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Abstract 

The field of Psychometrics routinely grapples 
with the question of what it means to measure 
the inherent ability of an organism to perform 
a given task, and for the last forty years, the 
field has increasingly relied on probabilistic 
methods such as the Rasch model for test con-
struction and the analysis of test results.  Be-
cause the underlying issues of measuring 
ability apply to human language technologies 
as well, such probabilistic methods can be ad-
vantageously applied to the evaluation of 
those technologies. To test this claim, Rasch 
measurement was applied to the results of 67 
systems participating in the Question Answer-
ing track of the 2002 Text REtrieval Confer-
ence (TREC) competition. Satisfactory model 
fit was obtained, and the paper illustrates the 
theoretical and practical strengths of Rasch 
scaling for evaluating systems as well as ques-
tions. Most important, simulations indicate 
that a test invariant metric can be defined by 
carrying forward 20 to 50 equating questions, 
thus placing the yearly results on a common 
scale. 

1 Introduction 

For a number of years, objective evaluation of state-of-
the-art computational systems on realistic language 
processing tasks has been a driving force in the advance 
of Human Language Technology (HLT). Often, such 
evaluations are based on the use of simple sum-scores 
(i.e., the number of correct answers) and derivatives 
thereof (e.g., percentages), or on ad-hoc ways to rank or 
order system responses according to their correctness. 
Unfortunately, research in other areas indicates that 
such approaches rarely yield a cumulative body of 

knowledge, thereby complicating theory formation and 
practical decision making alike. In fact, although it is 
often taken for granted that sums or percentages ade-
quately reflect systems’ performance, this assumption 
does not agree with many models currently used in edu-
cational testing (cf., Hambleton and Swaminathan, 
1985; Stout, 2002). To address this situation, we present 
the use of Rasch (1960/1980) measurement to the HLT 
research community, in general, and to the Question 
Answering (QA) research community, in particular.  

Rasch measurement has evolved over the last forty 
years to rigorously quantify performance aspects in such 
diverse areas as educational testing, cognitive develop-
ment, moral judgment, eating disorders (see e.g., Bond 
and Fox, 2001), as well as olfactory screening for Alz-
heimer’s disease (Lange et al., 2002) and model glider 
competitions (Lange, 2003). In each case, the major 
contribution of Rasch measurement is to decompose 
performance into two additive sources: the difficulty of 
the task and the ability of the person or system perform-
ing this task. While Rasch measurement is new to the 
evaluation of the performance of HLT systems, we in-
tend to demonstrate that this approach applies here as 
well, and that it potentially provides significant advan-
tages over traditional evaluation approaches.  

Our principal theoretical argument in favor of 
Rasch modeling is that the decomposition of perform-
ance into task difficulty and system ability creates the 
potential for formulating detailed and testable hypothe-
ses in other areas of language technology.  For QA, the 
existence of a well-defined, precise, mathematical for-
mulation of question difficulty and system ability can 
provide the basis for the study of the dimensions inher-
ent in the answering task, the formal characterization of 
questions, and the methodical analysis of the strengths 
and weaknesses of competing algorithmic approaches. 
As Bond and Fox (2001, p. 3) explain: “The goal is to 
create abstractions that transcend the raw data, just as in 
the physical sciences, so that inferences can be made 
about constructs rather than mere descriptions about raw 
data.” Researchers are then in a position to formulate 



 

initial theories, validate the consequences of theories on 
real data, refine theories in light of empirical data, and 
follow up with revised experimentation in a dialectic 
process that forms the essence of scientific discovery. 

Rasch modeling offers a number of direct practical 
advantages as well.  Among these are: 
• Quantification of question difficulty and system 

ability on a single scale with a common metric. 
• Support for the creation of tailor-made questions 

and the compilation of questions that suit well-
defined evaluation objectives. 

• Equating (calibration) of distinct question corpora 
so that systems participating in distinct evaluation 
cycles can be directly compared. 

• Assessment of the degree to which independent 
evaluations assess the same system abilities. 

