Low-resource Post Processing of Noisy OCR Output
for Historical Corpus Digitisation

Caitlin Richter, Matthew Wickes, Deniz Beser, Mitch Marcus
University of Pennsylvania
Departments of Linguistics and Computer and Information Science, 3330 Walnut Street, Philadelphia PA 19104
{ricca, wickesm, dbeser } @seas.upenn.edu, mitch@cis.upenn.edu

Abstract
We develop a post-processing system to efficiently correct errors from noisy optical character recognition (OCR) in a 2.7 million word
Faroese corpus. 7.6% of the words in the original OCR text contain an error; fully manual correction would take thousands of hours due
to the size of the corpus. Instead, our post-processing method applied to the Faroese corpus is projected to reduce the word error rate
to 1.3% with around 65 hours of human annotator work. The foundation for generating corrected text is an HMM that learns patterns
of OCR error and decodes noisy OCR character sequences into hypothesised correct language. A dictionary augments the HMM by
contributing additional language knowledge, and a human annotator provides judgements in a small subset of cases that are identified
as otherwise most prone to inaccurate output. An interactive workstation facilitates quick and accurate input for annotation. The entire
toolkit is written in Python and is being made available for use in other low-resource languages where standard OCR technology falls
short of desirable text quality. Supplementary analyses explore the impact of variable language resource availability and annotator time

limitations on the end quality achievable with our toolkit.

Keywords: Faroese, OCR, low resource corpus development, human-assisted post processing

1. Introduction
1.1. Motivation

We provide a toolkit to improve unsatisfactory text qual-
ity in a newly digitised Faroese corpus (Fgroyamalsdeildin,
nd). The 2.7 million word corpus contains historical inter-
views of unique linguistic and cultural value, which would
provide valuable material for research in a variety of dis-
ciplines if it were readily accessible (e.g. Heycock and
Wallenberg, 2013; Galbraith, 2016). The interviews were
recorded on tape up to 50 years ago, transcribed by type-
writer, and later scanned (Figure [1)) before being input to
unknown commercial optical character recognition (OCR)
software for text extraction.

dsnsinum, so tad kom automatiskt vi® »ldrinum
S: Jr, og stevid tad verd eisini lwert -
F: Jo, trd, tad -

.
S: Kom av s&r sjalvum,

Figure 1: Partial scanned typewriter page of Faroese inter-
view transcription.

This process significantly corrupted the text with incorrect
recognition. A lack of enough language-specific data for
good Faroese language models in the initial OCR process
had a large role in damaging the text quality; many of the
errors produce tokens with distinctly un-Faroese letter se-
quences, or even numbers and punctuation in the middle of
words (like OCR error form r/ey*ur for deydur). Close to
8% of tokens (words) contain at least one error, suggesting
a rough expectation for on average every sentence to con-
tain one incorrectly recognised (non-)word. This error rate
severely degrades the usability of the corpus for NLP, com-
putational linguistic research, or any interest that relies on

basic text search to identify relevant documents within the
2.7 million word corpus.

Faroese is spoken by only about 50,000 people on the
Faroe Islands, located between Norway, Scotland, and Ice-
land (Thrainsson et al., 2012). It is a Germanic language
whose nearest relative is Icelandic; the two are not nor-
mally mutually intelligible in speech to unpractised listen-
ers, and Faroese is considerably more different (certainly
not mutually intelligible) from its next closest relatives,
the larger and better-resourced Mainland Scandinavian lan-
guages Danish, Norwegian, and Swedish. However, many
native speakers of Faroese do speak Danish as a second
language, in current times often used for university edu-
cation or employment in Denmark (while Faroese is the
language of home, daily life, school, etc. on the Faroe Is-
lands). This reflects past Danish rule of the Faroe Islands;
of particular note to present purposes, this rule included a
period of around 300 years in which the Faroese language
was generally banned from official and written contexts
(Thrainsson et al., 2012). The modern orthography used
to transcribe the corpus we correct was developed in the
late 1800s, after the language ban was lifted, by linguist
V.U. Hammershaimb; it incorporates etymological recon-
struction and morphophonemic (rather than phonetic) rep-
resentation, which has the effect that it is not inherently bi-
ased to resembling the pronunciation of particular dialects.
In this corpus, while lexical items will vary according to
speakers’ dialects, the spelling itself can be considered a
stable standardised system. The Faroese alphabet officially
has 29 letters, but in practise a few more are found - variant
conventions like ¢ and 6 which are intended as the same
letter in this context, and foreign borrowings like a and c.
We suspect, based on certain qualitative patterns in recogni-
tion, that the OCR system that produced the Faroese corpus
text may have had Danish as its primary language, with the
Faroese alphabet traded in.

2331



1.2. Approach

We developed a suite of post-processing tools that a corpus
can be fed through, obtaining adequate machine-readable
text despite the excessive error rate from standard OCR.
The toolkit is general and we are distributing it for use
in any corpora where conventional OCR lacking sufficient
language-specific resources is inadequate.

Some human annotation seems necessary in the digitisa-
tion of the Faroese corpus. In the first place, automated
OCR is unsatisfactory; then, we find also that building an
entirely automated post-processing system, although it im-
proves the text, still leaves far too much error. However,
incorporating a moderate investment of annotator time dur-
ing post-processing leaves an acceptable token error rate
below 1.5% in this low-resource setting.

