
What’s Wrong, Python? – A Visual Differ and Graph Library for NLP in
Python

Balázs Indig12, András Simonyi1, Noémi Ligeti-Nagy1
1MTA-PPKE Hungarian Language Technology Research Group

2Pázmány Péter Catholic University, Faculty of Information Technology and Bionics
H-1083 Budapest, Práter street 50/A

{indig.balazs, simonyi.andras, ligeti-nagy.noemi}@itk.ppke.hu

Abstract
The correct analysis of the output of a program based on supervised learning is inevitable in order to be able to identify the errors it
produced and characterise its error types. This task is fairly difficult without a proper tool, especially if one works with complex data
structures such as parse trees or sentence alignments. In this paper, we present a library that allows the user to interactively visualise and
compare the output of any program that yields a well-known data format. Our goal is to create a tool granting the total control of the
visualisation to the user, including extensions, but also have the common primitives and data-formats implemented for typical cases. We
describe the common features of the common NLP tasks from the viewpoint of visualisation in order to specify the essential primitive
functions. We enumerate many popular off-the-shelf NLP visualisation programs to compare with our implementation, which unifies all
of the profitable features of the existing programs adding extendibility as a crucial feature to them.

Keywords: Tools, Visualisation, Python

1. Introduction
In natural language processing (NLP), it is obviously
fundamental to achieve good performance on the well-
researched tasks; however, on a task currently under devel-
opment, it is even more relevant to be aware of what have
happened and where the program has gone wrong. The
thorough analysis of the errors can lead to new ideas and
methods, and finally, to better results. In most of the NLP
tasks, this error inspection is carried out manually, while
the number of tools supporting this work phase is low. The
main reason of that is that for visual comparing there needs
to be a good graphing library that displays output data cor-
rectly, which can be also hijacked to display visual differ-
ences in a form that helps human processing. Finally, a
well-visualised good example can tell more of the inner-
working of an algorithm than a thousand words or tables.
In scientific computing, especially in NLP, two program-
ming languages serve as the source language of the major-
ity of the new tools. JAVA is popular because of its ma-
turity and cross-platform compatibility. In the job market,
one can find many well-trained programmers developing in
JAVA, the universities are still putting a great emphasis on
teaching JAVA, and finally, the slowly evolving industrial
applications are still using JAVA for new projects because
of its adoption. However, Python is still gaining more and
more popularity on the basis of its simplicity allowing fast
prototyping and its ability to hide the performance of the
critical parts – which are usually implemented in C++ –
under a newbie-friendly Python API without sacrificing the
overall running or development performance. The cheap
work power of fast-trained Python programmers may turn
the tide in the future. At the moment, main tools can be
seen having both Python and JAVA APIs. Concerning the
NLP visualisation task, there are mostly JAVA programs
on the shelf, which are – strictly technically – not good
as they can not be integrated well with Python programs.

We stand with Python, therefore in this paper, we mostly
sample Python programs along with a few others for com-
parison. We argue that the available solutions are not good
enough for the future Python language NLP visualisation
needs, therefore we created our own program in Python.
We describe the common NLP tasks of the past years to
discover their common features, which are expected to be
inherent in the methods and tasks of the following years.
We gather the list of available tools to compare them and
present our expectations for a new visual comparison pro-
gram. Finally, we present our solution and our future plans.

2. NLP Tasks and Formats
The first Conference on Computational Natural Language
Learning (CoNLL) was held in 1997 (Ellison, 1997). The
first shared task, the English noun-phrase chunking shared
task was announced in 2000 (Tjong Kim Sang and Buch-
holz, 2000) in a special format, the CoNLL-2000 format1.
Later on, each year this format has evolved, extended and
has become a de facto standard. The main idea behind the
format is that each token is represented in a line of a text file
and each of its features is represented as a field separated
by a white-space – mostly a tabulator – character. The sen-
tences are separated by a newline, and the order of the fea-
tures has been standardised over the years. This so-called
vertical format was a lightweight but machine-parseable al-
ternative to XML by resembling / specialising the already
existing Tab Separated Values (TSV) format2. The first field
of each record (token) is always the actual token, the sec-
ond is the lemma if any, and the third is the Part of Speech

1Ide et al. (2017) provides a broad overview of the state-of-
the-art in standards development for language resources, includ-
ing CoNLL and dependency annotations.