• Availability of rigorous statistical techniques for 
the following: 
- analysis of fit of the data produced from systems’ 

performance to the Rasch modeling assumptions; 
- identification of individual systems whose per-

formance behavior does not conform to the per-
formance patterns of the population as a whole; 

- identification of individual test questions that ap-
pear to be testing facets distinct from those evalu-
ated by the test as a whole; 

- assessment of the reliability of the test – that is, 
the degree to which we can expect estimates of 
systems’ abilities to be replicated if these systems 
are given another test of equivalent questions; 

- identification of unmodeled sources of variation 
in the data through a variety of methods, includ-
ing bias tests and analysis of residual terms. 

The remainder of the paper is organized as follows.  
First, we present in section 2 the basic concepts of 
Rasch modeling.  We continue in section 3 with an ap-
plication of Rasch modeling to the data resulting from 
the QA track of the 2002 Text REtrieval Conference 
(TREC) competition.  We fit the model to the data, ana-
lyze the resulting fit, and demonstrate some of the bene-
fits that can be derived from this approach. In section 4 
we present simulation results on test equating. Finally, 
we conclude with a summary of our findings and pre-
sent ideas for continuing research into the application of 
Rasch models to technology development and scientific 
theory formation in the various fields of human lan-
guage processing. 

2 The Rasch Model for Binary Data 

For binary results, Rasch’s (1960/1980) measurement 
requires that the outcome of an encounter between com-
puter systems (1, …, s, …, ns) and questions (1, …, q, …, 
nq) should depend solely on the differences between 
these systems’ abilities (Ss) and the questions’ difficul-
ties (Qq). Together with mild and standard scaling as-

sumptions, the preceding implies that:  
11 −−+= )e(P sq SQ

sq              (1) 
In a QA context, Psq is the probability that a system with 
the ability Ss will answer a question with difficulty Qq 
correctly. For a rigorous derivation of Equation 1 and an 
overview of the assumptions involved, we refer the 
reader to work by Fisher (1995). Fisher also proves that 
sum-scores (and hence percentages of correct answers) 
are sufficient performance statistics if and only if the 
assumptions of the Rasch model are satisfied. 
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Figure 1.  Three Sample Rasch Response 

Curves 
The binary Rasch model has several interesting 

properties. First, as is illustrated by the three solid lines 
in Figure 1, Equation 1 defines a set of non-intersecting 
logistic response-curves such that Psq = 0.5 whenever Ss 
= Qq. In the following, such points are also referred to 
as question’s locations. For instance, the locations of the 
three questions depicted in Figure 1 are -5, 0, and 2. 
Second, for each pair of systems i and j with Si > Sj, for 
any question q, system i has a better chance of respond-
ing correctly than system j, i.e., Piq > Pjq. Thus, the 
questions that are answered correctly by less capable 
systems always form a probabilistic subset of those an-
swered correctly by more capable systems. Third, restat-
ing Equation 1 as is shown below highlights that the 
question and system parameters are additive and ex-
pressed in a common metric: 

qsP
P

QS)ln(
sq

sq −=−1  (2) 

Given the left-hand side of Equation 2, this metric’s 
units are called Logits. Note that this equation further 
implies that Ss and Qq are determined up to an additive 
constant only (i.e., their common origin is arbitrary).  

Finally, efficient maximum-likelihood procedures 
exist to estimate Ss and Qq independently, together with 
their respective standard errors SEs and SEq (see e.g., 
Wright and Stone, 1979). These procedures do not re-
quire any assumptions about the magnitudes or the dis-
tribution of the Ss in order to estimate the Qq, and vice-



 

versa.  Accordingly, systems’ abilities can be deter-
mined in a “question free” fashion, as different sets of 
questions from the same pool will yield statistically 
equivalent Ss estimates. Analogously, questions’ loca-
tions can be estimated in a “system free” fashion, as 
similarly spaced Qq estimates should be obtained across 
different samples of systems. In this paper, the model 
parameters, together with their errors of estimate, will 
be computed via the Winsteps Rasch scaling software 
(Linacre, 2003).  
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Figure 2.  Questions by Qq, Outfitq, and SEq