Automated tools handle most of the corpus without human
intervention, but also identify scenarios where automated
accuracy tends to be lowest. In these difficult cases, the
automatic tools restrict the problem to a forced choice of at
most 3 potential corrections for an error, which are then sent
to a human annotator for adjudication. Our projections es-
timate a final token error rate of 1.3% with around 65 hours
of annotator work to process the entire Faroese corpus.
The only alternative in order to produce machine-readable
text of acceptable quality would be manual human work.
A human editor moving quickly can correct around 1,000
words of text per hour, for an expectation of 2,700 hours of
work to process the Faroese corpus while still being prone
to some degree of mistakes and inattention leading to a
comparable token error rate in the corpus. As an alternative
to correction, the entire corpus could be transcribed from
scans by typists, skipping the OCR entirely; this too would
take substantial time for 2.7 million words, and the cost of
hiring professional transcribers is often prohibitive for aca-
demic or community owners of language resources being
digitised. Our toolkit is designed to achieve similar final
corpus quality at much lower annotator cost.

1.3. Contributions

The Faroese corpus whose noisy OCR we correct repre-
sents a general problem in the dissemination of physical
documents in low resource language varieties. A basic
pipeline is that a physical document is scanned to a digi-
tal image, the digital image has machine-readable text ex-
tracted by OCR, and then the text is available for distri-
bution. OCR is considered a solved problem for modern
type in large-population languages, but standard technolo-
gies perform poorly in low resource language varieties, or
when source documents are physically degraded by time,
environment, or show visual variation due to the original
printing method (Afli et al., 2016). Digitised resources
could be distributed as scanned images rather than machine
readable text, and communities may still access the her-
itage and culture represented in the resources. However,
text facilitates better distribution due to reduced file size,
and large corpora are not easily navigable for any purpose
without searchable text. Text is of course also essential for
NLP, computational linguistics, and other research uses of
corpora. Therefore, we consider machine-readable text a
highly important element for any digitised text corpus. Our

toolkit becomes a post-processing stage in the resource dis-
semination pipeline, improving error-filled OCR output be-
fore the text is distributed. The toolkit’s code, in Python, is
being made available for general use.

2. Overview of Toolkit

A suite of five components and their relations are intro-
duced briefly here, before individual presentation in §3.
Character decoding. The core generation of OCR correc-
tions uses a character HMM to decode noisy input text into
k-best candidates for correct Faroese.

Alignment. Word-aligned parallel texts match noisy OCR
with its gold standard correction. Aligned texts are used to
train the character HMM and for development/evaluation.
Dictionary. A dictionary helps filter out spurious (non-
word) character sequences generated by HMM decoding.
Heuristic Decisions. A central decision module draws on
the output of character decoding and the language dictio-
nary to select output forms or determine when to seek hu-
man adjudication between k-best candidates.

Interface. The human annotator is presented with a poten-
tial OCR error and up to three candidate corrections in an
interactive workstation, and inputs their selected correction.

3. System Description
3.1. Text Alignment

Aligned texts (Table [T)) contain word pairs used to train
models of OCR character error. Aligned parallel text like
this is also required for system tuning and evaluation.

Correct Original
tgdini tgdini
vordu viardu
borin borin

ut ut

a $

bgin bgin

i i

Table 1: Sample of aligned text, including OCR errors (un-
derlined).

Corrected versions of several Faroese corpus texts were
available as they had been previously produced and used
for linguistics research. Aligning a noisy OCR document
to its corrected version is not trivial, because the two texts
normally have different token counts, different word and
sentence segmentations, and in some cases different line
divisions. However, both should contain corresponding el-
ements in the same order. We used the Needleman-Wunsch
sequence alignment algorithm (familiar also as ‘dynamic
time warping’ when applied to speech) on pairs of noisy
and corrected Faroese text files to find optimal alignments
(Klemberg and Tardos, 2006).This dynamic programming
algorithm creates a grid of character (mis)matches between
two files, and uses these to iteratively calculate the best
word-level alignment minimising overall mismatch. A
fixed window for mismatch length reduces runtime.

2332



3.2. Character Decoding

To generate corrections for tokens in noisy OCR text, we
use a hidden Markov model to decode the original OCR
into hypothesised correct Faroese output. The decoding
process takes a token from the input file and identifies the
sequence of actual Faroese characters most likely to have
been recognised by OCR as that token, which may or may
not be identical to the original character sequence. We use
a modified version of the Viterbi algorithm to find the top-k
most probable character sequences, instead of the standard
single best character sequence. This modified algorithm
uses beam search, maintaining a list of the k-best most
probable sequence possibilities at each time slice within the
decoding process.

The states of the HMM are the characters present in the
corrected training data: the Faroese alphabet, numbers, and
punctuation. The HMM output symbols are the slightly
larger set of characters present in the original noisy OCR,
such as d alongside Faroese 8. Emission parameters of the
HMM are learned from parallel training data, while initial
and transition probabilities are learned from corrected texts.
Laplace smoothing enables generalisation to character tran-
sitions and OCR errors not seen in the training data.

Initial Error 7.8%
Final Error 5.4%
Introduced Error 0.8%
Tokens Successfully Corrected 3.2%

Table 2: Operation of HMM alone on dev set. All quantities
are expressed by percentages of corpus tokens (words).

The HMM is trained on 170k words of parallel Faroese
data, and decoding uses beam width k=4. This HMM alone
is not able to effectively correct OCR errors. Table 2]illus-
trates projected performance for always selecting the most
probable (Viterbi) decoding on a test set of 70k words held
out from its training data. This poor performance motivates
our strategy of overgeneration (k-best decoding) before tak-
ing additional steps to refine the OCR correction.

The simple HMM topology that we use is capable of cor-
recting single character errors, but the noisy OCR on the
Faroese corpus also produced errors of multiple characters
read as a single character and single characters read as mul-
tiple characters. These errors are generally rare, but two
types occur with higher frequency: ‘1’ read as ‘H’ and ‘rn’
read as ‘m’. These two error types are present in 0.18% of
the tokens in the parallel Faroese data.

