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Abstract
A standard ASR system is built using three types of mutually related language resources: apart from speech recordings and orthographic
transcripts, a pronunciation component maps tokens in the transcripts to their phonetic representations. Its implementation is either
lexicon-based (whether by way of simple lookup or of a stochastic grapheme-to-phoneme converter trained on the source lexicon)
or rule-based, or a hybrid thereof. Whichever approach ends up being taken (as determined primarily by the writing system of
the language in question), little attention is usually paid to pronunciation variants stemming from connected speech processes,
hypoarticulation, and other phenomena typical for colloquial speech, mostly because the resource is seldom directly empirically
derived. This paper presents a case study on the automatic recognition of colloquial Czech, using a pronunciation dictionary extracted
from the ORTOFON corpus of informal spontaneous Czech, which is manually phonetically transcribed. The performance of the
dictionary is compared to a standard rule-based pronunciation component, as evaluated against a subset of the ORTOFON corpus (mul-
tiple speakers recorded on a single compact device) and the Vystadial telephone speech corpus, for which prior benchmarks are available.
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1. Introduction
One of the components of an automatic speech recognition
(ASR) system is a pronunciation dictionary, which provides
a mapping between a conventional symbolic transcript of
speech, which can exhibit varying degrees of arbitrariness,
and an acoustically / phonetically motivated one. On the
one hand, during the training phase (phone-level alignment,
creation of acoustic models, henceforth AMs), the phonetic
transcription provides information about where to expect
recurring patterns in the acoustic signal, which will be ab-
stracted away and generalized in the acoustic models for the
individual (tri)phones. On the other hand, during decoding,
it mediates between (to borrow a neurolinguistic analogy)
the top-down (predictive) processes based on the linguistic
knowledge (the language models, henceforth LMs), and the
bottom-up (recognitive) processes based on spotting acous-
tic patterns in the incoming sound data.
The complexity of the mapping between the standardized
orthographic representation of a word and an encoding of
its pronunciation as a string of phones depends on the char-
acteristics of the writing system of the language in ques-
tion. The possibilities range from more or less complete
arbitrariness to varying degrees of systematicity in the re-
lationship between graphemes and phonemes (see Samp-
son (2015) for a book-length account). The variety present
in this respect in the world’s languages is best attested by
sketching a few illustrative points along this continuum:

• Chinese logographic writing bears little to no relation
to the phonetic form of words; phonetically speak-
ing, two Mandarin Chinese words such as mother and
hemp may have the same segmental content ([ma]) and
differ “only” in their suprasegmental features (1st vs.
2nd tone), yet their traditional written forms will betray
none of their acoustic similarity (媽 vs. 麻);

• in general, alphabetic writing systems exhibit higher
degrees of consistency in the relationship between

graphemes and phonemes, because they are histori-
cally built on modeling regularities in speech sounds,
but variation is still possible: for instance, contempo-
rary English orthography, though it has evolved over
the centuries, still bears the marks of earlier pronunci-
ations and dialectal variants which have been weeded
out by sound change in speech but became fossilized
in writing, as well as numerous inconsistencies intro-
duced by lexical loans borrowed from other languages
(and thus other writing systems);

• conversely, the orthography of a language like Czech
is fairly predictable based on pronunciation and vice
versa, even increasingly so over the centuries thanks
to several spelling reforms (see Kučera (1998, Fig. 5,
p. 195), and the whole article for a treatment of the
evolution of the efficiency and complexity of Czech
spelling), although loanwords with preserved original
spelling, mostly coming from English, are a recent dis-
ruptive factor.

In the case of Chinese, where the grapheme-to-phoneme
correspondence is arbitrary, the only way of creating a pro-
nunciation dictionary is compiling it manually. For English,
where the correspondence is obscured by layers of histor-
ical development, it is the only practical solution (popu-
lar resources are the CMU Pronouncing Dictionary1 for
American English and the BEEP Dictionary2 for British
English), because creating a rule-based system would be
too time-consuming, error-prone and above all exception-
ridden, which means it would have to rely on extensive lists
of lexical items to be treated specially anyway, so why not
directly store the transcriptions for all items. A sequence-
to-sequence mapping tool like SequiturG2P (Bisani and