3 Analysis of TREC Evaluation Data 

We used the results from the Question Answering track 
of the 2002 TREC competition to test the feasibility of 
applying Rasch modeling to QA evaluation. Sixty-seven 
systems participated, and answered 500 questions by 
returning a single precise response extracted from a 3-
gigabyte corpus of texts. While the NIST judges as-
sessed each answer as correct, incorrect, non-exact, or 
unsupported, we created binary responses by treating 
each of these last three assessments as incorrect. Ten 
questions were excluded from all analyses, as these 
were not answered correctly by any system.1 The final 
                                                           
1 When all respondents answer some question q correctly (or 

data set thus consisted of 67 systems’ responses to 490 
questions.  
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Figure 3.  Systems by Ss, Outfits, and SEs

3.1 Question Difficulty and System Ability 

Maximum-likelihood estimates of the questions’ diffi-
culty and the systems’ abilities were computed via Win-
steps. Figure 2 displays the results associated with the 
questions, whereas Figure 3 addresses the systems. Each 
dot in these displays corresponds to one question or one 
system.  For questions, the Y-value gives the estimate of 
the questions’ difficulty (i.e., Qq); for systems, the Y-
value reflects the estimate of systems’ ability (Ss).  For 
questions, lower values correspond to easier questions, 
while higher values to difficult questions.  For systems, 
higher values correspond to greater ability. As is cus-
tomary, the mean difficulty of the questions is set at 
zero, thereby implicitly fixing the origin of the esti-
mated system abilities at -1.98. As was noted earlier, a 
                                                                                           
incorrectly), the parameter Qq cannot be estimated. Note that 
raw-score approaches implicitly ignore such questions as well 
since including them does not affect the order of systems’ 
“number right.” Of course, by changing the denominator, 
percentages of right or wrong questions are affected.  



 

constant value can be added to each Qq and Ss without 
thereby affecting the validity of the results.  The X-axes 
of Figures 2 and 3 refer to the quality of fit, as described 
in section 3.3 below. 

As an example, consider a question with difficulty 
level -2. This means that a system whose ability level is 
-2 has a probability of .5 (odds=1) of getting this ques-
tion correct. The odds of a system with ability of -1 get-
ting this same question correct would increase by a 
factor2 of 2.72, thus increasing the probability of a cor-
rect answer to Psq = 2.72/(1+2.72) = .73. For a system 
at ability level 0, the odds increase by another factor of 
2.72 to 7.39, giving a probability of .88. On the other 
hand, a system with an ability of -3, would have the 
even odds decrease by a factor of 2.72 to .369, yielding 
Psq = .27. In other words, increasing (decreasing) ques-
tions’ difficulties or decreasing (increasing) systems’ 
abilities by the same amounts affects the log-odds in the 
same fashion. The preceding thus illustrates that ques-
tion difficulty and system ability have additive proper-
ties on the log-odds, or, Logit, scale.3   

The smoothed densities in Figure 4 summarize the 
locations of the 490 questions (dotted distribution) and 
the 67 systems (solid).  It can be seen that question dif-
ficulties range approximately from -3 to +3, and that 
most questions fall in a region about -1.  Systems’ abili-
ties mostly cover a lower range such that the questions’ 
locations (MeanQ = 0 Logits) far exceed those of the 
systems (MeanS = -1.98 Logits). In other words, most 
questions are very hard for these systems. The vast ma-
jority of systems (those located near -1 or below) have 
only a small chance (below 15%) of answering a sig-
nificant portion of the questions (those located above 1), 
and an even smaller chance (below 5%) on a non-
negligible number of questions (those above 2). Of 
those systems, a large portion (those at -2 or below) will 
have even less of a chance on these questions.   
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Figure 4. Smoothed System and Question Location 

Densities 
                                                           

                                                          

2 The value of e, since we are working with natural logarithms.   
3 Note that a number of measures used in the physical sciences 
likewise achieve additivity by adopting a log scale. 

3.2 Standard Error of Estimate 

The two U-shaped curves in Figure 4 reflect the esti-
mates of error, SEq for questions (dotted curve) and SEs 
for systems (solid curve), as a function of their esti-
mated locations (X-axis). As is also reflected by the size 
of the dots in Figure 3, it can be seen that SEs is smaller 
for intermediate and high performing systems (i.e., Ss 
between -3 and 1 Logits) than for low performing sys-
tems (Ss < -3 Logits). This pattern suits the “horse-race” 
nature of the TREC evaluation well since the top per-
forming systems are assessed with nearly optimal preci-
sion. While the most capable system shows somewhat 
greater SEs, calculation shows its performance is still 
significantly higher than that of the runner-up (z = 
10.64, p < .001).  