Correction of these errors is done after computing the k-
best decodings of the original token, and is corpus-specific.
If none of the k-best decodings are present in the dictio-
nary then the token is checked for whether it satisfies the
conditions for any of the character mis-segmentation errors
known to be frequent in the corpus.

1. If the original token contains an ‘H’ in a non-initial
position, then any occurrences of ‘H’ are replaced by
‘I’ and the k-best decodings are then found for the new
token. The k-best among the original decodings and

the new decodings are then selected. Only non-initial
‘H’ is replaced because no words beginning with ‘II’
are present in the Faroese dictionary.

2. If the original token contains an ‘m’ then variant to-
kens are created substituting ‘rn’ in place of ‘m’. Ev-
ery occurrence of ‘m’ is either replaced by ‘rn’ or left
unchanged. The k-best decodings are computed for
each of these variants and then the k-best among those
and the original decodings are selected.

If a token satisfies conditions for both errors then both pro-
cesses are applied.

The two strategies applied here, complete replacement in
(1) and variable mixing in (2), can be generalised to other
OCR errors of this nature in corpora where such errors are
more prevalent.

3.3. Dictionary

The Faroese dictionary contains around 450k types. It was
created originally for spell checking (J. S. Andersen, 2001),
and lightly augmented for our corpus (for example, com-
mon abbreviations like Fx ‘speaker’ and Fxx ‘speaker 2°).
Around 5% of tokens in the corrected text are still not
present in the dictionary.

This dictionary acts as a filter on the k-best decodings, when
at least one candidate is in the dictionary and at least one
is not. In these cases, a candidate that is in the dictionary
may be a better choice than one that is not, even if this is
counter to their decoding probabilities. For example, the 4-
best HMM decodings for the token stdani are [stdani stdani
stdani sidani]; of these, the fourth sidani is correct and is
present in the dictionary, while none of the other three gen-
erated forms are members of the dictionary. Similarly, the
two best decodings for slektadu: with the token ending in
a colon are [slektadu: slektadur]. Here slektadur is cor-
rect, and it is in the dictionary while slektadu (punctuation
stripped for dictionary check) is not. Therefore, if some
but not all generated candidates are found in the dictionary,
non-members can be removed from the candidate set. The
dictionary is also used to assess whether to replace original
tokens with any non-identical candidate at all: if the origi-
nal token is already in the dictionary, then it is less likely to
be an error in need of correction.

3.4. Central Decisions

OCR correction is ultimately managed by a module that
combines all available information with heuristic handling
strategies, and either selects the best word decoding or so-
licits human judgement.

The information available to the central decision module
includes an original token, four candidate decodings of it
(one of which may be identical to the original), probabili-
ties for each decoding under the HMM, and binary dictio-
nary membership checking. Decisions about which form to
use as output, or whether to ask a human annotator to ad-
judicate between a set of candidates, must derive from this
information.

The current decision procedure is in broad summary:

2333



1. Construct an initial ranked candidate list, from the
original token and k-best list: [ORIG, K1, K2,
K3, K4]

2. Check basic attributes of list members, such as
whether they are members of the dictionary and
whether they are identical with the original input form.

3. Based on token and candidate attributes, handle the
correction by either making no change, changing to
the highest-ranked non-identical candidate present in
the dictionary, or seeking human annotator judgement.

The decision procedure applies invariantly whether the best
decoded candidate (K1) is different or identical to the input,
that is, whether the character model estimates that the orig-
inal OCR contains an error or not.

This basic outline is implemented through a set of heuristics
that allow different classes of tokens to be handled differ-
ently, increasing correction accuracy and maximising effi-
ciency for the annotator by better targeting their efforts. To-
kens that are being corrected can be classified based on four
binary attributes visible to the system at correction time:
whether the top-ranked generated candidate K1 is identical
to the input token; whether the input token is in the dic-
tionary; whether the best generated candidate K1 is in the
dictionary; and whether any generated candidates are in the
dictionary. Due to frequent logical dependencies between
the attribute values, 9 classes are created. Each class can re-
ceive an independent decision for how to best handle its to-
kens, with these heuristic decisions optimised on a dev set:
possible choices for each are to select the original token, the
top generated candidate, the top candidate appearing in the
dictionary (if present), or human annotation. The decision
for how to handle each class is determined by oracle eval-
uation run on a dev set of parallel original/corrected (gold
standard) text. This shows what the optimal decision on the
dev set would have been, as well as what percentage of the
corpus falls into each of the nine classes so that annotator
time can be allocated to make the largest possible impact
while minimising workload. If the dev set reasonably rep-
resents the corpus as a whole, then the optimal heuristic
settings for the dev set should lead to accurate and efficient
corrections when used to correct the entire corpus.

3.4.1. Fit to Faroese corpus

We used four-fold cross validation to set heuristic options
(based on 10,000 words parallel text) and test the projected
performance of these settings when applied to other text
(another 10,000 words). The parallel text used for eval-
uation is 500-word excerpts of 40 texts from the corpus,
randomly sampled with restriction of no more than one
text per interviewee to enforce wide coverage of vocabu-
lary, year interviewed/transcribed, and individual typewrit-
ers. The corrected versions of the parallel texts were fi-
nalised with reference to scans of their original typewritten
copies to produce a gold standard for precise evaluation.
In four-fold cross validation, there was no variation in
which heuristic settings were found to be optimal for dif-
ferent random 10,000-word segments of the dev data, so
we treat this as a single correction system. The settings

found for Faroese correction can be summarised across the
9 cases in the following decision procedure:

1. If the top-ranked generated candidate K1 is in the dic-
tionary, use K1 (which may be identical to the input).

2. Else, if the original input is in the dictionary, use that
input.

3. Else, if some candidate(s) K2-4 are in the dictionary,
use the highest-ranked dictionary member.

[3.1.] However, consider sending the token to an
annotator if K1 is identical to the input and K1 is over-
whelmingly more probable than K2 under the charac-
ter model.