2A special hybrid version of TSV and XML format called ver-
tical file format is used also in Sketch Engine (Kilgarriff et al.,
2014) to represent corpora.

577



(POS) tag. The rest of the fields often differs and represents
two kinds of structures.
One basic type of structure among tokens is bracketing.
Many variants of bracketing task exist (e.g. NP-chunking,
named-entity recognition) and many tasks can be inter-
preted as bracketing3. Basically, when a word or multi-
ple subsequent words need to be labelled4 – which implies
bracketing – one can represent the task with the same data
structure, and from our perspective, their visualisations are
practically the same too.
Another basic type of structure being represented in vari-
ous CoNLL formats comes from the further processing of
the input sentence, where a one-level bracketing is insuf-
ficient. In constituent parsing immediate constituents are
represented as brackets and it is needed to define higher-
level relations between them to get the full parsing. These
relations between the tokens (or groups) are represented by
edges having a direction and a label, optionally. In depen-
dency parsing, directed edges are always used and no ar-
tificial constituents are introduced to name the underlying
groups of tokens. These two techniques can be represented
in the data uniformly by using references to the token num-
ber to denote the edges. The resulting table cannot easily
be read by humans but is practical for machines. This is the
root cause why one would need a visual comparison tool.
There is a third type of commonly used structure which is
not represented in the CoNLL format: the sentence align-
ment task. In the field of machine translation, tokens in a
sentence should be reordered to get the correct translation.
Sentence aligner tools also make mistakes, which, again,
must usually be investigated by a human. In order to com-
pare the alignments, one must see the two alignments with
the matching and differing edges. Not to mention when one
needs to see which part of the source sentence is translated
to which part of the target sentence. This latter task involves
bracketing and the alignment edges in conjunction.
We can see that most of the current NLP tasks involving
supervised learning could profit from a visual comparison
tool. A tool like this could help humans inspect the auto-
matically generated output in view of the gold standard and
increase the productivity of error analysis.

3. Traditional NLP centric visualisation and
visual comparison tools

In this section we list the most important data visualisation
libraries, focusing on their strength and weaknesses. There
are a plethora of general data visualisation tools, that sup-
port many languages and are able to create interactive and
publication-ready figures as well. In this paper, we sample
only a few that suppose to shed light on the classes of the
available programs regarding their good and bad sides.
In LATEX there are many libraries that support general,
linguistic and NLP focused graphing for vector-graphical
publication-quality images, which use PGF/TikZ or other
macros. Their common weakness is that they are optimised

3For example, any kind of tokenisation task (e.g. paragraph,
sentence or token splitting) can be interpreted as bracketing.

4Even POS-tagging can be interpreted as a labelled bracketing
of each individual token.

for printing and do not support interactive workloads; how-
ever, they have a nice output and are excellent for their spe-
cific task and easy to learn for LATEX experts.
From the viewpoint of layout, one must consider GraphViz
(Gansner and North, 2000) as it has advanced layout prop-
erties and can be customised with the standard DOT graph
description language format for input, and it supports var-
ious output formats as well. It is, however, designed for
non-interactive use and lacks the features needed for real
interactive usage with a layout not easily customised.
As the de facto NLP framework for Python is Natural Lan-
guage Tool Kit (NLTK) (Bird et al., 2009), it is a good start-
ing point for searching for a proper base implementation.
Its data structures and format handling capabilities are ex-
ceptional, but its interactive visualisation part is less ex-
traordinary. It uses GraphViz for dependency graphs and a
TKinter GUI for displaying the generated SVG figures in a
cross-platform compatible way. As it lacks the layout code,
only its input format and corpus handling capabilities are
useful for our purpose.
In recent years, a new NLP framework in Python emerged
from NLTK, which is called Spacy (Honnibal and John-
son, 2015) and it is gaining more and more popularity be-
cause of its speed and performance. It is a full-fledged NLP
framework with a beautiful, modern, web-based visualisa-
tion module called Displacy. From our point of view, its
main problem is that it does not support comparison and it
has a heavy weight. Even if one would decouple the visual-
isation part and build a whole new comparison framework,
the maintenance burden of the decoupled part would be too
high because of the pace of Spacy’s development.
Another novel emerging web-based visualisation library in
Python is Bokeh (Bokeh Development Team, 2014), which
is basically an interactive visualisation program designed
for browsers around D3.js (Bostock et al., 2011) 5. Its main
goal is to release the users from the need to fiddle with
JavaScript: it can be entirely customized from Python. The
main problem of Bokeh is that it is not NLP centric and too
general, and its API is rather abstract to be used directly.
However, it can be used as a low-level graphing API for a
custom layout engine as well as a basic WebUI.
We must mention the class of classic GUI-based or head-
less standard graphing APIs. The emerging Matplotlib
(Hunter, 2007) is a great plotting API for Python, which
is easier to interact with from Python than the other alter-
natives like GNUPlot6. These programs are able to create
publication-ready figures in numerous supported exporting
formats with the standard low-level primitives and also can
be used as a base for interactive tasks as well. It is easy to
write the NLP centric primitives with the standard ones and
use the layout engine for our purposes.
For the specific task of NLP centric visual diffing we have
found two off-the-shelf solutions, which are implemented
in JAVA, and nowadays are not actively developed: one ex-
ample is MaltEval (Nilsson and Nivre, 2008), which has