Figure 4 further shows that SEq increases dramati-
cally beyond -1 Logits (this is also reflected in the size 
of the dots in Figure 2). For instance, the standard error 
of estimate SEq exceeds 0.5 Logits for questions with Qq 
> 1 Logit. Thus, the locations of the hardest questions 
are known with very poor precision only. 

3.3 Question and System Fit 

According to the Rasch model, a system, A, with mid-
dling performance is expected to perform well on the 
easier questions and poorly on the harder questions.  
However, it is possible that some system, B, achieved 
the same score on the test by doing poorly on the easy 
questions and well on the harder questions. While the 
behavior of system A agrees with the model, system B 
does not. Accordingly, the fit of system B is said to be 
poor as this system contradicts the knowledge embodied 
in the data as a whole. Analogous comments can be 
made with respect to questions. Rasch modeling formal-
izes the preceding account in a statistical fashion. In 
particular, for each response to Question q by System s, 
Equation 1 allows the computation of a standardized 
residual zsq, which is the difference between an observed 
datum (i.e., 0 or 1) and the probability estimate Psq after 
division by its standard deviation. Since the zsq follow 
an approximately normal distribution, unexpected re-
sults (e.g., |zsq|>3) are easily identified. The overall fit 
for systems (across questions) and for questions (across 
systems) is quantified by their Outfit.4 For instance, for 
System s:  

)n/(zOutfit q
q

sqs 12 −∑=  (3) 

Since the summed z2
sq in Equation 3 define a χ2 statistic 

with expected value nq – 1, the Outfit statistic ranges 
 

4 Additionally, systems’ (or questions’) “Infit” statistic is de-
fined by weighting the z2

sq contributions inversely to their 
distance to the contributing questions (or systems). As such, 
Infit statistics are less sensitive to outlying observations. Since 
this paper focuses on overall model fit, Infit statistics are not 
reported.  



 

from 0 to ∞, with an expected value of 1. As a rule of 
thumb, for rather small samples such as the present, 
Outfit values in the range 0.6 to 1.6 are considered as 
being within the expected range of variation.  

Figure 2 shows 46 questions whose Outfit exceeds 
1.6 (those to the right of the rightmost dashed vertical 
line) and the Outfit values of 24 of these exceed 2.0 
(shown in the graph by Xs, plotted at the right with hori-
zontal jitter). These are questions on which low per-
forming systems performed surprisingly well, and/or 
high performing systems performed unexpectedly 
poorly. Thus, there is a clear indication that these ques-
tions have characteristics that differentiate them from 
typical questions. Such questions are worthy of individ-
ual attention by the system developers.  

Questions and systems with uncharacteristically 
small Outfit values are of interest as well. For instance, 
in the present context it seems plausible that some ques-
tions simply cannot be answered by systems lacking 
certain capabilities (e.g., pronominal anaphora resolu-
tion, acronym expansion, temporal phrase recognition), 
while such questions are easily answered by systems 
that possess such capabilities. We might find that these 
questions would be answered by the vast majority, if not 
all, of the high performing systems and very few if any 
of the low ability systems. The estimated fit would be 
much better (small Outfit) than expected by chance. 
Again, the identification and analysis of such overfitting 
questions and, similiarly, underfitting systems may 
greatly enhance our understanding of both. 