4. Else, when nothing is in the dictionary, send to an an-
notator.

[4.1.] However, if K1 is identical to the input,
consider using the input form without sending to an
annotator if the difference in probability between K1
and K2 is large enough.

That these particular settings emerged from the dev set pro-
vides some insight on both the corpus and the more general
operation of the system we are using. Step 1, using K1 if
it is in the dictionary, applies even when the original input
token differs from K1 and is also in the dictionary. This in-
troduces some error, but implements far more changes that
turn out to be real corrections (such as changing Olavur to
Olavur). Step 1 is the only case (besides human annotation)
in which an original token that is present in the dictionary
may end up changed - if K1 is not in the dictionary but any
K2-4 is, the original input token that is in the dictionary
will be used for output. This reflects tensions between con-
fidence in the character HMM and the original text, with
the dictionary ‘endorsing’ both; evidently, the OCR quality
is just bad enough that the character model’s top choice is
a better bet in this situation - but only if it is the character
model’s top choice, and not K2-4.

The human annotator’s role is mainly to adjudicate error-
prone cases between the character model, which has con-
fidence in a best candidate decoding, and the dictionary,
which (sometimes due to dictionary incompleteness, and
sometimes due to real OCR error) shows no confidence in
the original OCR token (Step 3.1) or in any other candidate
as well (Step 4). In both Step 3.1 and 4.1, we find that the
character probability difference between the top candidate
and the next-best candidate, when the top candidate is iden-
tical in form to the original token, is a fairly good signal for
whether the correct form of that token is also identical with
its original form. The precise value used is given in Equa-
tion 1, the ratio of this difference to the probability of K1.

P(K1)—P(K2)

Equation 1. P(KD)

It turns out that the value of this K1-K2 difference ratio
tends to approach 1 when K1 is identical to the original
token and to the gold standard correct token.

In Step 3.1, the character model endorses the original form
of the token, while the dictionary selects some other lower-
ranked candidate K2-4 because the original form/K1 is not

2334



in the dictionary. In the majority of these cases the lower-
ranked dictionary member is correct; however, there are
some tokens for which the original form is correct and
switching to a candidate K2-4 will lead to highly undesir-
able introduced error in the corpus. Close to 3% of the cor-
pus falls into condition 3.1, so it is not feasible to pass all
such tokens to a human annotator. Instead, a high K1-K2
difference ratio (threshold >0.99, set on 70k dev set; thresh-
old referred to as TH3.1 in Table[5]below) flags most of the
tokens for which K1 is correct - and flags few enough false
positives (for which K2-4 is correct) that annotation of all
flagged tokens is still practical - so that introduced error is
minimised with efficient human effort.

In Step 4 when absolutely nothing is in the dictionary, if the
top candidate K1 differs from the original token then there
is very little good information for the correction system to
work with so all such tokens are sent to the human anno-
tator. These are only about 0.6% of tokens in the corpus,
and they can be a good source of progressive augmenta-
tion to the dictionary. For cases falling under 4.1 where K1
does have the same form as the original input token, the
K1-K2 difference ratio can provide a useful signal saving
human effort. As in Step 3.1, this ratio tends towards 1
when K1/input form is correct; therefore, if it is sufficiently
high (threshold >0.95, set on 70k dev set; referred to as
THA4.1 in Table [5) then the token can bypass the annotator
and be left as its original form/K1.

Although this section has presented corpus-specific settings
for the Faroese typewritten data we are correcting, the ba-
sic heuristic method is widely adaptable, subdividing the
correction problem into token classes from observable at-
tributes and estimating optimal output settings for each
class from a dev set of parallel text.

3.5. Interface

Annotator judgements are collected in a simple text inter-
face.

upp gjggnum tidina. Her i Lamba hevur
ongantid nakar eingilskur dansur verid. Og hesa seinnu
hevur eingin dansur verid i Lamba. Her hevur
so 1ftil dpnsur verid uttan nyggjpAs-

SELECT for tidina :

1. tidina
2. 1idina
3. titina

Figure 2: Interface for annotation.

The interface presents the target word highlighted in con-
text, facilitating a quick and accurate decision. For each
target word, up to three candidate corrections are offered;
any of them can be chosen by number. The annotator can
also type a single-character control code to keep the origi-
nal word. If the original word is an error but none of the
suggested candidates are correct, the annotator can type

custom input. Font, size, and colours are easily controlled
by users’ general terminal interface settings.

Trials of this interface while producing parallel training/test
data (further post-corrected by hand for gold standard) yield
an estimated annotation speed of 4 seconds per target word,
or 900 annotations per hour.

4. Results

We first present the primary evaluation of our correction
system as developed in §3.4.1; then, three supplementary
evaluations illustrate variation in performance as a function
of annotator time, amount of HMM character model train-
ing data, and amount of heuristic-setting dev set data.

4.1. Main system

Applying the full correction procedure in four-fold cross
validation with heuristics set on 10,000 words and tested on
another 10,000 words of parallel text yields the projections
for final corpus quality and human annotator cost shown in
Table[3

Initial Error 7.6%
Final Error 1.3%
Annotator Task 2.2%
Introduced Error 0.4%
Tokens Successfully Corrected 6.6%

Table 3: Current toolkit operation including annotation. All
quantities are expressed by percentages of corpus tokens
(words).