5The goal is very similar to the Computable Document
Format interactive demonstrations capability of the proprietary
Wolfram’s Mathematica, which can be tried at http://
demonstrations.wolfram.com/

6http://gnuplot.info/

578

http://demonstrations.wolfram.com/
http://demonstrations.wolfram.com/
http://gnuplot.info/


the typical anti-features we had faced with the aforemen-
tioned programs as well as they are too well-embedded into
a framework: they cannot be hijacked for any purpose other
than their well-defined role, which makes their usage for a
slightly different task impossible, thus condemning them
not to be used by a greater audience. It is hard to decouple
them into modules to accommodate novel representations,
thus forcing the user to reimplement much of the inner-
workings, which is mostly a duplicate effort.
The other off-the-shelf example for the specified task is
What’s Wrong With My NLP?7. It has an unpleasant, old-
style graphical user interface (GUI) (see Figure 5), which
is considered clumsy and the rendered figure is a raster im-
age, which can only be exported to EPS format. The in-
ternal representation is very promising from the aspect of
extension to new formats of features. It is the best program
currently available for our purpose.
As one can see, we checked multiple programs which could
bring us closer to our goal: a lightweight library written
with toolbox-philosophy in mind ready for versatile NLP-
centric graphing and diffing in order to create a program,
which could provide a human-friendly interactive compar-
ison solution easily extendible to handle new formats and
different layouts. We have found many well-defined or
too abstract off-the-shelf implementations, that would have
placed a large burden on us considering later development.
Hence, we started to design a new implementation in
Python with the followings in mind: (a) we tried not to
constrain the edge drawing at all in our program, and (b) we
tried to mix all the good features of the aforementioned pro-
grams in order to gain larger audience and satisfy the stan-
dard and non-standard comparison and visualisation needs
as well. Some of the features were previously unavailable
in any of the existing programs as their authors concen-
trated only on the standard NLP tasks. Our implementation
is very close to What’s Wrong With My NLP?. however,
our goal was to use the resulting program in a pure Python
environment and thus it only served as the base of our new
Python implementation8, which we will present in the next
section in detail.

4. Our Solution: LibWhatsWrong
As described in the previous section, there is no real off-
the-shelf solution in Python, which would help the inter-
active visual comparison of data and the visual, step-by-
step debugging of a program’s result with the possibility of
exporting the resulting figures in a web-compliant format,
that may also be embedded into scientific papers. The only
similar solution implemented in JAVA has its own problems
with the old-fashioned GUI and nowadays it is not actively
developed.
Our goal is web-compliance in conjunction with the sup-
port of printable formats. To get started we have chosen

7https://code.google.com/archive/p/
whatswrong/

8We must note that with the proper knowledge of JAVA and
the available libraries our main feature differences can be easily
backported to What’s Wrong With My NLP?to get a fully func-
tioning future-proof NLP centric graph library and differ tool for
JAVA.