3.4 Example of System with large Outfit 

Note that Figure 3 above shows that the best performing 
system also exhibits the largest Outfit (2.68), and we 
investigated this system’s residuals in detail. Table 1 
indicates that this system failed (Datum = 0) on eight 
questions (q) where its modeled probability of success 
was very high (Psq > 0.98). Thus, the misfit results from 
this system’s failure to answer correctly questions that 
proved quite easy for most other systems. 

q Qq Datum Psq Residual z 
1411 -1.51 0 0.98 -0.98 -7.39 
1418 -1.96 0 0.99 -0.99 -9.26 
1465 -1.74 0 0.99 -0.99 -8.28 
1672 -1.59 0 0.98 -0.98 -7.67 
1671 -1.51 0 0.98 -0.98 -7.39 
1686 -2.11 0 0.99 -0.99 -9.97 
1697 -1.89 0 0.99 -0.99 -8.92 
1841 -1.66 0 0.98 -0.98 -7.97 
 
Table 1. Misfit Diagnosis of Best Performing Sys-

tem 

These are the eight questions listed in Table 1: 

1411 What Spanish explorer discovered the Mississippi 

River? 
1418 When was the Rosenberg trial? 
1465 What company makes Bentley cars? 
1642 What do you call a baby sloth? 
1671 Where is Big Ben? 
1686 Who defeated the Spanish armada? 
1697 Where is the Statue of Liberty? 
1841 What’s the final line in the Edgar Allen Poe poem 
“The Raven?” 

This situation should be highly relevant to the sys-
tem’s developers. Informally speaking, the best system 
studied here “should have gotten these questions right,” 
and it might thus prove fruitful to determine exactly 
why the system failed. Even if no obvious mistakes can 
be identified, doing so could reveal strategies for system 
improvement by focusing on seemingly “easy” issues 
first. Alternatively, it might turn out that precisely those 
aspects of the system that enable it do so well overall 
also cause it to falter on the easier questions.  Ascertain-
ing this might or might not be of help to the system’s 
designers, but it would certainly foster the development 
of a scientific theory of automatic question answering. 

3.5 Impact of Misfit 

The existence of misfitting entities raises the possibility 
that the estimated Rasch system abilities are distorted by 
the question and system misfit. We therefore recom-
puted systems’ locations by iteratively removing the 
worst fitting questions until 372 questions with Outfitq< 
1.6 remained. In support of the robustness of the Rasch 
model, Figure 5 shows that the correlation between the 
two sets of estimates is nearly perfect (r = 0.99), indi-
cating that the original and the “purified” questions pro-
duce essentially equivalent system evaluations. Thus, 
the observed misfit had negligible effect on the system 
parameter estimates. 
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Figure 5.  Effect of Removing Misfitting Questions 

on the Estimated System Abilities Ss



 

4 Test Equating Simulation 

A major motivation for introducing Rasch models in 
educational assessment was that this allows for the cali-
bration, or equating, of different tests based on a limited 
set of common (i.e., repeated) questions. The purpose of 
equating is to achieve equivalent test scores across dif-
ferent test sets. Thus, equating opens the door to cali-
brating the difficulty of questions and the performance 
of systems across the test sets used in different years. 

Since appropriate data from different years are 
lacking, a simulation study was performed based on 
different subsets of the 490 available questions. We 
show how system abilities can be expressed in the same 
metric, even though systems are evaluated with a com-
pletely different set of questions. To rule out the possi-
bility that such a correspondence might come about by 
chance (e.g., equally difficult sets of questions might 
accidentally be produced), a worst-case scenario is used. 
The simulation also provides a powerful means to dem-
onstrate the superiority of the Rasch Logit metric com-
pared to raw scores as indices of system performance.  

To this end, we divide the available questions from 
TREC 2002 into two sets of equal size. The Easy set 
contains the easiest questions (lowest Qq) as identified 
in earlier sections.  For the simulation, this will be the 
test set for one year’s evaluation.  A second, Hard set, 
serves as the test set for a subsequent evaluation, and it 
contains the remaining 50% of the questions (highest 
Qq).  By design, the difference in questions’ difficulties 
is far more extreme than is likely to be encountered in 
practice. The Rasch model is then fitted to the responses 
to the Easy set of questions. Next, based on questions’ 
difficulties and their fit to the Rasch model, a subset of 
the Easy questions is selected for inclusion in the sec-
ond test in conjunction with the Hard question set. 
These questions are said to comprise the Equating set, 
as they serve to fix the overall locations of the questions 
in the Hard set.  

