities.
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