1http://www.speech.cs.cmu.edu/cgi-bin/
cmudict

2http://svr-www.eng.cam.ac.uk/comp.
speech/Section1/Lexical/beep.html
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Ney, 2008) can then optionally be used as a second step to
automatically analyze recurring patterns in the dictionary
items (pairs of orthographic and phonetic transcripts) and
generate a stochastic grapheme-to-phoneme converter. This
can be used as a less reliable3 fallback procedure, allow-
ing the system to handle out-of-vocabulary (OOV) items in
a fairly cost-effective manner, as a “free” side-product of
putting together the dictionary itself.
For Czech however, creating such a set of rules is a com-
paratively easy task (see (Psutka et al., 2006)), so this has
become a de facto standard approach for the language in
NLP applications in general and ASR in particular. Three
potential problems with it come to mind:

• irregularities: mild (latinate words) and heavy (En-
glish loans, irregularly spelled / pronounced named
entities); these may or may not be of interest to the ap-
plication at hand, and if they are, exceptions for them
may be hardcoded ad hoc into the rules;

• variants: the higher the frequency of a word, the
more syllables it has “canonically” and the less for-
mal the situation, the higher the likelihood that this
word will have formally reduced pronunciation vari-
ants (see Klimešová et al. (2017, p. 153) for examples
from Czech and Ernestus and Warner (2011) for a dis-
cussion of phonetic erosion in spontaneous speech in
general); of course, dialectal variation can also be sub-
sumed under this heading;

• connected speech processes: a potential problem for
any system which considers transcription of lexical
items atomically, without paying attention to context.

The inclination to ignore variation may be particularly
strong with languages like Czech where a reasonably ac-
curate rule-based pronunciation component can be built
with comparatively little effort, but in general, whether the
grapheme to phoneme component of the ASR system be
lexicon- or rule-based, the latter two sources of variability
tend to be downplayed. Since at the same time, they play a
significant role in colloquial, spontaneous speech, it makes
sense to ask whether this might be a handicap for ASR in
some settings.
To explore this topic, the research presented in this paper
leverages the ability of current ASR systems to handle a 1-
to-many mapping in their pronunciation dictionary compo-
nents. Whereas traditionally, these have often been “arm-
chair language resources” (in analogy to the notion of “arm-
chair linguist”), our approach was to sift through manual
phonetic transcriptions of spontaneous speech and compile
a lexicon of commonly attested pronunciation variants. Of
course, the 1-to-many mapping addresses only some of the
variability issues that ASR systems have to contend with.
For a comprehensive overview, see Strik and Cucchiarini
(1999); for example, differences in the temporal and spec-
tral properties of instances of the “same” phone belong to
the domain of the AM.

3Because it can only follow statistical trends and has no way
of knowing about lexical exceptions.

2. Data and method
The procedures and overall setup are heavily based on the
recipes for the Czech portion of the Vystadial telephone
speech corpus (Korvas et al., 2014), more specifically their
versions destined for the Kaldi ASR toolkit (Povey et al.,
2011). For the most part, changes to the existing code
were only cosmetic (adapting transcript and recording file
preparation scripts for non-Vystadial data, fixing common
typos in transcripts), except for the routines which gener-
ated the pronunciation lexicons, which were at the heart of
our present undertaking (see 2.1.).
As far as data is concerned, Czech Vystadial data was also
used in some of the experiments to offer a few basic com-
parisons, but the main focus was on recordings from the
ORTOFON corpus of informal spontaneous spoken Czech
(Kopřivová et al., 2014b). This is a corpus of intimate dis-
course recorded on a compact device (a Sony ICD-UX5xx
series recorder) in natural settings (at home, at work, in
cafés etc.), between groups of two or more well-acquainted
people. It features two manually created transcription lay-
ers (a basic one, which is fairly close to accepted Czech
orthography, and a phonetic one), as well as some addi-
tional paralinguistic annotation and sociolinguistic meta-
data (Kopřivová et al., 2014a). Data collection is ongoing
and a sociolinguistically balanced sample of about 1M run-
ning words in length has been published in June 2017 via
the online query interface at https://korpus.cz. It is
also available for download in two different formats from
the LINDAT/CLARIN repository (Kopřivová et al., 2017a;
Kopřivová et al., 2017b).
The nature of the material entails a variety of challenges
which can be faced with some success by human annota-
tors, but are at present mostly insurmountable for automatic
processing. These are generally related to the constraint
that recordings are made on a single, preferably inconspic-
uously placed device, which is in turn dictated by a desire
to capture natural linguistic behavior:

• finding a good compromise for placing the record-
ing device and setting microphone sensitivity is hard,
some speakers involved in the communication situa-
tion tend to be too close, others too far away;

• on a related note, depending on the setting, the speech
can occasionally be drowned in noise (domestic ap-
pliances, vehicles passing by, café chatter), because
microphone sensitivity needs to be set to pick up mid-
range distance signals;

• unstructured interactions inevitably result in portions
with overlapping speech by multiple speakers.