Normally, this second test would be administered to 
a new set of systems (some completely new, others im-
proved versions of systems evaluated previously). How-
ever, for the purposes of this simulation, we 
“administer” the second test to the same systems.  The 
Rasch model is then applied to the Hard and Equating 
questions combined, while fixing the locations of the 
Equating questions to those derived while scaling the 
Easy set. The Winsteps software achieves this by shift-
ing the locations in the Hard set to be consistent with 
the Equating set – but without adjusting the spacing of 
the questions in the Hard or Easy sets. If the assump-
tions of the Rasch model hold, then the Easy and Hard 
question sets will now behave as if their levels had been 
estimated simultaneously. Since the same systems are 
used in the simulation, and the questions have been 

calibrated to be on the same scale, the estimated system 
abilities Ss as derived from the Easy and Hard question 
sets should be statistically identical. That is, these two 
estimates should show a high linear correlation and they 
should have very similar means and standard deviations 
(see e.g., Wright and Stone, 1979, p. 83-126).  

Common wisdom in the Rasch scaling community 
holds that relatively few questions are needed to achieve 
satisfactory equating results. For this reason, the simula-
tion study was performed three times, using Equating 
sets with 20, 30, and 50 questions, respectively (i.e., 
about 4, 6, and 10% of the total number of questions in 
the present study). 

4.1 Findings 

The simulation results are summarized in Table 2, 
whose rows reflect the sizes of the respective Equating 
sets (i.e., 20, 30, and 50). Each first sub-row reports the 
Rasch scaling results, while the second sub-row reports 
the raw-score (i.e., number correct) findings. The col-
umns report a number of basic statistics, including the 
mean (M) and standard deviations (SD) of the Logit and 
raw-score values in the Easy and Hard sets, and the 
correlation (rlinear) between systems’ estimated abilities 
based on the Easy and Hard sets. 
 

Size of 
Equat-
ing Set Index Measy SDeasy Mhard SDhard rlinear

20 Rasch  -0.66 1.10 -0.65 1.23 0.90 

 # Correct 92.40 47.53 27.39 30.70 0.77 
       

30 Rasch  -0.68 1.10 -0.66 1.21 0.92 

 # Correct 92.88 47.92 29.82 31.80 0.80 
       

50 Rasch  -0.78 1.11 -0.77 1.18 0.94 
  # Correct 94.76 49.62 31.01 32.29 0.82 

 
Table 2.  Results of the Simulation Study 

The major findings are as follows. First, inspection 
of the rlinear columns indicates that Rasch equating con-
sistently produced higher correlations between systems’ 
estimated abilities as estimated via the Easy and Hard 
question sets than did the raw scores for each set. Sec-
ond, for obvious reasons the raw-score estimates based 
on the Easy sets are considerably higher than those 
based on the Hard sets. However, Table 2 also shows 
that the standard deviations of the number correct esti-
mates obtained for the Easy sets exceed those of the 
Hard sets as well (sometimes by over 100%). In other 
words, when raw scores (or percentages) are used, the 
“spacing” of the systems is affected by the difficulty of 
the questions.  



 

Third, the Rasch approach by contrast produces 
very similar means and standard deviations for the ca-
pability estimates based on the Easy and Hard question 
sets. This holds regardless of the size of the Equating 
sets. For instance, when 50 equating questions are used, 
the estimated abilities based on the Easy and Hard sets 
have nearly identical SD (i.e., 1.11 and 1.18 Logits, re-
spectively). The corresponding averages for this case 
are -0.78 and -0.77 Logits, i.e., a standardized difference 
(effect size) of less than 0.01 SD. Similarly small effects 
sizes are obtained for the other cases. Further, given the 
superior values of rlinear, it thus appears that Rasch 
equating provides an acceptable equating mechanism 
even when maximally different question sets are used. 
In fact, already for Equating sets of size 20 a correlation 
of  0.90 is produced. 

Fourth, as a check on the results, scatter plots of the 
various cases summarized in Table 2 were produced. 
The left panel of Figure 6 shows the Rasch capability 
estimates obtained for the Hard question set plotted 
against those for the Easy set, and it can be seen that 
these estimates are highly correlated (rlinear = 0.94). The 
corresponding raw scores are plotted in the right panel 
of Figure 6. In addition to showing a lower correlation 
(rlinear = 0.82), raw scores also clearly posses a non-
linear component, and in fact the quadratic trend is 
highly significant (tquad = 13.10, p < .001). Thus, in 
addition to being question-dependent, raw score and 
percentage based comparisons suffer from pronounced 
non-linearity. 