In this evaluation table, the Initial Error is the percent of to-
kens incorrect (different from gold standard) in the original
input OCR, while Final Error is the total percent incorrect
in the output. Annotator Task is the percent of the corpus
that the annotator must give a judgement for. Introduced
Error is the percentage of tokens in the corpus for which
our automated system erroneously changes a form that was
actually correct (matched the gold standard) in the origi-
nal input. Tokens Successfully Corrected is the percentage
of tokens that are real errors in the original input but have
been corrected to match the gold standard, either by the au-
tomated system or by the human annotator.

Given the 2.2% annotator task and our estimate of 4 sec-
onds per annotator judgement, the 2.7 million word Faroese
corpus therefore requires about 65 annotator hours for full
correction using the current version of our toolkit, com-
pared with an estimated 2700 hours for manual editing
without the toolkit.

Initial Error 7.6%
Final Error 2.4%
Introduced Error 0.6%
Tokens Successfully Corrected 5.7%

Table 4: Operation of character model with dictionary and
heuristic handling but no human annotation. All quantities
are expressed by percentages of corpus tokens (words).

2335



Even without human annotation, applying dictionary-
informed heuristic conditional filtering to the k-best can-
didates performs much better than the plain dictionary-free
HMM (final error 5.4%, see Table2)); Table[d]shows projec-
tions for this combination in direct comparison to Table 3]

4.2. Ablation analysis

Table [3] systematically illustrates the tradeoffs between an-
notator expense and corpus quality, for this Faroese cor-
pus. The progression starts from the best fully automated
annotator-free system (the same as in Table ) as Stage 0,
and builds at each stage by replacing the automated deci-
sion strategy of one more of the system’s logically separa-
ble heuristic cases with a human annotator until reaching
full human annotation in Stage 11. The ordering of stages
in the ablation is somewhat arbitrary; we have attempted
to give some illustrations of sensible choices at different
annotation budgets, as well as pass through the system we
actually use. Our chosen system (that of Table[3) is bolded;
this reflects our target of around 2% annotator task.

The heuristic cases defining the ablation steps are those de-
scribed in §3.4, created from logical combinations of four
binary-valued attributes: E, whether the top-ranked gen-
erated candidate’s form is Equal to the original input to-
ken; O, whether the Original token is in the dictionary;
B, whether the Best generated candidate is in the dictio-
nary; and K, whether any generated candidates K1-4 are in
the dictionary. These attributes are listed under Switched
in Table [5| to specify which heuristic has been switched to
human annotation at each stage; their true/false values are
coded +/-. Table[S|has 11 separable steps progressing from
Stage 0, rather than only the 9 heuristic cases described in
§3.4, because in our best-performing implementation two
of the cases are further split by a threshold to conditionally
send only some tokens to a human annotator. These split
cases (using thresholds TH3.1 and TH4.1 in §3.4.1 above)
are marked in the table alongside the EOBK attribute cod-
ing when a set of tokens falling over or under their threshold
is switched to human annotation.

Stage Switched Annotated | Final error
Stage 0 0% 2.41%
Stage 1 E+0-B-K+>TH3.1 0.42% 2.15%
Stage 2 | E-O-B-K- 1.13% 1.68%
Stage 3 E+O-B-K-<TH4.1 2.23% 1.34%
Stage 4 E-O+B+K+ 2.50% 1.27%
Stage 5 E-O-B-K+ 2.90% 1.18%
Stage 6 | E+O-B-K+<TH3.1 5.77% 0.79%
Stage 7 | E+O-B-K->TH4.1 7.46% 0.57%
Stage 8 E-O-B+K+ 10.27% 0.36%
Stage 9 E-O+B-K+ 10.49% 0.35%
Stage 10 | E-O+B-K- 10.55% 0.34%
Stage 11 | E+O+B+K+ 100% 0%

Table 5: Ablation analysis for amount of human annotation.
All quantities are expressed by percentages of corpus to-
kens (words). The Annotated column lists how much of the
corpus must be annotated by a human. The Switched col-
umn indicates which heuristic case has just been switched
to human annotation at the current stage.

This exact ablation curve is specific to the unique corpus
and initial heuristic settings it comes from, but it clearly
illustrates a general principle for combining human annota-
tion with an automated system: an annotator is effectively
used in cases where they can annotate a manageable chunk
of the data and have a beneficial impact with most of those
annotations. Our system’s automated generation of candi-
date corrections and heuristic case-based handling for them
creates a structure that allows for an efficient use of the an-
notator’s effort, and flexibility in decision-making depend-
ing on the annotation budget and corpus quality require-
ments.

4.3. Reduced character model training data

As described in §3.2, the character decoder that generates
output forms is trained on 170,000 words of parallel text.
Since this much parallel text could be expensive to produce
if it is not already available independently, Table [6] shows
the consequences of using character models trained on sig-
nificantly less parallel training data, to observe the effect
on system quality and usability. The first row is reproduced
from Table [3} while results for the other two character de-
coders are reported under identical heuristic settings.

Training | Corrected | Added | Annotated | Final
Data Error Error
170k 6.6% 0.4% 2.2% 1.3%
100k 6.6% 0.5% 2.5% 1.4%
50k 6.3% 0.4% 2.6% 1.6%

Table 6: Performance when reducing character decoder
training data: percent of true errors that are successfully
corrected; percent of error introduced to originally correct
tokens; percent of tokens judged by human annotator; total
remaining error after processing and annotation.