the W3C standard Scalable Vector Graphics (SVG) as the
final format, as there are many lightweight libraries to gen-
erate figures in this format in many languages. We selected
SVGWrite 9 for the initial implementation. We designed an
abstraction for the needed logical primitives as we wanted
to be able to draw the standard drawing primitives with dif-
ferent drawing backends, such as Matplotlib or Bokeh.
We wanted to separate the input formats and corpus han-
dling from the layout code, to encourage the potential users
to implement even their really own format or utilise some
other implementation of parsers of the widely-known data
formats, for example, the ones in NLTK with our exposed
API. This decision makes it possible in the future to quickly
write a parser in Python for any specific format – based on
our example implementations – and use it as a replacement.
Between the input data – which is parsed into a unified
form – and the description of the logical primitives for the
drawing backend, lies the layout and the comparing code.
Our implementation of layout generation and comparing is
based on What’s Wrong With My NLP?, with modifications
to allow more control to customise the layout. One can
create custom layouts easily by combining the layout prim-
itives (which includes dependency, span and alignment lay-
outs) or create new layouts from lower level logical or stan-
dard primitives.
The comparing process is fully separated from the layout
computing. Numerous features of the primitives, which
have a large impact on the complete laid out figure, can be
set as parameters such as colour, font type, size, etc. This
design of the core library allows one to use each step sepa-
rately – even without the comparison – with his or her data
in any supported or future format either from the graphical,
command line or web UI or even from a Python program
via an API. This fine-grained control was previously not
available in What’s Wrong With My NLP? or in any of the
aforementioned solutions.
In our implementation it is also possible to have multiple
edges from the same starting element to the same ending
one or to form a loop by returning to the starting token,
which is not a trivial requirement as it cannot be found in
any of the aforementioned implementations10 (see 5.. sec-
tion for ideas and possible applications). The absence of
this feature is caused by the fact that a well-formed de-
pendency syntax tree cannot contain such edges, however,
these types of errors are the ones which would be essential
for a human corrector or may be required for a non-standard
representation (see 5.. section for details).
The laid out figures can be exported to SVG, PDF and EPS
formats currently and the range of the supported formats
can be widened with the usage of Matplotlib as backend.
To demonstrate the power of our implementation, we im-
plemented a GUI around the library, that has all the features
of What’s Wrong With My NLP? – including interactive
modification of the resulting figure –, but with a modern,
sound GUI based on Qt 5 in PyQt (see Figure 6). There is
also a simple demonstrative CLI for the basic drawing and
comparing. Besides that, we plan to use Bokeh as UI and

9https://github.com/mozman/svgwrite
10The CoNLL formats do not support double edges and for ex-

ample Displacy draws the two edges on each other

579

https://code.google.com/archive/p/whatswrong/
https://code.google.com/archive/p/whatswrong/
https://github.com/mozman/svgwrite


drawing backend to gain web UI functionality. In the next
section, we present some useful ideas and possible applica-
tions for our library.

5. Possible applications
In this section, we would like to demonstrate the novelty
and practicality of our application through four visualisa-
tion examples. We also enumerate some ideas regarding
how to use our program, which might be useful for others
in the future.
Although CoNLL format does not support double edges at
all, and other applications simply draw two edges on each
other if needed, correctly and visibly visualising two edges
between the same two words is not only important because
of our need to use the visualisation tool to improve the algo-
rithm behind the given drawing, but also because there may
be some parsing systems that specifically require and pro-
duce double edges. From a linguistic point of view, there
are special relations between the constituents of a sentence
that should be explored during the parsing: focus, for exam-
ple, is a grammatical category that determines which part of
the sentence contributes new, non-derivable, or contrastive
information (Halliday, 1968). In Figure 1, we demonstrate
how double edges – here an edge between the verb and its
focus, and an edge between the verb and its object – are
represented in our visualisation tool.

Figure 1: The visualisation of the dependency parsing of
the sentence Téged láttalak tegnap. ‘I saw YOU yester-
day.’. The example demonstrates how our tool visualizes
double dependency-like edges: one edge ACC starts from
the verb láttalak and ends in its object, téged, while the
other edge between the exact same tokens, FOCUS, means
that the object here is the focus of the sentence (represented
by the verb as the root). The two edges are drawn sepa-
rately, and with different colours (blue and black), which
indicates that the blue edge represents a connection on a
different parsing level.