We keep track of the quality of the recording as an im-
pressionistic rating made by its original transcriber. The
sample of raw ORTOFON data used in the experiments re-
ported in this article was selected from a population of ut-
terances which contained no overlaps and were taken ex-
clusively from recordings with the highest quality rating.
To facilitate iterative development, the sample was delib-
erately kept relatively small (see Tab. 1) in order to speed
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up training and decoding. As the main goal was not abso-
lute performance but mutual comparisons between various
approaches to generating the pronunciation dictionary, we
feel this is a justified choice.

Table 1: Data sets employed in the experiments and their
sizes: length of audio (hours:minutes), number of record-
ings, number of tokens.

data set length # recordings # tokens

ORTOFON
train 3:25 3978 38,593
dev 0:28 497 5081
test 0:26 497 4869

Vystadial
train 15:25 22,567 126,333
dev 1:23 2000 11,478
test 1:22 2000 11,204

Following the original Vystadial experiments, all sound
files were converted to mono WAV PCM sampled at a 16
kHz rate and 16 bit depth. Unlike the original Vysta-
dial data however, ORTOFON data comes with informa-
tion about speaker gender and identity across recordings, so
these were specified in the relevant files where Kaldi asks
for this information, instead of assuming the same gender
everywhere and no recurring speakers.

2.1. Generating pronunciation variants
First of all, the vanilla rule-based pronunciation algorithm
provided as part of the Vystadial scripts was used as a base-
line (hereafter vanilla). It implements the best prac-
tice rules of Czech pronunciation as traditionally employed
within the NLP community (Psutka et al., 2006) and yields
exactly one pronunciation per lexicon item.
Pronunciation variants were then extracted from a work-
ing sample of the ORTOFON corpus about 1M running
words in size; recall that these are hand-transcribed pro-
nunciations spotted in naturally occurring colloquial Czech.
Apart from recognizably legitimate variants, this database
also turned out to contain some highly idiosyncratic ones as
well as orth-to-phon alignment errors, identifiable as low
frequency items or even hapax legomena. It quickly be-
came clear that this variability and noise had to be trimmed
down in order to become manageable by Kaldi. Two types
of approaches were used: an automatic frequency based
thresholding heuristic (2.1.1.) and manual filtering (2.1.2.).
Consider that the two most phonetically variable lexical
items, protože (because) and prostě (simply, and also a lex-
ical filler similar to like), had 248 and 133 different pro-
nunciations respectively. Given the fairly limited size of
the training set, Kaldi needs help in distinguishing which
of these to consider as even remotely viable candidates. In
general, the goal is to span the continuous space of acous-
tic variability in as few discrete variants as possible, so that
the ASR system only has to deal with useful and meaning-
ful complexity and uncertainty.
Variability also leads to heightened homophony which par-
ticularly affects words that are short by nature or prone to

drastic formal reduction as a result of their frequency of
use. An especially insidious case of homophony is empty
pronunciations. Even though these are linguistically well-
motivated, because highly frequent function words might
be completely elided in informal speech, as the speaker can
expect listeners to be able to infer them based on context
and their knowledge of the language, they were systemat-
ically removed since they might result in the spontaneous
addition of words to the transcript during decoding with
no corresponding acoustic evidence, if not properly con-
strained by a sufficiently strong LM.
The rule-based transcription procedure used as fallback for
items not occurring in our variants database was based on
vanilla, with a few small emendations. For instance, as-
similation of voicing was reimplemented 4, and j-epenthesis
between a close front vowel and another vowel was added.