Overall the character decoding component of our system
appears fairly robust to major reduction in training data.
Although some negative effect of the reduction is certainly
evident, especially in the training set of 50,000 words, per-
formance seems to degrade slowly.

The training size of 100k words appears to have a little
more introduced error, and a higher workload for the anno-
tator, when tested with the same heuristic settings that we
found to be best when using full-size training data. Some of
the increase in annotator task could be because the thresh-
olds that control which tokens are annotated were set on a
rather different dev set, and may not be well calibrated for
this character model’s probabilities. It would be possible to
recalibrate them to reduce the annotation task, in exchange
for raising the final error rate. However, another part of the
increased annotator task is simply that more tokens over-
all fall into the annotator-directed heuristic cases. This is
essentially because when this slightly degraded character
decoder now fails to generate the right form (that is usually
in the dictionary), it often instead generates forms that are
not in the dictionary, and it is mainly cases lacking dictio-
nary membership that fall to the annotator (§3.4.1). The
summary effect of the 100k training set is perhaps to shift
the system’s entire annotation ablation curve (Table [5) to

2336



a slightly more expensive place: very good quality is still
achievable with a bit more annotator time, or if annotator
time is strictly limited then quality will be slightly worse
than if using the 170k training set.

With 50k words of training data, there is a reduced ability
to correct some of the errors in the corpus, and the annota-
tor task has increased further due to unsuccessful generated
candidates that are not dictionary members. With the most
expensive annotation requirement and yet the worst result
(final error), training on only 50k words clearly hurts sys-
tem performance. However, it does still significantly im-
prove the corpus without extremely unreasonable annotator
effort, reducing error from an initial rate of 7.6% (Table @,
and therefore may be acceptable to some users.

4.4. Reduced heuristic dev set data

In §4.1 we used dev sets of 10,000 words of parallel text
to set optimal decisions for the heuristic cases. Here, we
explore the outcome of using smaller dev sets to set heuris-
tic decisions, while still testing these decisions on 10,000
words to obtain reliable comparisons to the test sets of §4.1.
Table [/ shows the projected outcomes of using heuristics
derived from a variety of smaller dev sets.

Dev Size (words) | Annotated | Final Error
8,000 2.2% 1.3%
5,000 2.2% 1.3%
3,000 1.8% 1.5%
2,000 2.5% 1.6%

Table 7: Impact of smaller dev sets on annotator workload
and final error.

Table [/ illustrates sample results only, giving an example
from one dev set at each of the listed sizes; this shows what
kind of outcome is possible but does not necessarily reflect
average expected performance for dev sets of that size.

For the dev sets of 8,000 and 5,000 words, the optimal
heuristics were identical to those found in §4.1. Therefore,
there is no change in projected results. This gives further
assurance that our current system is based on adequate dev
data, and may be reasonably expected to generalise well to
the rest of the corpus when it is corrected. This result also
indicates that if the amount of parallel text were very lim-
ited, the dev set could be fairly small, under 10,000 words
for this corpus.

With a 3,000-word dev set, there is one difference in the
apparently optimal settings; human annotation is not used
in one case, because the somewhat sparse information in
this dev data was insufficient to clearly identify all good
opportunities to take advantage of annotation. The result of
these settings misses the mark a bit - it does not fully use
our intended annotator budget of 2%, and so has a worse
final error rate than might otherwise have been achieved -
but it is still probably a decent heuristic setting at a different
target point on an annotation/error tradeoff curve (Table[3).
Using 2,000 words, 4 of the 9 heuristic cases have differ-
ent settings than in the original system. The damage to re-
sults is not catastrophic; changes to low-frequency cases
(among those most affected by sparse data) have limited

impact. Still, with an increase in both annotator effort and
final error, the lack of sufficient data in the 2,000-word dev
set is clearly harmful. Using a statistically misleading (too
small to be representative) dev set has a risk of setting mis-
fit parameters that waste annotator effort without achieving
quality worth the effort. The estimates of how much of the
corpus will be annotated also become less accurate when
they are estimated on smaller dev sets, resulting in logisti-
cal trouble from more annotation burden than expected, or
suboptimal corpus quality if not using the full annotation
budget.

5. Discussion
5.1. Previous Work

There is limited precedent for the problem of post-
processing OCR output to a high quality from physically
degraded input in low-resource languages. [Doush and Al-
'Trad (2016) use both Microsoft Word and Google’s spelling
suggestions to moderately improve OCR error in Arabic.
Afli et al. (2016) use machine translation to repair French
OCR; the translation system is trained on 90 million words
of parallel text that is all hand corrected by 2-3 annota-
tors, and achieves 1.7% word error rate. Kolak and Resnik
(2002; 2005) use HMM-based post-processing like ours
that is applicable to low resource languages, but human an-
notation is not incorporated and error rates remain too high
for our goals with the Faroese corpus. More generally, there
are a variety of noisy channel model analogues to our sce-
nario, in OCR itself (Natarajan et al., 1999; Natarajan et al.,
2009; [Shlien and Kubotal, 1986)), transliteration (Jiampoja-
marn et al., 2007)), machine translation of closely related
languages (Pourdamghani and Knight, 2017), multilingual
part of speech tagging (Duong et al., 2014), spell checking
(Liet al., 2012), and speech recognition (Gales and Young,
2008)), among others. These applications all tend to differ
from ours in that they use much more training data, or are
satisfied with higher output error rates in tasks ranging from
much harder than ours to rather similar.