Despite the favorable results, we remind the reader 
that the above simulations represented a worse-case 
scenario. Indeed, more realistic simulations not reported 
here indicate that Rasch equating can further be im-

proved by omitting misfitting questions and by using 
less extreme question sets. 

5 Conclusions 

In this paper we have described the Rasch model for 
binary data and applied it to the 2002 TREC QA results. 
We addressed the estimation of question difficulty and 
system ability, the estimation of standard errors for 
these parameters, and how to assess the fit of individual 
questions and systems. Finally, we presented a simula-
tion which demonstrated the advantage of using Rasch 
modeling for calibration of question sets. 

Based on our findings, we recommend that test 
equating be introduced in formal evaluations of HLT. In 
particular, for the QA track of the TREC competition, 
we propose that NIST include a set of questions to be 
reused in the following year for calibration purposes.  
For instance, after evaluating the systems’ performance 
in the 2004 competition, NIST would select a set of 
questions consistent with the criteria outlined above. 
Using twenty to fifty questions from a set of 500 will 
probably be sufficient, especially when misfitting ques-
tions are eliminated. When the results are released to the 
participants, they would be asked not to look at these 
equating questions, and not to use them to train their 
systems in the future. These equating questions would 
then be included in the 2005 question set so as to place 
the 2004 and 2005 results on the same Logit scale. The 
process would continue in each consecutive year.  

The approach outlined above serves several pur-
poses. For instance, the availability of equated tests 
would increase the confidence that the testing indeed 
measures progress, and not simply the unavoidable 
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Figure 6. Systems’ Performance on Easy vs. Hard Questions Based on Rasch Scaling (left) and Raw Scores (right)
 



 

variations in difficulty across each year’s question set. 
Additionally, it would support the goal of making each 
competition increasingly more challenging by correctly 
identifying easy and  difficult questions. Further, cali-
brated questions could be combined into increasingly 
large corpora, and these corpora could then be used to 
provide researchers with immediate performance feed-
back in the same metric as the NIST evaluation scale. 
The availability of large corpora of equated questions 
might also provide the basis for the development of 
methods to predict question difficulty, thus stimulating 
important theoretical research in QA. 

The work presented here only begins to scratch the 
surface of adopting a probabilistic approach such as the 
Rasch model for the evaluation of human language 
technologies.  First, as was discussed above, questions 
displaying unexpectedly large or small Outfit values can 
be identified for further study. The questions themselves 
can be analyzed in terms of both content and linguistic 
expression. With the objective of beginning to form a 
theory of question difficulty, questions can be analyzed 
in concert with the occurrence of correct answers in the 
document corpus and the incorrect answers returned by 
systems.  Also, experimentation with more complex 
scaling models could be conducted to uncover informa-
tion other than questions’ difficulty levels. For example, 
so-called 2-parameter IRT models (see e.g., Hambleton 
and Swaminathan, 1985) would allow for the estimation 
of a discrimination parameter together with the diffi-
culty parameter for each question. More direct informa-
tion concerning the diagnosis of systems’ skill defects 
are described in Stout (2002).  

It is also possible to incorporate into the model 
other factors and variables affecting a system’s per-
formance. Rasch modeling can be extended to many 
other HLT evaluation contexts since Rasch measure-
ment procedures exist to deal with multi-level re-
sponses, counts, proportions, and rater effects. Of 
particular interest is application to technology areas that 
use metrics other than percent of items processed cor-
rectly. Measures such as average precision, R-precision 
and precision at fixed document cutoff, which are used 
in Information Retrieval (Voorhees and Harman, 1999), 
metrics such as BiLingual Evaluation Understudy 
(BLUE) (Papineni et al., 2002) used in Machine Trans-
lation, and F-measure (Van Rijsbergen, 1979) com-
monly used for evaluation of a variety of NLP tasks are 
just a few of the variety of metrics used for evaluation 
of language technologies that can benefit from Rasch 
scaling and related techniques. 
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