2.1.1. Automatic threshold
The goal of the automatic thresholding procedure was to
drastically reduce the maximum number of variants al-
lowed for an item while retaining the spread in variability,
i.e. the mapping should strive to preserve a distinction be-
tween highly, mildly and marginally variable items. Several
options were explored and the following heuristics were re-
tained in the end (L is a list of items from the pronunciation
database sorted in decreasing order by their number of vari-
ants, M indicates the highest attested number of variants,
i.e. the number of variants of the first element of L):

1. lexicon items were split into variability groups by
dividing the interval [0;M ] into up to N non-
overlapping intervals of size at least M/N , always ex-
tending the lower boundary to the next attested num-
ber of variants if the M/N step fell in between; groups
were established based on membership of the items’
variant counts in these intervals; items in the 1st group
were limited to at most their N most frequent variants,
the 2nd group to N − 1, etc.; these were still subject to
the additional filtering heuristics defined below;

2. hapax variants were discarded for items with at least
one variant which had been seen multiple times;

3. variants containing rare phones, i.e. phones seen less
than 10 times in the lexicon generated for a given ex-
periment,5, were discarded;

4. variants which were short (less than 2 phones) and
homophonous (shared by multiple items) were dis-
carded.

4The original algorithm uses a cascade of regular expressions.
Since assimilation of voicing should spread across multiple neigh-
boring phones, it cannot be implemented in one pass of regular ex-
pression substitutions, because these need to be linearly ordered,
and new assimilation-triggering contexts may emerge in the pro-
cess of applying them that would necessitate restarting from the
top.

5This might seem like a low threshold, but in practice, there
was quite a considerable gap between single-figure count phones
and the rest.
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Two versions of this approach were tested based on the
value of N specified in heuristic 1 above, thresh9 and
thresh4 (N = 9 and N = 4, respectively).

2.1.2. Manual filtering
A human expert in the phonetics of spontaneous Czech
speech went through the pronunciation variants of the 100
most common word forms in the ORTOFON and Vystadial
data sets and manually removed those that were deemed too
ambiguous or poorly representative. Beyond this frequency
peak, transcriptions were produced by the rule-based fall-
back method; in other words, in this setup, multiple pro-
nunciation variants were allowed only for the most frequent
words.
As in 2.1.1., two versions of this approach were tested.
manual1was more lenient, allowing multiple similar vari-
ants both within and across items wherever they made sense
and keeping the variants “as is”. manual2 was more
aggressive, taking into account which differences are per-
ceptually and acoustically salient and weeding out variants
which were judged too similar to other ones. The variants
themselves were also altered on occasion, mapping less fre-
quently occurring phones (schwa, labiodental nasal) onto
more well-attested counterparts.
We are well aware that the replicability of such a manual
procedure is questionable. It would perhaps be better to
characterize it by its purpose, which was to act as a sieve
which is both more aggressive and more intelligent than the
one defined purely based on frequency rules in 2.1.1.. The
human expert acts as a post-editor of the decisions made
by the original transcribers of the recordings. As such, s/he
should have sufficient prior acquaintance with the material
and training in phonetics in order to be able to:

• remove implausible variants

• substitute rare phones with related higher frequency
phones6

• spot variants which are acoustically similar and retain
only a single representative for the entire group

The variant lexicon is the permitted to include only such
manually verified items. Together with the overall purpose
defined above serving as guiding principle, these are the
essential parameters of the manual filtering procedure to
bear in mind when replicating it.

3. Results and discussion
AM training and LM creation followed the Vystadial
recipe. We therefore performed experiments with zerogram
and bigram language models7 and the following acoustic
models:

6For purely practical reasons: when training the ASR system,
it is unlikely that a meaningful generalization would be inferred
from just a handful of exemplars. Cf. the focus on “useful and
meaningful complexity and uncertainty” in 2.1..

7Inferred from test and train data, respectively; the purpose of
the zerogram model is “to evaluate solely the quality of the acous-
tic models without being affected by a language model or presence
of out-of-vocabulary (OOV) words in the test set” (Korvas et al.,
2014, p. 4426).

zerogram LM bigram LM
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Figure 1: Word error rate results for different acoustic mod-
els, language models and pronunciation dictionary genera-
tion methods applied to the Vystadial data.

• mono: monophone model trained with MFCCs, ∆
and ∆∆ features;

• tri1: basic generative triphone model trained using
Viterbi training; corresponds to tri ∆+∆∆ in (Ko-
rvas et al., 2014);

• tri2: triphone model with Linear Discriminative
Analysis (LDA, Haeb-Umbach and Ney (1992)) and
Maximum Likelihood Linear Transformation (MLLT,
Gopinath (1998)) feature transformations, trained us-
ing alignments from tri1; corresponds to tri
LDA+MLLT in (Korvas et al., 2014);

• tri3: triphone model trained using discrimina-
tive Boosted Maximum Mutual Information (BMMI,
Povey et al. (2008)) training on top of tri2; corre-
sponds to tri LDA+MLLT+BMMI in (Korvas et al.,
2014).8