A loop – when an edge returns to the same token it started
from –, is not part of the dependency formalism. However,
some of the aforementioned tools support its visualisation,
others do not. Drawing a loop is part of our solution, as we
claim that it has an importance in parsing. For example, in
some languages, like in German or in Hungarian, prever-
bal particles form one word with the verb. Therefore, the
edge between a verb and its particle must return to the same
token it started from (see Figure 2).
‘The task of applying tags to each token in a sentence con-
secutively is called sequential tagging. In general, the tag-
ger tries to assign labels to (neighbouring) tokens correctly.
The well-known special cases of this task include Part-
of-Speech tagging, Named-Entity Recognition (NER) and

Figure 2: The visualisation of the dependency-like pars-
ing of the sentence Farkas Bertalan visszarepült. ‘Bertalan
Farkas flew back.’. The example shows how our tool visu-
alizes a loop. The edge PREV starts from the verb and ends
in its verbal particle. In some languages, for example in
Hungarian, the verbal particle and the verb often form one
word, therefore the edge PREV must point to the same to-
ken it started from: the edge PREV connects the verb repült
‘flew’ and the verbal particle vissza ‘back’, but as they form
one word the edge must form a loop.

chunking. In the latter, two IOB tags are used to determine
a well-formed one level bracketing on the text.’ (Indig and
Endrédy, 2018)
Moreover, in languages, that do not have enough training
data yet, or lack the specific programs to train a parser to
do real syntactic parsing, chunking provides results which
could substitute the parsing task in scenarios where only
specific information is needed from the text. It is also essen-
tial for a linguist to see the specific examples and their fre-
quencies in order to refine existing theories and recover an-
notation errors in the training set, which peculiarities have
their own interesting aspects but cannot be harmonized with
the automatic chunking process and its applications.
Figure 3 shows the visualisation of the chunking of a prob-
lematic Hungarian sentence. In Hungarian, noun phrases
may end with an adjective even when followed by a noun
that starts another noun phrase, despite the fact that the
regular order of these categories within an NP is exactly
ADJ + NOUN. Moreover, most of the adjectives can per-
fectly behave like a noun in the sentence. This is the reason
why the chunking of the sentence in Figure 3 is not trivial:
the word cicaimádó ’kitten-loving’ is an adjective, but may
bear the POS-tag NOUN because it often happens to behave
like a noun in the sentences. However, in this case, this to-
ken is a true adjective being the modifier of the noun ı́ró
’writer’.

Figure 3: The visualisation of an NP-chunked sentence.
The four lines under the sentence indicate two different
chunking results in two forms: the first two lines show the
differences in the IOB encoding and the last two lines show
the differences in the chunks. The first and the last (blue)
lines are the gold standards, and the middle ones (red) are
the automatic results.

In machine translation, matching the corresponding words
of the target and the source sentence is crucial for later
steps. This task is called alignment. All of the source and
target tokens must have their corresponding pair, but the or-
der of the words can be different and multiple tokens can be

580



assigned to one and vice versa. The visual comparison of
the gold standard and the automatic alignment (e.g. using
different colours) is crucial to analyse errors in the input
data and in the algorithm as well, in order to improve an
aligning. In Figure 4, it can be seen how our tool visualises
an alignment.

Figure 4: The visualisation of a sentence alignment. Some
tokens have multiple corresponding pairs and vice versa.

Apart from the actual drawing and comparing, our program
has an impressive feature set on the searching and filtering
of the instances. One can filter by all the tokens and edge
properties which can be a big help for the analyst to find,
count, classify and correct errors. One can choose to create
a visualized version on specific sentences, which matches
some user-defined criteria in order to view a specific type
of errors or sentences one by one or directly visualise the
output of some parser like Spacy does.

6. Conclusion and Future Work
In this paper, we introduced a new NLP-centric visualisa-
tion and visual comparison library in Python, which adopts
all the good features of the existing similar implementations
while adding some novel key features so far not available in
any of the current tools. Our idea was to keep the toolbox-
philosophy in mind, write well-defined general modules
and do not reimplement what is known to work. We also
wanted to leave as much freedom as possible for the user to
interact, (even dynamically) customise or extend the pro-
gram for his or her needs even for non-standard formats or
in-development purposes.
In the future, we want to use this program for multi-
ple purposes, which involve interactive visual compari-
son and dynamic interactive visualisations. These ap-
plications will not only be interesting on their own but
will also demonstrate the power of this library. We
hope this program will be as useful for others as it is
for us. The code is licensed under the LGPL 3.0 and
is available at https://github.com/ppke-nlpg/
whats-wrong-python.