Our toolkit is situated in the paradigm of human-assisted
NLP. Combining statistical NLP with human judgement,
supervision, or correction is common in preparation of
small but valuable high-quality resources for theoretical lin-
guistics research, such as annotating the Icelandic corpus of
Rognvaldsson et al. (2012). The methodology used by |In-
gason et al. (2014)) shows the current state of Faroese NLP
for historical corpora; they used a bilingual (Icelandic) ap-
proach to NLP resource development, together with time-
consuming manual correction to parse a Faroese corpus
of 50,000 words. With a larger corpus and simpler task
of OCR correction, we have placed relatively greater em-
phasis on reducing human annotator time. An alternative
human-assisted system developed for correcting OCR er-
ror in Yupik (Schwartz and Chen, 2017) may be preferable
to our method in some use cases, although it would not be
able to effectively correct our Faroese corpus. The method
of|Schwartz and Chen (2017)) takes advantage of systematic
restrictions on Yupik syllable structure to identify words
containing OCR error (violating legal syllable shapes), and
flag them for annotator attention. This does not require
a dictionary or parallel training text; therefore, unlike our

2337



method, it could be used in extremely low-resource set-
tings with no expected performance loss. However, the ap-
proach of |Schwartz and Chen (2017)) critically depends on
the typology of the language it is applied to, and whether
that language has such a restricted set of permitted syllable
structures (detectable from the orthography) that most OCR
errors will violate them. Faroese, unlike Yupik, permits a
fairly large number of syllable shapes; many OCR errors
(such as nogu which should be ndgv) create locally reason-
able sequences that happen to not result in real whole words
of Faroese, so that a dictionary provides a more useful sig-
nal here. Additionally, the system for Yupik does not pro-
pose candidate corrections for the errors it identifies, so the
human annotator must address all of them. This would re-
quire several times more annotator effort than we intended
for the Faroese corpus: 7.6% of tokens assuming perfect
error detection, with more effort per token than express-
ing a judgement in one keystroke. The language resources
(parallel text and dictionary) that our method requires en-
able it to generate corrections, and implement many of them
with no human attention, to use annotator time efficiently in
large corpora.

5.2. General Application for OCR Correction

Any use of our toolkit for OCR post-processing must find a
balance between three types of resources: parallel training
text for character error models and heuristic estimation, a
dictionary or wordlist to help filter decoding output, and hu-
man annotation to adjudicate between the character model
and dictionary. The Faroese corpus we correct has a good
amount of parallel data for training and development, and
a large high-quality dictionary; our goal was to bring the
corpus to a very low error rate with only a little annota-
tor effort. Either of our major language resources may not
be accessible for other corpora our toolkit is used with, the
initial error rate of corpora will vary, and corpus develop-
ers’ ultimate goals and priorities may differ from ours. We
intend for our illustrative analyses to provide prospective
users with at least a first glimpse at how applicable our tools
might be for their problem, given their particular available
language resources, amount of annotator time, and size of
corpus the annotator’s time must scale to.

The supplementary evaluations exploring how robust the
toolkit is to artificial limitations in resource availabil-
ity showed that, although we had around 250k words of
Faroese parallel text available for training and develop-
ment (produced by human editors correcting portions of the
Faroese corpus for various purposes over a period of years),
it is still possible to substantially reduce OCR error in the
corpus with under half or even one quarter this amount of
parallel text. Performance is clearly best when more train-
ing data is available, but when it must be limited (if no cor-
rected parallel text already exists), our toolkit can still be
expected to improve the condition of a corpus with a fairly
reasonable annotator workload.

The Faroese dictionary is from an open-source spell check-
ing project; although Faroese is spoken by a small popu-
lation, it is a living language whose speakers have one of
the highest rates of computer/internet usage globally. The
strategy of §3.4 relies heavily on a dictionary, and while

this enjoys evident success with the large dictionary we use
for Table [3] it may be a vulnerability if correction qual-
ity degrades rapidly with reduced dictionary coverage. We
recognise that many extremely low-resource languages will
not have comparable dictionaries readily available. Alter-
nate sources may include scraping Wikipedia or other web-
sites, smaller wordlists created for any purpose, and the
set of words in the training data. Requirements for use-
ful dictionary size will also vary by language typology. In
cases of relatively low dictionary coverage, we would sug-
gest an iterative approach, building a larger dictionary with
annotator-approved forms as corpus correction proceeds.
Our method appears generally well suited to a bootstrap-
ping approach, to progressively build up both the dictio-
nary and a larger bank of parallel training/development text
when needed: the initial cost to start up can be reduced be-
cause the method has at least reasonable performance with
relatively lower amounts of input resources, and the sub-
ideal system can then be used to fairly quickly produce
more corrected (parallel) text and augment the dictionary,
creating the resources necessary to more accurately and ef-
ficiently correct large corpora.

5.3. Aligner Uses

Independently of our toolkit as a whole, the aligner can be
broadly useful. It produces quality word-aligned data from
parallel source texts where token count, tokenisation, line
breaks, etc. may not agree. Texts produced by human edit-
ing will often not align straightforwardly with their sources;
on the other hand, constraining editors to strictly preserve
the token structure of input files in their corrections would
increase their workload while degrading the natural lan-
guage quality of the edited text.

Our aligner resolves this tension, and it may be helpful in a
variety of noisy channel model NLP tasks (e.g. translitera-
tion (Jiampojamarn et al., 2007)), or any setting with paral-
lel text where at least one side has been produced by a hu-
man editor. Because the aligner algorithm is not dependent
on external resources like a dictionary or human annotator,
it can be applied to new corpora with confidence.

6. Acknowledgements

We thank Caroline Heycock, Tony Kroch, and the faculty of
Fgroyamalsdeildin for their support in the development of
Faroese corpus resources; and Marine Carpuat and Sharon
Goldwater for their technical insight. This work was
supported by NSF grant DGE-1321851, and by DARPA
Lorelei under Cooperative Agreement No. HR0011-15-2-
0023.