Results are presented visually in Fig. 1 (for Vystadial data)
and Fig. 2 (for ORTOFON data).
The Vystadial experiments were more computationally in-
tensive because of the size of the data, so only vanilla
and manual1 methods were run. The vanilla results
are comparable to those reported in (Korvas et al., 2014),
suggesting that our basic experimental setup was sound.
The word error rate (WER) for manual1 is similar un-
der the zerogram LM, suggesting that the acoustic mod-
els themselves are neither hampered nor (sadly) improved
by having access to a wide array of pronunciation vari-
ants of highly frequent words. Under the bigram LM, ex-
cept for the mono AMs, manual1 is clearly outperformed
by vanilla, suggesting that the amount of homophony

8Note that this model “needs a language model (LM) in order
to compute the objective function. Here we use the [aforemen-
tioned] bigram LM” (Korvas et al., 2014, p. 4426), so the decod-
ing performance with the zerogram LM has no clear interpretation
and will be omitted from the results.
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Figure 2: Word error rate results for different acoustic mod-
els, language models and pronunciation dictionary genera-
tion methods applied to the ORTOFON data.

introduced by the variants prevents the system from effi-
ciently taking advantage of the predictive power of the LM
when decoding.
With ORTOFON data, the more lenient automatic thresh-
olding method thresh9 evidently retains too much vari-
ability to be able to compete with the other ones even under
the zerogram LM. As with Vystadial, manual1 performs
roughly on par with the others under the zerogram LM but
lags behind along with thresh9 under the bigram LM.
The more stringent thresh4 and manual2 remain com-
petitive with vanilla, with manual2 providing the only
hint that pronunciation variants might be performing use-
ful work, as contrasted with vanilla, under the bigram
LM and tri3 AM: it is the only method that improves,
if slightly, when BMMI is added. Of course, further work
on larger data sets and more careful and systematic manual
tweaks of the variants database will be needed to determine
if this is indeed a viable path to follow.
In general, there seems to be a clear divide between the
type of pronunciation variants human experts use to encode
hints for other linguists / phoneticians to use in doing lin-
guistic research, and the type of variation information an
ASR system implementing current state-of-the-art methods
can leverage. Or, to be more precise, the former needs to be
thinned down quite drastically in order to become the latter,
and even then, benefits are hard to glean. In light of this, it
seems pointless to invest energy and resources into trying to
extend the pronunciation rules for Czech to yield more than
one pronunciation per item and thus account for empiri-
cally unattested but theoretically possible variants differing
in voicing assimilation, vowel length or elision. However,
judiciously adding attested high frequency variants should
not be ruled out.
Frequency-based heuristics, whether implemented fully au-
tomatically or with manual cleanup, are fairly efficient at
this sieving, but especially the manual ones, which only
look at the frequency peak, also get rid of many potentially
useful pronunciations of less common irregular words. Ide-

ally, we should have additional criteria for inclusion that
circumvent this drawback, e.g. based on the minimum edit
distance between the hand-transcribed variant and the rule-
generated variant.
Another topic for future research is that we have not yet in-
vestigated the option of providing frequency-based weights
for the pronunciations, as Kaldi allows the possibility of a
probabilistic pronunciation lexicon, instead of using binary
thresholding mechanisms, or perhaps a combination of both
approaches. Even more remotely, we may have discarded
empty pronunciations as mentioned in 2.1., but they remain
a valid notion from the linguistic point of view. They might
just yet prove helpful in combination with stronger, more
constraining LMs which do a better job at modeling lan-
guage knowledge.

4. Conclusion
There is a hackneyed adage in the NLP community accord-
ing to which firing the linguist / phonetician on the team
invariably leads to an improvement in one’s performance
metric. The experiments reported in this article seem to
corroborate this piece of folk wisdom, to the extent that lin-
guists seem to be interested in details of variation which,
while empirically motivated and linguistically relevant, re-
sult in confusion and an explosion of the search space when
fed into an ASR system which has to bootstrap itself on
limited amounts of data.
However, as we’ve seen with manual2, linguists might
still have a useful contribution to bring to the table every
now and then, if ever so modest, as long as they stick to an-
other cliché saying: Less is more when it comes to pronun-
ciation variants, at least in terms of how they fit together
with the remaining components of current state-of-the-art
ASR systems.
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