7. References
Bird, S., Klein, E., and Loper, E. (2009). Natural Lan-

guage Processing with Python. O’Reilly Media, Inc., 1st
edition.

Bokeh Development Team, (2014). Bokeh: Python library
for interactive visualization.

Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 Data-
Driven Documents. IEEE Transactions on Visualization
and Computer Graphics, 17(12):2301–2309, December.

T. Mark Ellison, editor. (1997). Proceedings of the 1997
Meeting of the ACL Special Interest Group in Natural
Language Learning: Computational Natural Language
Learning, CoNLL’97. ACL.

Gansner, E. R. and North, S. C. (2000). An open graph vi-
sualization system and its applications to software engi-
neering. SOFTWARE - PRACTICE AND EXPERIENCE,
30(11):1203–1233.

Halliday, M. A. K. (1968). Notes on Transitivity and
Theme in English: Part 3. Journal of Linguistics,
4(2):179–215.

Honnibal, M. and Johnson, M. (2015). An Improved
Non-monotonic Transition System for Dependency Pars-
ing. In Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing, pages
1373–1378, Lisbon, Portugal, September. Association
for Computational Linguistics.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environ-
ment. Computing In Science & Engineering, 9(3):90–
95.

Ide, N., Calzolari, N., Eckle-Kohler, J., Gibbon, D., Hell-
mann, S., Lee, K., Nivre, J., and Romary, L. (2017).
Community Standards for Linguistically-Annotated Re-
sources. In Nancy Ide et al., editors, Handbook of Lin-
guistic Annotation, pages 113–165. Springer.

Indig, B. and Endrédy, I., (2018). Gut, Besser, Chunker -
Selecting the best models for text chunking with voting.
Springer International Publishing, Cham. In press.

Kilgarriff, A., Baisa, V., Bušta, J., Jakubı́ček, M., Kovvář,
V., Michelfeit, J., Rychlý, P., and Suchomel, V. (2014).
The Sketch Engine: ten years on. Lexicography, pages
7–36.

Nilsson, J. and Nivre, J. (2008). MaltEval: an
Evaluation and Visualization Tool for Dependency
Parsing. In Nicoletta Calzolari (Conference Chair),
et al., editors, Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco, May. European Lan-
guage Resources Association (ELRA). http://www.lrec-
conf.org/proceedings/lrec2008/.

Tjong Kim Sang, E. F. and Buchholz, S. (2000). Intro-
duction to the CoNLL-2000 Shared Task: Chunking. In
Proceedings of the 2nd Workshop on Learning Language
in Logic and the 4th Conference on Computational Nat-
ural Language Learning - Volume 7, CoNLL ’00, pages
127–132, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

8. Appendix
To demonstrate the main – visible – differences between
the JAVA version of What’s Wrong With My NLP? and our
Python implementation, we captured screenshots of the two
applications during operation. As can be seen in Figure
5, the old version has an unpleasant, old-style GUI with
numerous different windows often not being resizeable (for
example the window named Show Properties). One of the
biggest problems with this version is its clumsiness: the
various windows are handled as separate units, therefore,
for example, it is difficult to move them to the foreground
one by one when they are covered by another window. Our
implementation (see Figure 6), on the other hand, comes
with a modern, clean GUI with easy to use sections grouped
into tabs.

581

https://github.com/ppke-nlpg/whats-wrong-python
https://github.com/ppke-nlpg/whats-wrong-python


Figure 5: Screenshot of the JAVA version of What’s Wrong With My NLP?

Figure 6: Screenshot of the Python version of What’s Wrong With My NLP?

582


	Introduction
	NLP Tasks and Formats
	Traditional NLP centric visualisation and visual comparison tools
	Our Solution: LibWhatsWrong
	Possible applications
	Conclusion and Future Work
	References
	Appendix