7. Bibliographical References

Afli, H., Barrault, L., and Schwenk, H. (2016). OCR Error
Correction Using Statistical Machine Translation. Inter-
national Journal of. Computational Linguistics and Ap-
plications, 7(1):175-191.

Doush, I. A. and Al-Trad, A. M. (2016). Improving post-
processing optical character recognition documents with
arabic language using spelling error detection and cor-
rection. International Journal of Reasoning-based Intel-
ligent Systems, 8(3-4):91-103.

2338



Duong, L., Cohn, T., Verspoor, K., Bird, S., and Cook, P.
(2014). What Can We Get From 1000 Tokens? A Case
Study of Multilingual POS Tagging For Resource-Poor
Languages. In Proceedings of EMNLP, pages 886—897.
Association for Computational Linguistics.

Galbraith, D. (2016). Faroese ballad meter: a constraint-
based account. In NordMetrik: Versification, Metrics in
Practice, 5/25/16 - 5/27/16. University of Helsinki.

Gales, M. and Young, S. (2008). The application of hidden
markov models in speech recognition. Foundations and
trends in signal processing, 1(3):195-304.

Heycock, C. and Wallenberg, J. (2013). How variational
acquisition drives syntactic change: The loss of verb
movement in Scandinavian. Journal of Comparative
Germanic Linguistics, 16(127).

Ingason, A. K., Loftsson, H., Régnvaldsson, E., Sigurds-
son, E. F., and Wallenberg, J. C. (2014). Rapid Deploy-
ment of Phrase Structure Parsing for Related Languages:
A Case Study of Insular Scandinavian. In Nicoletta Cal-
zolari, et al., editors, Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC’14), pages 91-95, Reykjavik, Iceland, May.
European Language Resource Association (ELRA).

Jiampojamarn, S., Kondrak, G., and Sherif, T. (2007).
Applying many-to-many alignments and hidden markov
models to letter-to-phoneme conversion. In Human Lan-
guage Technologies 2007: The Conference of the North
American Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference, pages
372-379, Rochester, New York, April. Association for
Computational Linguistics.

Kleinberg, J. and Tardos, E., (2006). Algorithm design,
chapter 6.6 Dynamic programming: Sequence align-
ment. Pearson Education.

Kolak, O. and Resnik, P. (2002). OCR error correction us-
ing a noisy channel model. In Proceedings of the second
international conference on Human Language Technol-
0gy Research, pages 257-262. Morgan Kaufmann Pub-
lishers Inc.

Kolak, O. and Resnik, P. (2005). OCR post-processing for
low density languages. In Proceedings of the conference
on Human Language Technology and Empirical Methods
in Natural Language Processing, pages 867—-874. Asso-
ciation for Computational Linguistics.

Li, Y., Duan, H., and Zhai, C. (2012). A generalized hid-
den markov model with discriminative training for query
spelling correction. In Proceedings of the 35th interna-
tional ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 611-620. ACM.

Natarajan, P., Bazzi, 1., Lu, Z., Makhoul, J., and Scwhartz,
R. (1999). Robust OCR of degraded documents. In
Document Analysis and Recognition, 1999. ICDAR’99.
Proceedings of the Fifth International Conference on,
pages 357-361. IEEE.

Natarajan, P., MacRostie, E., and Decerbo, M. (2009). The
BBN byblos Hindi OCR system. In Guide to OCR for
Indic Scripts, pages 173-180. Springer.

Pourdamghani, N. and Knight, K. (2017). Deciphering re-
lated languages. In Proceedings of the 2017 Conference

on Empirical Methods in Natural Language Processing,
pages 2503-2508.

Rognvaldsson, E., Ingason, A. K., Sigurdsson, E. F., and
Wallenberg, J. (2012). The Icelandic Parsed Historical
Corpus (IcePaHC). In Nicoletta Calzolari, et al., editors,
Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14), pages
1977-1984, Istanbul, Turkey, May. European Language
Resource Association (ELRA).

Schwartz, L. and Chen, E. (2017). Liinnaqumalghiit: A
web-based tool for addressing orthographic transparency
in St. Lawrence Island/Central Siberian Yupik. Lan-
guage Documentation & Conservation, 11:275-288.

Shlien, S. and Kubotal, K. (1986). Optical character recog-
nition of touching characters. In Graphics Interface
1986, pages 390-395. Canadian Information Processing
Society.

Thrainsson, H., Petersen, H. P., Jacobsen, J. i. L., and
Hansen, Z. S. (2012). Faroese: An overview and ref-
erence grammar. Fgroya Frédskaparfelag, Torshavn.

8. Language Resource References

Fgroyamadlsdeildin. (n.d.). Bandasavnid. Frédskaparse-
tur Fgroya (‘The tape archive, of the Faroese Lan-
guage faculty, University of the Faroe Islands’),
https://setur.fo/gransking/soevn/bandasavn/.

J. S. Andersen. (2001). Fproyska ordalistin til reettlestur.
The Faroese Linux User Group, http://fo.speling.org.

2339



	Introduction
	Motivation
	Approach
	Contributions

	Overview of Toolkit
	System Description
	Text Alignment
	Character Decoding
	Dictionary
	Central Decisions
	Fit to Faroese corpus

	Interface

	Results
	Main system
	Ablation analysis
	Reduced character model training data
	Reduced heuristic dev set data

	Discussion
	Previous Work
	General Application for OCR Correction
	Aligner Uses

	Acknowledgements
	Bibliographical References
	Language Resource References

